/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/mmu_context.h>
#include "amdgpu.h"
#include "amdgpu_amdkfd.h"
#include "gc/gc_10_3_0_offset.h"
#include "gc/gc_10_3_0_sh_mask.h"
#include "oss/osssys_5_0_0_offset.h"
#include "oss/osssys_5_0_0_sh_mask.h"
#include "athub/athub_2_1_0_offset.h"
#include "athub/athub_2_1_0_sh_mask.h"
#include "soc15_common.h"
#include "v10_structs.h"
#include "nv.h"
#include "nvd.h"
enum hqd_dequeue_request_type {
NO_ACTION = 0,
DRAIN_PIPE,
RESET_WAVES,
SAVE_WAVES
};
static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
uint32_t queue, uint32_t vmid)
{
mutex_lock(&adev->srbm_mutex);
nv_grbm_select(adev, mec, pipe, queue, vmid);
}
static void unlock_srbm(struct amdgpu_device *adev)
{
nv_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
uint32_t queue_id)
{
uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
lock_srbm(adev, mec, pipe, queue_id, 0);
}
static uint64_t get_queue_mask(struct amdgpu_device *adev,
uint32_t pipe_id, uint32_t queue_id)
{
unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
queue_id;
return 1ull << bit;
}
static void release_queue(struct amdgpu_device *adev)
{
unlock_srbm(adev);
}
static void program_sh_mem_settings_v10_3(struct amdgpu_device *adev, uint32_t vmid,
uint32_t sh_mem_config,
uint32_t sh_mem_ape1_base,
uint32_t sh_mem_ape1_limit,
uint32_t sh_mem_bases)
{
lock_srbm(adev, 0, 0, 0, vmid);
WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, sh_mem_config);
WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases);
/* APE1 no longer exists on GFX9 */
unlock_srbm(adev);
}
/* ATC is defeatured on Sienna_Cichlid */
static int set_pasid_vmid_mapping_v10_3(struct amdgpu_device *adev, unsigned int pasid,
unsigned int vmid)
{
uint32_t value = pasid << IH_VMID_0_LUT__PASID__SHIFT;
/* Mapping vmid to pasid also for IH block */
pr_debug("mapping vmid %d -> pasid %d in IH block for GFX client\n",
vmid, pasid);
WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, value);
return 0;
}
static int init_interrupts_v10_3(struct amdgpu_device *adev, uint32_t pipe_id)
{
uint32_t mec;
uint32_t pipe;
mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
lock_srbm(adev, mec, pipe, 0, 0);
WREG32_SOC15(GC, 0, mmCPC_INT_CNTL,
CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
unlock_srbm(adev);
return 0;
}
static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
unsigned int engine_id,
unsigned int queue_id)
{
uint32_t sdma_engine_reg_base = 0;
uint32_t sdma_rlc_reg_offset;
switch (engine_id) {
default:
dev_warn(adev->dev,
"Invalid sdma engine id (%d), using engine id 0\n",
engine_id);
fallthrough;
case 0:
sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
break;
case 1:
sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
break;
case 2:
sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
mmSDMA2_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
break;
case 3:
sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
mmSDMA3_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
break;
}
sdma_rlc_reg_offset = sdma_engine_reg_base
+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
queue_id, sdma_rlc_reg_offset);
return sdma_rlc_reg_offset;
}
static inline struct v10_compute_mqd *get_mqd(void *mqd)
{
return (struct v10_compute_mqd *)mqd;
}
static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
{
return (struct v10_sdma_mqd *)mqd;
}
static int hqd_load_v10_3(struct amdgpu_device *adev, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t __user *wptr, uint32_t wptr_shift,
uint32_t wptr_mask, struct mm_struct *mm)
{
struct v10_compute_mqd *m;
uint32_t *mqd_hqd;
uint32_t reg, hqd_base, data;
m = get_mqd(mqd);
pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
acquire_queue(adev, pipe_id, queue_id);
/* HIQ is set during driver init period with vmid set to 0*/
if (m->cp_hqd_vmid == 0) {
uint32_t value, mec, pipe;
mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
mec, pipe, queue_id);
value = RREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS);
value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
((mec << 5) | (pipe << 3) | queue_id | 0x80));
WREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS, value);
}
/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
mqd_hqd = &m->cp_mqd_base_addr_lo;
hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
for (reg = hqd_base;
reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
WREG32_SOC15_IP(GC, reg, mqd_hqd[reg - hqd_base]);
/* Activate doorbell logic before triggering WPTR poll. */
data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, data);
if (wptr) {
/* Don't read wptr with get_user because the user
* context may not be accessible (if this function
* runs in a work queue). Instead trigger a one-shot
* polling read from memory in the CP. This assumes
* that wptr is GPU-accessible in the queue's VMID via
* ATC or SVM. WPTR==RPTR before starting the poll so
* the CP starts fetching new commands from the right
* place.
*
* Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
* tricky. Assume that the queue didn't overflow. The
* number of valid bits in the 32-bit RPTR depends on
* the queue size. The remaining bits are taken from
* the saved 64-bit WPTR. If the WPTR wrapped, add the
* queue size.
*/
uint32_t queue_size =
2 << REG_GET_FIELD(m->cp_hqd_pq_control,
CP_HQD_PQ_CONTROL, QUEUE_SIZE);
uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
guessed_wptr += queue_size;
guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO,
lower_32_bits(guessed_wptr));
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI,
upper_32_bits(guessed_wptr));
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR,
lower_32_bits((uint64_t)wptr));
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
upper_32_bits((uint64_t)wptr));
pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
(uint32_t)get_queue_mask(adev, pipe_id, queue_id));
WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1,
(uint32_t)get_queue_mask(adev, pipe_id, queue_id));
}
/* Start the EOP fetcher */
WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
REG_SET_FIELD(m->cp_hqd_eop_rptr,
CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, data);
release_queue(adev);
return 0;
}
static int hiq_mqd_load_v10_3(struct amdgpu_device *adev, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t doorbell_off)
{
struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
struct v10_compute_mqd *m;
uint32_t mec, pipe;
int r;
m = get_mqd(mqd);
acquire_queue(adev, pipe_id, queue_id);
mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
mec, pipe, queue_id);
spin_lock(&adev->gfx.kiq.ring_lock);
r = amdgpu_ring_alloc(kiq_ring, 7);
if (r) {
pr_err("Failed to alloc KIQ (%d).\n", r);
goto out_unlock;
}
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
amdgpu_ring_write(kiq_ring,
PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
PACKET3_MAP_QUEUES_QUEUE(queue_id) |
PACKET3_MAP_QUEUES_PIPE(pipe) |
PACKET3_MAP_QUEUES_ME((mec - 1)) |
PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
amdgpu_ring_write(kiq_ring,
PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
amdgpu_ring_commit(kiq_ring);
out_unlock:
spin_unlock(&adev->gfx.kiq.ring_lock);
release_queue(adev);
return r;
}
static int hqd_dump_v10_3(struct amdgpu_device *adev,
uint32_t pipe_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{
uint32_t i = 0, reg;
#define HQD_N_REGS 56
#define DUMP_REG(addr) do { \
if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
break; \
(*dump)[i][0] = (addr) << 2; \
(*dump)[i++][1] = RREG32_SOC15_IP(GC, addr); \
} while (0)
*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
acquire_queue(adev, pipe_id, queue_id);
for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
DUMP_REG(reg);
release_queue(adev);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0;
}
static int hqd_sdma_load_v10_3(struct amdgpu_device *adev, void *mqd,
uint32_t __user *wptr, struct mm_struct *mm)
{
struct v10_sdma_mqd *m;
uint32_t sdma_rlc_reg_offset;
unsigned long end_jiffies;
uint32_t data;
uint64_t data64;
uint64_t __user *wptr64 = (uint64_t __user *)wptr;
m = get_sdma_mqd(mqd);
sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
m->sdma_queue_id);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
end_jiffies = msecs_to_jiffies(2000) + jiffies;
while (true) {
data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
break;
if (time_after(jiffies, end_jiffies)) {
pr_err("SDMA RLC not idle in %s\n", __func__);
return -ETIME;
}
usleep_range(500, 1000);
}
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
m->sdmax_rlcx_doorbell_offset);
data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
ENABLE, 1);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
m->sdmax_rlcx_rb_rptr);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
m->sdmax_rlcx_rb_rptr_hi);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
if (read_user_wptr(mm, wptr64, data64)) {
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
lower_32_bits(data64));
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
upper_32_bits(data64));
} else {
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
m->sdmax_rlcx_rb_rptr);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
m->sdmax_rlcx_rb_rptr_hi);
}
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
m->sdmax_rlcx_rb_base_hi);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
m->sdmax_rlcx_rb_rptr_addr_lo);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
m->sdmax_rlcx_rb_rptr_addr_hi);
data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
RB_ENABLE, 1);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
return 0;
}
static int hqd_sdma_dump_v10_3(struct amdgpu_device *adev,
uint32_t engine_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{
uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
engine_id, queue_id);
uint32_t i = 0, reg;
#undef HQD_N_REGS
#define HQD_N_REGS (19+6+7+12)
*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0;
}
static bool hqd_is_occupied_v10_3(struct amdgpu_device *adev,
uint64_t queue_address, uint32_t pipe_id,
uint32_t queue_id)
{
uint32_t act;
bool retval = false;
uint32_t low, high;
acquire_queue(adev, pipe_id, queue_id);
act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
if (act) {
low = lower_32_bits(queue_address >> 8);
high = upper_32_bits(queue_address >> 8);
if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) &&
high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI))
retval = true;
}
release_queue(adev);
return retval;
}
static bool hqd_sdma_is_occupied_v10_3(struct amdgpu_device *adev,
void *mqd)
{
struct v10_sdma_mqd *m;
uint32_t sdma_rlc_reg_offset;
uint32_t sdma_rlc_rb_cntl;
m = get_sdma_mqd(mqd);
sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
m->sdma_queue_id);
sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
return true;
return false;
}
static int hqd_destroy_v10_3(struct amdgpu_device *adev, void *mqd,
enum kfd_preempt_type reset_type,
unsigned int utimeout, uint32_t pipe_id,
uint32_t queue_id)
{
enum hqd_dequeue_request_type type;
unsigned long end_jiffies;
uint32_t temp;
struct v10_compute_mqd *m = get_mqd(mqd);
acquire_queue(adev, pipe_id, queue_id);
if (m->cp_hqd_vmid == 0)
WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
switch (reset_type) {
case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
type = DRAIN_PIPE;
break;
case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
type = RESET_WAVES;
break;
case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
type = SAVE_WAVES;
break;
default:
type = DRAIN_PIPE;
break;
}
WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, type);
end_jiffies = (utimeout * HZ / 1000) + jiffies;
while (true) {
temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
break;
if (time_after(jiffies, end_jiffies)) {
pr_err("cp queue pipe %d queue %d preemption failed\n",
pipe_id, queue_id);
release_queue(adev);
return -ETIME;
}
usleep_range(500, 1000);
}
release_queue(adev);
return 0;
}
static int hqd_sdma_destroy_v10_3(struct amdgpu_device *adev, void *mqd,
unsigned int utimeout)
{
struct v10_sdma_mqd *m;
uint32_t sdma_rlc_reg_offset;
uint32_t temp;
unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
m = get_sdma_mqd(mqd);
sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
m->sdma_queue_id);
temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
while (true) {
temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
break;
if (time_after(jiffies, end_jiffies)) {
pr_err("SDMA RLC not idle in %s\n", __func__);
return -ETIME;
}
usleep_range(500, 1000);
}
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
m->sdmax_rlcx_rb_rptr_hi =
RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
return 0;
}
static int wave_control_execute_v10_3(struct amdgpu_device *adev,
uint32_t gfx_index_val,
uint32_t sq_cmd)
{
uint32_t data = 0;
mutex_lock(&adev->grbm_idx_mutex);
WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
INSTANCE_BROADCAST_WRITES, 1);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
SA_BROADCAST_WRITES, 1);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
SE_BROADCAST_WRITES, 1);
WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
static bool get_atc_vmid_pasid_mapping_info_v10_3(struct amdgpu_device *adev,
uint8_t vmid, uint16_t *p_pasid)
{
uint32_t value;
value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
+ vmid);
*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
}
static void set_vm_context_page_table_base_v10_3(struct amdgpu_device *adev,
uint32_t vmid, uint64_t page_table_base)
{
/* SDMA is on gfxhub as well for Navi1* series */
adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
}
static void program_trap_handler_settings_v10_3(struct amdgpu_device *adev,
uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr)
{
lock_srbm(adev, 0, 0, 0, vmid);
/*
* Program TBA registers
*/
WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_LO),
lower_32_bits(tba_addr >> 8));
WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_HI),
upper_32_bits(tba_addr >> 8) |
(1 << SQ_SHADER_TBA_HI__TRAP_EN__SHIFT));
/*
* Program TMA registers
*/
WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_LO),
lower_32_bits(tma_addr >> 8));
WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_HI),
upper_32_bits(tma_addr >> 8));
unlock_srbm(adev);
}
#if 0
uint32_t enable_debug_trap_v10_3(struct amdgpu_device *adev,
uint32_t trap_debug_wave_launch_mode,
uint32_t vmid)
{
uint32_t data = 0;
uint32_t orig_wave_cntl_value;
uint32_t orig_stall_vmid;
mutex_lock(&adev->grbm_idx_mutex);
orig_wave_cntl_value = RREG32(SOC15_REG_OFFSET(GC,
0,
mmSPI_GDBG_WAVE_CNTL));
orig_stall_vmid = REG_GET_FIELD(orig_wave_cntl_value,
SPI_GDBG_WAVE_CNTL,
STALL_VMID);
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, 1);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
data = 0;
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), orig_stall_vmid);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
uint32_t disable_debug_trap_v10_3(struct amdgpu_device *adev)
{
mutex_lock(&adev->grbm_idx_mutex);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
uint32_t set_wave_launch_trap_override_v10_3(struct amdgpu_device *adev,
uint32_t trap_override,
uint32_t trap_mask)
{
uint32_t data = 0;
mutex_lock(&adev->grbm_idx_mutex);
data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, 1);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
data = 0;
data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK,
EXCP_EN, trap_mask);
data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK,
REPLACE, trap_override);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, 0);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
uint32_t set_wave_launch_mode_v10_3(struct amdgpu_device *adev,
uint8_t wave_launch_mode,
uint32_t vmid)
{
uint32_t data = 0;
bool is_stall_mode;
bool is_mode_set;
is_stall_mode = (wave_launch_mode == 4);
is_mode_set = (wave_launch_mode != 0 && wave_launch_mode != 4);
mutex_lock(&adev->grbm_idx_mutex);
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
VMID_MASK, is_mode_set ? 1 << vmid : 0);
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
MODE, is_mode_set ? wave_launch_mode : 0);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL,
STALL_VMID, is_stall_mode ? 1 << vmid : 0);
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL,
STALL_RA, is_stall_mode ? 1 : 0);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
/* kgd_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
* The values read are:
* ib_offload_wait_time -- Wait Count for Indirect Buffer Offloads.
* atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
* wrm_offload_wait_time -- Wait Count for WAIT_REG_MEM Offloads.
* gws_wait_time -- Wait Count for Global Wave Syncs.
* que_sleep_wait_time -- Wait Count for Dequeue Retry.
* sch_wave_wait_time -- Wait Count for Scheduling Wave Message.
* sem_rearm_wait_time -- Wait Count for Semaphore re-arm.
* deq_retry_wait_time -- Wait Count for Global Wave Syncs.
*/
void get_iq_wait_times_v10_3(struct amdgpu_device *adev,
uint32_t *wait_times)
{
*wait_times = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2));
}
void build_grace_period_packet_info_v10_3(struct amdgpu_device *adev,
uint32_t wait_times,
uint32_t grace_period,
uint32_t *reg_offset,
uint32_t *reg_data)
{
*reg_data = wait_times;
*reg_data = REG_SET_FIELD(*reg_data,
CP_IQ_WAIT_TIME2,
SCH_WAVE,
grace_period);
*reg_offset = mmCP_IQ_WAIT_TIME2;
}
#endif
const struct kfd2kgd_calls gfx_v10_3_kfd2kgd = {
.program_sh_mem_settings = program_sh_mem_settings_v10_3,
.set_pasid_vmid_mapping = set_pasid_vmid_mapping_v10_3,
.init_interrupts = init_interrupts_v10_3,
.hqd_load = hqd_load_v10_3,
.hiq_mqd_load = hiq_mqd_load_v10_3,
.hqd_sdma_load = hqd_sdma_load_v10_3,
.hqd_dump = hqd_dump_v10_3,
.hqd_sdma_dump = hqd_sdma_dump_v10_3,
.hqd_is_occupied = hqd_is_occupied_v10_3,
.hqd_sdma_is_occupied = hqd_sdma_is_occupied_v10_3,
.hqd_destroy = hqd_destroy_v10_3,
.hqd_sdma_destroy = hqd_sdma_destroy_v10_3,
.wave_control_execute = wave_control_execute_v10_3,
.get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info_v10_3,
.set_vm_context_page_table_base = set_vm_context_page_table_base_v10_3,
.program_trap_handler_settings = program_trap_handler_settings_v10_3,
#if 0
.enable_debug_trap = enable_debug_trap_v10_3,
.disable_debug_trap = disable_debug_trap_v10_3,
.set_wave_launch_trap_override = set_wave_launch_trap_override_v10_3,
.set_wave_launch_mode = set_wave_launch_mode_v10_3,
.get_iq_wait_times = get_iq_wait_times_v10_3,
.build_grace_period_packet_info = build_grace_period_packet_info_v10_3,
#endif
};