Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 | /* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SGI UV architectural definitions * * (C) Copyright 2020 Hewlett Packard Enterprise Development LP * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved. */ #ifndef _ASM_X86_UV_UV_HUB_H #define _ASM_X86_UV_UV_HUB_H #ifdef CONFIG_X86_64 #include <linux/numa.h> #include <linux/percpu.h> #include <linux/timer.h> #include <linux/io.h> #include <linux/topology.h> #include <asm/types.h> #include <asm/percpu.h> #include <asm/uv/uv.h> #include <asm/uv/uv_mmrs.h> #include <asm/uv/bios.h> #include <asm/irq_vectors.h> #include <asm/io_apic.h> /* * Addressing Terminology * * M - The low M bits of a physical address represent the offset * into the blade local memory. RAM memory on a blade is physically * contiguous (although various IO spaces may punch holes in * it).. * * N - Number of bits in the node portion of a socket physical * address. * * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of * routers always have low bit of 1, C/MBricks have low bit * equal to 0. Most addressing macros that target UV hub chips * right shift the NASID by 1 to exclude the always-zero bit. * NASIDs contain up to 15 bits. * * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead * of nasids. * * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant * of the nasid for socket usage. * * GPA - (global physical address) a socket physical address converted * so that it can be used by the GRU as a global address. Socket * physical addresses 1) need additional NASID (node) bits added * to the high end of the address, and 2) unaliased if the * partition does not have a physical address 0. In addition, on * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40. * * * NumaLink Global Physical Address Format: * +--------------------------------+---------------------+ * |00..000| GNODE | NodeOffset | * +--------------------------------+---------------------+ * |<-------53 - M bits --->|<--------M bits -----> * * M - number of node offset bits (35 .. 40) * * * Memory/UV-HUB Processor Socket Address Format: * +----------------+---------------+---------------------+ * |00..000000000000| PNODE | NodeOffset | * +----------------+---------------+---------------------+ * <--- N bits --->|<--------M bits -----> * * M - number of node offset bits (35 .. 40) * N - number of PNODE bits (0 .. 10) * * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64). * The actual values are configuration dependent and are set at * boot time. M & N values are set by the hardware/BIOS at boot. * * * APICID format * NOTE!!!!!! This is the current format of the APICID. However, code * should assume that this will change in the future. Use functions * in this file for all APICID bit manipulations and conversion. * * 1111110000000000 * 5432109876543210 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg) * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg) * pppppppppppcccch SandyBridge (15 bits in hdw reg) * sssssssssss * * p = pnode bits * l = socket number on board * c = core * h = hyperthread * s = bits that are in the SOCKET_ID CSR * * Note: Processor may support fewer bits in the APICID register. The ACPI * tables hold all 16 bits. Software needs to be aware of this. * * Unless otherwise specified, all references to APICID refer to * the FULL value contained in ACPI tables, not the subset in the * processor APICID register. */ /* * Maximum number of bricks in all partitions and in all coherency domains. * This is the total number of bricks accessible in the numalink fabric. It * includes all C & M bricks. Routers are NOT included. * * This value is also the value of the maximum number of non-router NASIDs * in the numalink fabric. * * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused. */ #define UV_MAX_NUMALINK_BLADES 16384 /* * Maximum number of C/Mbricks within a software SSI (hardware may support * more). */ #define UV_MAX_SSI_BLADES 256 /* * The largest possible NASID of a C or M brick (+ 2) */ #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2) /* GAM (globally addressed memory) range table */ struct uv_gam_range_s { u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */ u16 nasid; /* node's global physical address */ s8 base; /* entry index of node's base addr */ u8 reserved; }; /* * The following defines attributes of the HUB chip. These attributes are * frequently referenced and are kept in a common per hub struct. * After setup, the struct is read only, so it should be readily * available in the L3 cache on the cpu socket for the node. */ struct uv_hub_info_s { unsigned int hub_type; unsigned char hub_revision; unsigned long global_mmr_base; unsigned long global_mmr_shift; unsigned long gpa_mask; unsigned short *socket_to_node; unsigned short *socket_to_pnode; unsigned short *pnode_to_socket; struct uv_gam_range_s *gr_table; unsigned short min_socket; unsigned short min_pnode; unsigned char m_val; unsigned char n_val; unsigned char gr_table_len; unsigned char apic_pnode_shift; unsigned char gpa_shift; unsigned char nasid_shift; unsigned char m_shift; unsigned char n_lshift; unsigned int gnode_extra; unsigned long gnode_upper; unsigned long lowmem_remap_top; unsigned long lowmem_remap_base; unsigned long global_gru_base; unsigned long global_gru_shift; unsigned short pnode; unsigned short pnode_mask; unsigned short coherency_domain_number; unsigned short numa_blade_id; unsigned short nr_possible_cpus; unsigned short nr_online_cpus; short memory_nid; }; /* CPU specific info with a pointer to the hub common info struct */ struct uv_cpu_info_s { void *p_uv_hub_info; unsigned char blade_cpu_id; void *reserved; }; DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info); #define uv_cpu_info this_cpu_ptr(&__uv_cpu_info) #define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu)) /* Node specific hub common info struct */ extern void **__uv_hub_info_list; static inline struct uv_hub_info_s *uv_hub_info_list(int node) { return (struct uv_hub_info_s *)__uv_hub_info_list[node]; } static inline struct uv_hub_info_s *_uv_hub_info(void) { return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info; } #define uv_hub_info _uv_hub_info() static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu) { return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info; } static inline int uv_hub_type(void) { return uv_hub_info->hub_type; } static inline __init void uv_hub_type_set(int uvmask) { uv_hub_info->hub_type = uvmask; } /* * HUB revision ranges for each UV HUB architecture. * This is a software convention - NOT the hardware revision numbers in * the hub chip. */ #define UV2_HUB_REVISION_BASE 3 #define UV3_HUB_REVISION_BASE 5 #define UV4_HUB_REVISION_BASE 7 #define UV4A_HUB_REVISION_BASE 8 /* UV4 (fixed) rev 2 */ #define UV5_HUB_REVISION_BASE 9 static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; } static inline int is_uv1_hub(void) { return 0; } static inline int is_uv2_hub(void) { return is_uv(UV2); } static inline int is_uv3_hub(void) { return is_uv(UV3); } static inline int is_uv4a_hub(void) { return is_uv(UV4A); } static inline int is_uv4_hub(void) { return is_uv(UV4); } static inline int is_uv5_hub(void) { return is_uv(UV5); } /* * UV4A is a revision of UV4. So on UV4A, both is_uv4_hub() and * is_uv4a_hub() return true, While on UV4, only is_uv4_hub() * returns true. So to get true results, first test if is UV4A, * then test if is UV4. */ /* UVX class: UV2,3,4 */ static inline int is_uvx_hub(void) { return is_uv(UVX); } /* UVY class: UV5,..? */ static inline int is_uvy_hub(void) { return is_uv(UVY); } /* Any UV Hubbed System */ static inline int is_uv_hub(void) { return is_uv(UV_ANY); } union uvh_apicid { unsigned long v; struct uvh_apicid_s { unsigned long local_apic_mask : 24; unsigned long local_apic_shift : 5; unsigned long unused1 : 3; unsigned long pnode_mask : 24; unsigned long pnode_shift : 5; unsigned long unused2 : 3; } s; }; /* * Local & Global MMR space macros. * Note: macros are intended to be used ONLY by inline functions * in this file - not by other kernel code. * n - NASID (full 15-bit global nasid) * g - GNODE (full 15-bit global nasid, right shifted 1) * p - PNODE (local part of nsids, right shifted 1) */ #define UV_NASID_TO_PNODE(n) \ (((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask) #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra) #define UV_PNODE_TO_NASID(p) \ (UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift) #define UV2_LOCAL_MMR_BASE 0xfa000000UL #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) #define UV3_LOCAL_MMR_BASE 0xfa000000UL #define UV3_GLOBAL_MMR32_BASE 0xfc000000UL #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) #define UV4_LOCAL_MMR_BASE 0xfa000000UL #define UV4_GLOBAL_MMR32_BASE 0 #define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV4_GLOBAL_MMR32_SIZE 0 #define UV5_LOCAL_MMR_BASE 0xfa000000UL #define UV5_GLOBAL_MMR32_BASE 0 #define UV5_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV5_GLOBAL_MMR32_SIZE 0 #define UV_LOCAL_MMR_BASE ( \ is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \ is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \ is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \ is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \ 0) #define UV_GLOBAL_MMR32_BASE ( \ is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \ is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \ is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \ is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \ 0) #define UV_LOCAL_MMR_SIZE ( \ is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \ is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \ is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \ is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \ 0) #define UV_GLOBAL_MMR32_SIZE ( \ is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \ is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \ is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \ is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \ 0) #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base) #define UV_GLOBAL_GRU_MMR_BASE 0x4000000 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15 #define _UV_GLOBAL_MMR64_PNODE_SHIFT 26 #define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift) #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT)) #define UV_GLOBAL_MMR64_PNODE_BITS(p) \ (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT) #define UVH_APICID 0x002D0E00L #define UV_APIC_PNODE_SHIFT 6 /* Local Bus from cpu's perspective */ #define LOCAL_BUS_BASE 0x1c00000 #define LOCAL_BUS_SIZE (4 * 1024 * 1024) /* * System Controller Interface Reg * * Note there are NO leds on a UV system. This register is only * used by the system controller to monitor system-wide operation. * There are 64 regs per node. With Nehalem cpus (2 cores per node, * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on * a node. * * The window is located at top of ACPI MMR space */ #define SCIR_WINDOW_COUNT 64 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \ LOCAL_BUS_SIZE - \ SCIR_WINDOW_COUNT) #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */ #define SCIR_CPU_ACTIVITY 0x02 /* not idle */ #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */ /* Loop through all installed blades */ #define for_each_possible_blade(bid) \ for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++) /* * Macros for converting between kernel virtual addresses, socket local physical * addresses, and UV global physical addresses. * Note: use the standard __pa() & __va() macros for converting * between socket virtual and socket physical addresses. */ /* global bits offset - number of local address bits in gpa for this UV arch */ static inline unsigned int uv_gpa_shift(void) { return uv_hub_info->gpa_shift; } #define _uv_gpa_shift /* Find node that has the address range that contains global address */ static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa) { struct uv_gam_range_s *gr = uv_hub_info->gr_table; unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT; int i, num = uv_hub_info->gr_table_len; if (gr) { for (i = 0; i < num; i++, gr++) { if (pal < gr->limit) return gr; } } pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr); BUG(); } /* Return base address of node that contains global address */ static inline unsigned long uv_gam_range_base(unsigned long pa) { struct uv_gam_range_s *gr = uv_gam_range(pa); int base = gr->base; if (base < 0) return 0UL; return uv_hub_info->gr_table[base].limit; } /* socket phys RAM --> UV global NASID (UV4+) */ static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr) { return uv_gam_range(paddr)->nasid; } #define _uv_soc_phys_ram_to_nasid /* socket virtual --> UV global NASID (UV4+) */ static inline unsigned long uv_gpa_nasid(void *v) { return uv_soc_phys_ram_to_nasid(__pa(v)); } /* socket phys RAM --> UV global physical address */ static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr) { unsigned int m_val = uv_hub_info->m_val; if (paddr < uv_hub_info->lowmem_remap_top) paddr |= uv_hub_info->lowmem_remap_base; if (m_val) { paddr |= uv_hub_info->gnode_upper; paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) | ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift); } else { paddr |= uv_soc_phys_ram_to_nasid(paddr) << uv_hub_info->gpa_shift; } return paddr; } /* socket virtual --> UV global physical address */ static inline unsigned long uv_gpa(void *v) { return uv_soc_phys_ram_to_gpa(__pa(v)); } /* Top two bits indicate the requested address is in MMR space. */ static inline int uv_gpa_in_mmr_space(unsigned long gpa) { return (gpa >> 62) == 0x3UL; } /* UV global physical address --> socket phys RAM */ static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa) { unsigned long paddr; unsigned long remap_base = uv_hub_info->lowmem_remap_base; unsigned long remap_top = uv_hub_info->lowmem_remap_top; unsigned int m_val = uv_hub_info->m_val; if (m_val) gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) | ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val); paddr = gpa & uv_hub_info->gpa_mask; if (paddr >= remap_base && paddr < remap_base + remap_top) paddr -= remap_base; return paddr; } /* gpa -> gnode */ static inline unsigned long uv_gpa_to_gnode(unsigned long gpa) { unsigned int n_lshift = uv_hub_info->n_lshift; if (n_lshift) return gpa >> n_lshift; return uv_gam_range(gpa)->nasid >> 1; } /* gpa -> pnode */ static inline int uv_gpa_to_pnode(unsigned long gpa) { return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask; } /* gpa -> node offset */ static inline unsigned long uv_gpa_to_offset(unsigned long gpa) { unsigned int m_shift = uv_hub_info->m_shift; if (m_shift) return (gpa << m_shift) >> m_shift; return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa); } /* Convert socket to node */ static inline int _uv_socket_to_node(int socket, unsigned short *s2nid) { return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket; } static inline int uv_socket_to_node(int socket) { return _uv_socket_to_node(socket, uv_hub_info->socket_to_node); } /* pnode, offset --> socket virtual */ static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset) { unsigned int m_val = uv_hub_info->m_val; unsigned long base; unsigned short sockid, node, *p2s; if (m_val) return __va(((unsigned long)pnode << m_val) | offset); p2s = uv_hub_info->pnode_to_socket; sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode; node = uv_socket_to_node(sockid); /* limit address of previous socket is our base, except node 0 is 0 */ if (!node) return __va((unsigned long)offset); base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit); return __va(base << UV_GAM_RANGE_SHFT | offset); } /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */ static inline int uv_apicid_to_pnode(int apicid) { int pnode = apicid >> uv_hub_info->apic_pnode_shift; unsigned short *s2pn = uv_hub_info->socket_to_pnode; return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode; } /* * Access global MMRs using the low memory MMR32 space. This region supports * faster MMR access but not all MMRs are accessible in this space. */ static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset) { return __va(UV_GLOBAL_MMR32_BASE | UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset); } static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val) { writeq(val, uv_global_mmr32_address(pnode, offset)); } static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset) { return readq(uv_global_mmr32_address(pnode, offset)); } /* * Access Global MMR space using the MMR space located at the top of physical * memory. */ static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset) { return __va(UV_GLOBAL_MMR64_BASE | UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset); } static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val) { writeq(val, uv_global_mmr64_address(pnode, offset)); } static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset) { return readq(uv_global_mmr64_address(pnode, offset)); } static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val) { writeb(val, uv_global_mmr64_address(pnode, offset)); } static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset) { return readb(uv_global_mmr64_address(pnode, offset)); } /* * Access hub local MMRs. Faster than using global space but only local MMRs * are accessible. */ static inline unsigned long *uv_local_mmr_address(unsigned long offset) { return __va(UV_LOCAL_MMR_BASE | offset); } static inline unsigned long uv_read_local_mmr(unsigned long offset) { return readq(uv_local_mmr_address(offset)); } static inline void uv_write_local_mmr(unsigned long offset, unsigned long val) { writeq(val, uv_local_mmr_address(offset)); } static inline unsigned char uv_read_local_mmr8(unsigned long offset) { return readb(uv_local_mmr_address(offset)); } static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val) { writeb(val, uv_local_mmr_address(offset)); } /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */ static inline int uv_blade_processor_id(void) { return uv_cpu_info->blade_cpu_id; } /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */ static inline int uv_cpu_blade_processor_id(int cpu) { return uv_cpu_info_per(cpu)->blade_cpu_id; } /* Blade number to Node number (UV2..UV4 is 1:1) */ static inline int uv_blade_to_node(int blade) { return blade; } /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */ static inline int uv_numa_blade_id(void) { return uv_hub_info->numa_blade_id; } /* * Convert linux node number to the UV blade number. * .. Currently for UV2 thru UV4 the node and the blade are identical. * .. If this changes then you MUST check references to this function! */ static inline int uv_node_to_blade_id(int nid) { return nid; } /* Convert a CPU number to the UV blade number */ static inline int uv_cpu_to_blade_id(int cpu) { return uv_node_to_blade_id(cpu_to_node(cpu)); } /* Convert a blade id to the PNODE of the blade */ static inline int uv_blade_to_pnode(int bid) { return uv_hub_info_list(uv_blade_to_node(bid))->pnode; } /* Nid of memory node on blade. -1 if no blade-local memory */ static inline int uv_blade_to_memory_nid(int bid) { return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid; } /* Determine the number of possible cpus on a blade */ static inline int uv_blade_nr_possible_cpus(int bid) { return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus; } /* Determine the number of online cpus on a blade */ static inline int uv_blade_nr_online_cpus(int bid) { return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus; } /* Convert a cpu id to the PNODE of the blade containing the cpu */ static inline int uv_cpu_to_pnode(int cpu) { return uv_cpu_hub_info(cpu)->pnode; } /* Convert a linux node number to the PNODE of the blade */ static inline int uv_node_to_pnode(int nid) { return uv_hub_info_list(nid)->pnode; } /* Maximum possible number of blades */ extern short uv_possible_blades; static inline int uv_num_possible_blades(void) { return uv_possible_blades; } /* Per Hub NMI support */ extern void uv_nmi_setup(void); extern void uv_nmi_setup_hubless(void); /* BIOS/Kernel flags exchange MMR */ #define UVH_BIOS_KERNEL_MMR UVH_SCRATCH5 #define UVH_BIOS_KERNEL_MMR_ALIAS UVH_SCRATCH5_ALIAS #define UVH_BIOS_KERNEL_MMR_ALIAS_2 UVH_SCRATCH5_ALIAS_2 /* TSC sync valid, set by BIOS */ #define UVH_TSC_SYNC_MMR UVH_BIOS_KERNEL_MMR #define UVH_TSC_SYNC_SHIFT 10 #define UVH_TSC_SYNC_SHIFT_UV2K 16 /* UV2/3k have different bits */ #define UVH_TSC_SYNC_MASK 3 /* 0011 */ #define UVH_TSC_SYNC_VALID 3 /* 0011 */ #define UVH_TSC_SYNC_UNKNOWN 0 /* 0000 */ /* BMC sets a bit this MMR non-zero before sending an NMI */ #define UVH_NMI_MMR UVH_BIOS_KERNEL_MMR #define UVH_NMI_MMR_CLEAR UVH_BIOS_KERNEL_MMR_ALIAS #define UVH_NMI_MMR_SHIFT 63 #define UVH_NMI_MMR_TYPE "SCRATCH5" struct uv_hub_nmi_s { raw_spinlock_t nmi_lock; atomic_t in_nmi; /* flag this node in UV NMI IRQ */ atomic_t cpu_owner; /* last locker of this struct */ atomic_t read_mmr_count; /* count of MMR reads */ atomic_t nmi_count; /* count of true UV NMIs */ unsigned long nmi_value; /* last value read from NMI MMR */ bool hub_present; /* false means UV hubless system */ bool pch_owner; /* indicates this hub owns PCH */ }; struct uv_cpu_nmi_s { struct uv_hub_nmi_s *hub; int state; int pinging; int queries; int pings; }; DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); #define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub) #define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu)) #define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub) /* uv_cpu_nmi_states */ #define UV_NMI_STATE_OUT 0 #define UV_NMI_STATE_IN 1 #define UV_NMI_STATE_DUMP 2 #define UV_NMI_STATE_DUMP_DONE 3 /* * Get the minimum revision number of the hub chips within the partition. * (See UVx_HUB_REVISION_BASE above for specific values.) */ static inline int uv_get_min_hub_revision_id(void) { return uv_hub_info->hub_revision; } #endif /* CONFIG_X86_64 */ #endif /* _ASM_X86_UV_UV_HUB_H */ |