Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)

#include <linux/dma-mapping.h>
#include <linux/ip.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include <linux/tcp.h>
#include <uapi/linux/udp.h>
#include "funeth.h"
#include "funeth_ktls.h"
#include "funeth_txrx.h"
#include "funeth_trace.h"
#include "fun_queue.h"

#define FUN_XDP_CLEAN_THRES 32
#define FUN_XDP_CLEAN_BATCH 16

/* DMA-map a packet and return the (length, DMA_address) pairs for its
 * segments. If a mapping error occurs -ENOMEM is returned. The packet
 * consists of an skb_shared_info and one additional address/length pair.
 */
static int fun_map_pkt(struct device *dev, const struct skb_shared_info *si,
		       void *data, unsigned int data_len,
		       dma_addr_t *addr, unsigned int *len)
{
	const skb_frag_t *fp, *end;

	*len = data_len;
	*addr = dma_map_single(dev, data, *len, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, *addr))
		return -ENOMEM;

	if (!si)
		return 0;

	for (fp = si->frags, end = fp + si->nr_frags; fp < end; fp++) {
		*++len = skb_frag_size(fp);
		*++addr = skb_frag_dma_map(dev, fp, 0, *len, DMA_TO_DEVICE);
		if (dma_mapping_error(dev, *addr))
			goto unwind;
	}
	return 0;

unwind:
	while (fp-- > si->frags)
		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);

	dma_unmap_single(dev, addr[-1], data_len, DMA_TO_DEVICE);
	return -ENOMEM;
}

/* Return the address just past the end of a Tx queue's descriptor ring.
 * It exploits the fact that the HW writeback area is just after the end
 * of the descriptor ring.
 */
static void *txq_end(const struct funeth_txq *q)
{
	return (void *)q->hw_wb;
}

/* Return the amount of space within a Tx ring from the given address to the
 * end.
 */
static unsigned int txq_to_end(const struct funeth_txq *q, void *p)
{
	return txq_end(q) - p;
}

/* Return the number of Tx descriptors occupied by a Tx request. */
static unsigned int tx_req_ndesc(const struct fun_eth_tx_req *req)
{
	return DIV_ROUND_UP(req->len8, FUNETH_SQE_SIZE / 8);
}

/* Write a gather list to the Tx descriptor at @req from @ngle address/length
 * pairs.
 */
static struct fun_dataop_gl *fun_write_gl(const struct funeth_txq *q,
					  struct fun_eth_tx_req *req,
					  const dma_addr_t *addrs,
					  const unsigned int *lens,
					  unsigned int ngle)
{
	struct fun_dataop_gl *gle;
	unsigned int i;

	req->len8 = (sizeof(*req) + ngle * sizeof(*gle)) / 8;

	for (i = 0, gle = (struct fun_dataop_gl *)req->dataop.imm;
	     i < ngle && txq_to_end(q, gle); i++, gle++)
		fun_dataop_gl_init(gle, 0, 0, lens[i], addrs[i]);

	if (txq_to_end(q, gle) == 0) {
		gle = (struct fun_dataop_gl *)q->desc;
		for ( ; i < ngle; i++, gle++)
			fun_dataop_gl_init(gle, 0, 0, lens[i], addrs[i]);
	}

	return gle;
}

static __be16 tcp_hdr_doff_flags(const struct tcphdr *th)
{
	return *(__be16 *)&tcp_flag_word(th);
}

static struct sk_buff *fun_tls_tx(struct sk_buff *skb, struct funeth_txq *q,
				  unsigned int *tls_len)
{
#if IS_ENABLED(CONFIG_TLS_DEVICE)
	const struct fun_ktls_tx_ctx *tls_ctx;
	u32 datalen, seq;

	datalen = skb->len - skb_tcp_all_headers(skb);
	if (!datalen)
		return skb;

	if (likely(!tls_offload_tx_resync_pending(skb->sk))) {
		seq = ntohl(tcp_hdr(skb)->seq);
		tls_ctx = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);

		if (likely(tls_ctx->next_seq == seq)) {
			*tls_len = datalen;
			return skb;
		}
		if (seq - tls_ctx->next_seq < U32_MAX / 4) {
			tls_offload_tx_resync_request(skb->sk, seq,
						      tls_ctx->next_seq);
		}
	}

	FUN_QSTAT_INC(q, tx_tls_fallback);
	skb = tls_encrypt_skb(skb);
	if (!skb)
		FUN_QSTAT_INC(q, tx_tls_drops);

	return skb;
#else
	return NULL;
#endif
}

/* Write as many descriptors as needed for the supplied skb starting at the
 * current producer location. The caller has made certain enough descriptors
 * are available.
 *
 * Returns the number of descriptors written, 0 on error.
 */
static unsigned int write_pkt_desc(struct sk_buff *skb, struct funeth_txq *q,
				   unsigned int tls_len)
{
	unsigned int extra_bytes = 0, extra_pkts = 0;
	unsigned int idx = q->prod_cnt & q->mask;
	const struct skb_shared_info *shinfo;
	unsigned int lens[MAX_SKB_FRAGS + 1];
	dma_addr_t addrs[MAX_SKB_FRAGS + 1];
	struct fun_eth_tx_req *req;
	struct fun_dataop_gl *gle;
	const struct tcphdr *th;
	unsigned int l4_hlen;
	unsigned int ngle;
	u16 flags;

	shinfo = skb_shinfo(skb);
	if (unlikely(fun_map_pkt(q->dma_dev, shinfo, skb->data,
				 skb_headlen(skb), addrs, lens))) {
		FUN_QSTAT_INC(q, tx_map_err);
		return 0;
	}

	req = fun_tx_desc_addr(q, idx);
	req->op = FUN_ETH_OP_TX;
	req->len8 = 0;
	req->flags = 0;
	req->suboff8 = offsetof(struct fun_eth_tx_req, dataop);
	req->repr_idn = 0;
	req->encap_proto = 0;

	if (likely(shinfo->gso_size)) {
		if (skb->encapsulation) {
			u16 ol4_ofst;

			flags = FUN_ETH_OUTER_EN | FUN_ETH_INNER_LSO |
				FUN_ETH_UPDATE_INNER_L4_CKSUM |
				FUN_ETH_UPDATE_OUTER_L3_LEN;
			if (shinfo->gso_type & (SKB_GSO_UDP_TUNNEL |
						SKB_GSO_UDP_TUNNEL_CSUM)) {
				flags |= FUN_ETH_UPDATE_OUTER_L4_LEN |
					 FUN_ETH_OUTER_UDP;
				if (shinfo->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
					flags |= FUN_ETH_UPDATE_OUTER_L4_CKSUM;
				ol4_ofst = skb_transport_offset(skb);
			} else {
				ol4_ofst = skb_inner_network_offset(skb);
			}

			if (ip_hdr(skb)->version == 4)
				flags |= FUN_ETH_UPDATE_OUTER_L3_CKSUM;
			else
				flags |= FUN_ETH_OUTER_IPV6;

			if (skb->inner_network_header) {
				if (inner_ip_hdr(skb)->version == 4)
					flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM |
						 FUN_ETH_UPDATE_INNER_L3_LEN;
				else
					flags |= FUN_ETH_INNER_IPV6 |
						 FUN_ETH_UPDATE_INNER_L3_LEN;
			}
			th = inner_tcp_hdr(skb);
			l4_hlen = __tcp_hdrlen(th);
			fun_eth_offload_init(&req->offload, flags,
					     shinfo->gso_size,
					     tcp_hdr_doff_flags(th), 0,
					     skb_inner_network_offset(skb),
					     skb_inner_transport_offset(skb),
					     skb_network_offset(skb), ol4_ofst);
			FUN_QSTAT_INC(q, tx_encap_tso);
		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
			flags = FUN_ETH_INNER_LSO | FUN_ETH_INNER_UDP |
				FUN_ETH_UPDATE_INNER_L4_CKSUM |
				FUN_ETH_UPDATE_INNER_L4_LEN |
				FUN_ETH_UPDATE_INNER_L3_LEN;

			if (ip_hdr(skb)->version == 4)
				flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM;
			else
				flags |= FUN_ETH_INNER_IPV6;

			l4_hlen = sizeof(struct udphdr);
			fun_eth_offload_init(&req->offload, flags,
					     shinfo->gso_size,
					     cpu_to_be16(l4_hlen << 10), 0,
					     skb_network_offset(skb),
					     skb_transport_offset(skb), 0, 0);
			FUN_QSTAT_INC(q, tx_uso);
		} else {
			/* HW considers one set of headers as inner */
			flags = FUN_ETH_INNER_LSO |
				FUN_ETH_UPDATE_INNER_L4_CKSUM |
				FUN_ETH_UPDATE_INNER_L3_LEN;
			if (shinfo->gso_type & SKB_GSO_TCPV6)
				flags |= FUN_ETH_INNER_IPV6;
			else
				flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM;
			th = tcp_hdr(skb);
			l4_hlen = __tcp_hdrlen(th);
			fun_eth_offload_init(&req->offload, flags,
					     shinfo->gso_size,
					     tcp_hdr_doff_flags(th), 0,
					     skb_network_offset(skb),
					     skb_transport_offset(skb), 0, 0);
			FUN_QSTAT_INC(q, tx_tso);
		}

		u64_stats_update_begin(&q->syncp);
		q->stats.tx_cso += shinfo->gso_segs;
		u64_stats_update_end(&q->syncp);

		extra_pkts = shinfo->gso_segs - 1;
		extra_bytes = (be16_to_cpu(req->offload.inner_l4_off) +
			       l4_hlen) * extra_pkts;
	} else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
		flags = FUN_ETH_UPDATE_INNER_L4_CKSUM;
		if (skb->csum_offset == offsetof(struct udphdr, check))
			flags |= FUN_ETH_INNER_UDP;
		fun_eth_offload_init(&req->offload, flags, 0, 0, 0, 0,
				     skb_checksum_start_offset(skb), 0, 0);
		FUN_QSTAT_INC(q, tx_cso);
	} else {
		fun_eth_offload_init(&req->offload, 0, 0, 0, 0, 0, 0, 0, 0);
	}

	ngle = shinfo->nr_frags + 1;
	req->dataop = FUN_DATAOP_HDR_INIT(ngle, 0, ngle, 0, skb->len);

	gle = fun_write_gl(q, req, addrs, lens, ngle);

	if (IS_ENABLED(CONFIG_TLS_DEVICE) && unlikely(tls_len)) {
		struct fun_eth_tls *tls = (struct fun_eth_tls *)gle;
		struct fun_ktls_tx_ctx *tls_ctx;

		req->len8 += FUNETH_TLS_SZ / 8;
		req->flags = cpu_to_be16(FUN_ETH_TX_TLS);

		tls_ctx = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
		tls->tlsid = tls_ctx->tlsid;
		tls_ctx->next_seq += tls_len;

		u64_stats_update_begin(&q->syncp);
		q->stats.tx_tls_bytes += tls_len;
		q->stats.tx_tls_pkts += 1 + extra_pkts;
		u64_stats_update_end(&q->syncp);
	}

	u64_stats_update_begin(&q->syncp);
	q->stats.tx_bytes += skb->len + extra_bytes;
	q->stats.tx_pkts += 1 + extra_pkts;
	u64_stats_update_end(&q->syncp);

	q->info[idx].skb = skb;

	trace_funeth_tx(q, skb->len, idx, req->dataop.ngather);
	return tx_req_ndesc(req);
}

/* Return the number of available descriptors of a Tx queue.
 * HW assumes head==tail means the ring is empty so we need to keep one
 * descriptor unused.
 */
static unsigned int fun_txq_avail(const struct funeth_txq *q)
{
	return q->mask - q->prod_cnt + q->cons_cnt;
}

/* Stop a queue if it can't handle another worst-case packet. */
static void fun_tx_check_stop(struct funeth_txq *q)
{
	if (likely(fun_txq_avail(q) >= FUNETH_MAX_PKT_DESC))
		return;

	netif_tx_stop_queue(q->ndq);

	/* NAPI reclaim is freeing packets in parallel with us and we may race.
	 * We have stopped the queue but check again after synchronizing with
	 * reclaim.
	 */
	smp_mb();
	if (likely(fun_txq_avail(q) < FUNETH_MAX_PKT_DESC))
		FUN_QSTAT_INC(q, tx_nstops);
	else
		netif_tx_start_queue(q->ndq);
}

/* Return true if a queue has enough space to restart. Current condition is
 * that the queue must be >= 1/4 empty.
 */
static bool fun_txq_may_restart(struct funeth_txq *q)
{
	return fun_txq_avail(q) >= q->mask / 4;
}

netdev_tx_t fun_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
	struct funeth_priv *fp = netdev_priv(netdev);
	unsigned int qid = skb_get_queue_mapping(skb);
	struct funeth_txq *q = fp->txqs[qid];
	unsigned int tls_len = 0;
	unsigned int ndesc;

	if (IS_ENABLED(CONFIG_TLS_DEVICE) && skb->sk &&
	    tls_is_sk_tx_device_offloaded(skb->sk)) {
		skb = fun_tls_tx(skb, q, &tls_len);
		if (unlikely(!skb))
			goto dropped;
	}

	ndesc = write_pkt_desc(skb, q, tls_len);
	if (unlikely(!ndesc)) {
		dev_kfree_skb_any(skb);
		goto dropped;
	}

	q->prod_cnt += ndesc;
	fun_tx_check_stop(q);

	skb_tx_timestamp(skb);

	if (__netdev_tx_sent_queue(q->ndq, skb->len, netdev_xmit_more()))
		fun_txq_wr_db(q);
	else
		FUN_QSTAT_INC(q, tx_more);

	return NETDEV_TX_OK;

dropped:
	/* A dropped packet may be the last one in a xmit_more train,
	 * ring the doorbell just in case.
	 */
	if (!netdev_xmit_more())
		fun_txq_wr_db(q);
	return NETDEV_TX_OK;
}

/* Return a Tx queue's HW head index written back to host memory. */
static u16 txq_hw_head(const struct funeth_txq *q)
{
	return (u16)be64_to_cpu(*q->hw_wb);
}

/* Unmap the Tx packet starting at the given descriptor index and
 * return the number of Tx descriptors it occupied.
 */
static unsigned int fun_unmap_pkt(const struct funeth_txq *q, unsigned int idx)
{
	const struct fun_eth_tx_req *req = fun_tx_desc_addr(q, idx);
	unsigned int ngle = req->dataop.ngather;
	struct fun_dataop_gl *gle;

	if (ngle) {
		gle = (struct fun_dataop_gl *)req->dataop.imm;
		dma_unmap_single(q->dma_dev, be64_to_cpu(gle->sgl_data),
				 be32_to_cpu(gle->sgl_len), DMA_TO_DEVICE);

		for (gle++; --ngle && txq_to_end(q, gle); gle++)
			dma_unmap_page(q->dma_dev, be64_to_cpu(gle->sgl_data),
				       be32_to_cpu(gle->sgl_len),
				       DMA_TO_DEVICE);

		for (gle = (struct fun_dataop_gl *)q->desc; ngle; ngle--, gle++)
			dma_unmap_page(q->dma_dev, be64_to_cpu(gle->sgl_data),
				       be32_to_cpu(gle->sgl_len),
				       DMA_TO_DEVICE);
	}

	return tx_req_ndesc(req);
}

/* Reclaim completed Tx descriptors and free their packets. Restart a stopped
 * queue if we freed enough descriptors.
 *
 * Return true if we exhausted the budget while there is more work to be done.
 */
static bool fun_txq_reclaim(struct funeth_txq *q, int budget)
{
	unsigned int npkts = 0, nbytes = 0, ndesc = 0;
	unsigned int head, limit, reclaim_idx;

	/* budget may be 0, e.g., netpoll */
	limit = budget ? budget : UINT_MAX;

	for (head = txq_hw_head(q), reclaim_idx = q->cons_cnt & q->mask;
	     head != reclaim_idx && npkts < limit; head = txq_hw_head(q)) {
		/* The HW head is continually updated, ensure we don't read
		 * descriptor state before the head tells us to reclaim it.
		 * On the enqueue side the doorbell is an implicit write
		 * barrier.
		 */
		rmb();

		do {
			unsigned int pkt_desc = fun_unmap_pkt(q, reclaim_idx);
			struct sk_buff *skb = q->info[reclaim_idx].skb;

			trace_funeth_tx_free(q, reclaim_idx, pkt_desc, head);

			nbytes += skb->len;
			napi_consume_skb(skb, budget);
			ndesc += pkt_desc;
			reclaim_idx = (reclaim_idx + pkt_desc) & q->mask;
			npkts++;
		} while (reclaim_idx != head && npkts < limit);
	}

	q->cons_cnt += ndesc;
	netdev_tx_completed_queue(q->ndq, npkts, nbytes);
	smp_mb(); /* pairs with the one in fun_tx_check_stop() */

	if (unlikely(netif_tx_queue_stopped(q->ndq) &&
		     fun_txq_may_restart(q))) {
		netif_tx_wake_queue(q->ndq);
		FUN_QSTAT_INC(q, tx_nrestarts);
	}

	return reclaim_idx != head;
}

/* The NAPI handler for Tx queues. */
int fun_txq_napi_poll(struct napi_struct *napi, int budget)
{
	struct fun_irq *irq = container_of(napi, struct fun_irq, napi);
	struct funeth_txq *q = irq->txq;
	unsigned int db_val;

	if (fun_txq_reclaim(q, budget))
		return budget;               /* exhausted budget */

	napi_complete(napi);                 /* exhausted pending work */
	db_val = READ_ONCE(q->irq_db_val) | (q->cons_cnt & q->mask);
	writel(db_val, q->db);
	return 0;
}

/* Reclaim up to @budget completed Tx packets from a TX XDP queue. */
static unsigned int fun_xdpq_clean(struct funeth_txq *q, unsigned int budget)
{
	unsigned int npkts = 0, ndesc = 0, head, reclaim_idx;

	for (head = txq_hw_head(q), reclaim_idx = q->cons_cnt & q->mask;
	     head != reclaim_idx && npkts < budget; head = txq_hw_head(q)) {
		/* The HW head is continually updated, ensure we don't read
		 * descriptor state before the head tells us to reclaim it.
		 * On the enqueue side the doorbell is an implicit write
		 * barrier.
		 */
		rmb();

		do {
			unsigned int pkt_desc = fun_unmap_pkt(q, reclaim_idx);

			xdp_return_frame(q->info[reclaim_idx].xdpf);

			trace_funeth_tx_free(q, reclaim_idx, pkt_desc, head);

			reclaim_idx = (reclaim_idx + pkt_desc) & q->mask;
			ndesc += pkt_desc;
			npkts++;
		} while (reclaim_idx != head && npkts < budget);
	}

	q->cons_cnt += ndesc;
	return npkts;
}

bool fun_xdp_tx(struct funeth_txq *q, struct xdp_frame *xdpf)
{
	unsigned int idx, nfrags = 1, ndesc = 1, tot_len = xdpf->len;
	const struct skb_shared_info *si = NULL;
	unsigned int lens[MAX_SKB_FRAGS + 1];
	dma_addr_t dma[MAX_SKB_FRAGS + 1];
	struct fun_eth_tx_req *req;

	if (fun_txq_avail(q) < FUN_XDP_CLEAN_THRES)
		fun_xdpq_clean(q, FUN_XDP_CLEAN_BATCH);

	if (unlikely(xdp_frame_has_frags(xdpf))) {
		si = xdp_get_shared_info_from_frame(xdpf);
		tot_len = xdp_get_frame_len(xdpf);
		nfrags += si->nr_frags;
		ndesc = DIV_ROUND_UP((sizeof(*req) + nfrags *
				      sizeof(struct fun_dataop_gl)),
				     FUNETH_SQE_SIZE);
	}

	if (unlikely(fun_txq_avail(q) < ndesc)) {
		FUN_QSTAT_INC(q, tx_xdp_full);
		return false;
	}

	if (unlikely(fun_map_pkt(q->dma_dev, si, xdpf->data, xdpf->len, dma,
				 lens))) {
		FUN_QSTAT_INC(q, tx_map_err);
		return false;
	}

	idx = q->prod_cnt & q->mask;
	req = fun_tx_desc_addr(q, idx);
	req->op = FUN_ETH_OP_TX;
	req->len8 = 0;
	req->flags = 0;
	req->suboff8 = offsetof(struct fun_eth_tx_req, dataop);
	req->repr_idn = 0;
	req->encap_proto = 0;
	fun_eth_offload_init(&req->offload, 0, 0, 0, 0, 0, 0, 0, 0);
	req->dataop = FUN_DATAOP_HDR_INIT(nfrags, 0, nfrags, 0, tot_len);

	fun_write_gl(q, req, dma, lens, nfrags);

	q->info[idx].xdpf = xdpf;

	u64_stats_update_begin(&q->syncp);
	q->stats.tx_bytes += tot_len;
	q->stats.tx_pkts++;
	u64_stats_update_end(&q->syncp);

	trace_funeth_tx(q, tot_len, idx, nfrags);
	q->prod_cnt += ndesc;

	return true;
}

int fun_xdp_xmit_frames(struct net_device *dev, int n,
			struct xdp_frame **frames, u32 flags)
{
	struct funeth_priv *fp = netdev_priv(dev);
	struct funeth_txq *q, **xdpqs;
	int i, q_idx;

	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
		return -EINVAL;

	xdpqs = rcu_dereference_bh(fp->xdpqs);
	if (unlikely(!xdpqs))
		return -ENETDOWN;

	q_idx = smp_processor_id();
	if (unlikely(q_idx >= fp->num_xdpqs))
		return -ENXIO;

	for (q = xdpqs[q_idx], i = 0; i < n; i++)
		if (!fun_xdp_tx(q, frames[i]))
			break;

	if (unlikely(flags & XDP_XMIT_FLUSH))
		fun_txq_wr_db(q);
	return i;
}

/* Purge a Tx queue of any queued packets. Should be called once HW access
 * to the packets has been revoked, e.g., after the queue has been disabled.
 */
static void fun_txq_purge(struct funeth_txq *q)
{
	while (q->cons_cnt != q->prod_cnt) {
		unsigned int idx = q->cons_cnt & q->mask;

		q->cons_cnt += fun_unmap_pkt(q, idx);
		dev_kfree_skb_any(q->info[idx].skb);
	}
	netdev_tx_reset_queue(q->ndq);
}

static void fun_xdpq_purge(struct funeth_txq *q)
{
	while (q->cons_cnt != q->prod_cnt) {
		unsigned int idx = q->cons_cnt & q->mask;

		q->cons_cnt += fun_unmap_pkt(q, idx);
		xdp_return_frame(q->info[idx].xdpf);
	}
}

/* Create a Tx queue, allocating all the host resources needed. */
static struct funeth_txq *fun_txq_create_sw(struct net_device *dev,
					    unsigned int qidx,
					    unsigned int ndesc,
					    struct fun_irq *irq)
{
	struct funeth_priv *fp = netdev_priv(dev);
	struct funeth_txq *q;
	int numa_node;

	if (irq)
		numa_node = fun_irq_node(irq); /* skb Tx queue */
	else
		numa_node = cpu_to_node(qidx); /* XDP Tx queue */

	q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node);
	if (!q)
		goto err;

	q->dma_dev = &fp->pdev->dev;
	q->desc = fun_alloc_ring_mem(q->dma_dev, ndesc, FUNETH_SQE_SIZE,
				     sizeof(*q->info), true, numa_node,
				     &q->dma_addr, (void **)&q->info,
				     &q->hw_wb);
	if (!q->desc)
		goto free_q;

	q->netdev = dev;
	q->mask = ndesc - 1;
	q->qidx = qidx;
	q->numa_node = numa_node;
	u64_stats_init(&q->syncp);
	q->init_state = FUN_QSTATE_INIT_SW;
	return q;

free_q:
	kfree(q);
err:
	netdev_err(dev, "Can't allocate memory for %s queue %u\n",
		   irq ? "Tx" : "XDP", qidx);
	return NULL;
}

static void fun_txq_free_sw(struct funeth_txq *q)
{
	struct funeth_priv *fp = netdev_priv(q->netdev);

	fun_free_ring_mem(q->dma_dev, q->mask + 1, FUNETH_SQE_SIZE, true,
			  q->desc, q->dma_addr, q->info);

	fp->tx_packets += q->stats.tx_pkts;
	fp->tx_bytes   += q->stats.tx_bytes;
	fp->tx_dropped += q->stats.tx_map_err;

	kfree(q);
}

/* Allocate the device portion of a Tx queue. */
int fun_txq_create_dev(struct funeth_txq *q, struct fun_irq *irq)
{
	struct funeth_priv *fp = netdev_priv(q->netdev);
	unsigned int irq_idx, ndesc = q->mask + 1;
	int err;

	q->irq = irq;
	*q->hw_wb = 0;
	q->prod_cnt = 0;
	q->cons_cnt = 0;
	irq_idx = irq ? irq->irq_idx : 0;

	err = fun_sq_create(fp->fdev,
			    FUN_ADMIN_EPSQ_CREATE_FLAG_HEAD_WB_ADDRESS |
			    FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR, 0,
			    FUN_HCI_ID_INVALID, ilog2(FUNETH_SQE_SIZE), ndesc,
			    q->dma_addr, fp->tx_coal_count, fp->tx_coal_usec,
			    irq_idx, 0, fp->fdev->kern_end_qid, 0,
			    &q->hw_qid, &q->db);
	if (err)
		goto out;

	err = fun_create_and_bind_tx(fp, q->hw_qid);
	if (err < 0)
		goto free_devq;
	q->ethid = err;

	if (irq) {
		irq->txq = q;
		q->ndq = netdev_get_tx_queue(q->netdev, q->qidx);
		q->irq_db_val = FUN_IRQ_SQ_DB(fp->tx_coal_usec,
					      fp->tx_coal_count);
		writel(q->irq_db_val, q->db);
	}

	q->init_state = FUN_QSTATE_INIT_FULL;
	netif_info(fp, ifup, q->netdev,
		   "%s queue %u, depth %u, HW qid %u, IRQ idx %u, eth id %u, node %d\n",
		   irq ? "Tx" : "XDP", q->qidx, ndesc, q->hw_qid, irq_idx,
		   q->ethid, q->numa_node);
	return 0;

free_devq:
	fun_destroy_sq(fp->fdev, q->hw_qid);
out:
	netdev_err(q->netdev,
		   "Failed to create %s queue %u on device, error %d\n",
		   irq ? "Tx" : "XDP", q->qidx, err);
	return err;
}

static void fun_txq_free_dev(struct funeth_txq *q)
{
	struct funeth_priv *fp = netdev_priv(q->netdev);

	if (q->init_state < FUN_QSTATE_INIT_FULL)
		return;

	netif_info(fp, ifdown, q->netdev,
		   "Freeing %s queue %u (id %u), IRQ %u, ethid %u\n",
		   q->irq ? "Tx" : "XDP", q->qidx, q->hw_qid,
		   q->irq ? q->irq->irq_idx : 0, q->ethid);

	fun_destroy_sq(fp->fdev, q->hw_qid);
	fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, q->ethid);

	if (q->irq) {
		q->irq->txq = NULL;
		fun_txq_purge(q);
	} else {
		fun_xdpq_purge(q);
	}

	q->init_state = FUN_QSTATE_INIT_SW;
}

/* Create or advance a Tx queue, allocating all the host and device resources
 * needed to reach the target state.
 */
int funeth_txq_create(struct net_device *dev, unsigned int qidx,
		      unsigned int ndesc, struct fun_irq *irq, int state,
		      struct funeth_txq **qp)
{
	struct funeth_txq *q = *qp;
	int err;

	if (!q)
		q = fun_txq_create_sw(dev, qidx, ndesc, irq);
	if (!q)
		return -ENOMEM;

	if (q->init_state >= state)
		goto out;

	err = fun_txq_create_dev(q, irq);
	if (err) {
		if (!*qp)
			fun_txq_free_sw(q);
		return err;
	}

out:
	*qp = q;
	return 0;
}

/* Free Tx queue resources until it reaches the target state.
 * The queue must be already disconnected from the stack.
 */
struct funeth_txq *funeth_txq_free(struct funeth_txq *q, int state)
{
	if (state < FUN_QSTATE_INIT_FULL)
		fun_txq_free_dev(q);

	if (state == FUN_QSTATE_DESTROYED) {
		fun_txq_free_sw(q);
		q = NULL;
	}

	return q;
}