Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
// SPDX-License-Identifier: GPL-2.0-only
/*
 * thread-stack.c: Synthesize a thread's stack using call / return events
 * Copyright (c) 2014, Intel Corporation.
 */

#include <linux/rbtree.h>
#include <linux/list.h>
#include <linux/log2.h>
#include <linux/zalloc.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include "thread.h"
#include "event.h"
#include "machine.h"
#include "env.h"
#include "debug.h"
#include "symbol.h"
#include "comm.h"
#include "call-path.h"
#include "thread-stack.h"

#define STACK_GROWTH 2048

/*
 * State of retpoline detection.
 *
 * RETPOLINE_NONE: no retpoline detection
 * X86_RETPOLINE_POSSIBLE: x86 retpoline possible
 * X86_RETPOLINE_DETECTED: x86 retpoline detected
 */
enum retpoline_state_t {
	RETPOLINE_NONE,
	X86_RETPOLINE_POSSIBLE,
	X86_RETPOLINE_DETECTED,
};

/**
 * struct thread_stack_entry - thread stack entry.
 * @ret_addr: return address
 * @timestamp: timestamp (if known)
 * @ref: external reference (e.g. db_id of sample)
 * @branch_count: the branch count when the entry was created
 * @insn_count: the instruction count when the entry was created
 * @cyc_count the cycle count when the entry was created
 * @db_id: id used for db-export
 * @cp: call path
 * @no_call: a 'call' was not seen
 * @trace_end: a 'call' but trace ended
 * @non_call: a branch but not a 'call' to the start of a different symbol
 */
struct thread_stack_entry {
	u64 ret_addr;
	u64 timestamp;
	u64 ref;
	u64 branch_count;
	u64 insn_count;
	u64 cyc_count;
	u64 db_id;
	struct call_path *cp;
	bool no_call;
	bool trace_end;
	bool non_call;
};

/**
 * struct thread_stack - thread stack constructed from 'call' and 'return'
 *                       branch samples.
 * @stack: array that holds the stack
 * @cnt: number of entries in the stack
 * @sz: current maximum stack size
 * @trace_nr: current trace number
 * @branch_count: running branch count
 * @insn_count: running  instruction count
 * @cyc_count running  cycle count
 * @kernel_start: kernel start address
 * @last_time: last timestamp
 * @crp: call/return processor
 * @comm: current comm
 * @arr_sz: size of array if this is the first element of an array
 * @rstate: used to detect retpolines
 * @br_stack_rb: branch stack (ring buffer)
 * @br_stack_sz: maximum branch stack size
 * @br_stack_pos: current position in @br_stack_rb
 * @mispred_all: mark all branches as mispredicted
 */
struct thread_stack {
	struct thread_stack_entry *stack;
	size_t cnt;
	size_t sz;
	u64 trace_nr;
	u64 branch_count;
	u64 insn_count;
	u64 cyc_count;
	u64 kernel_start;
	u64 last_time;
	struct call_return_processor *crp;
	struct comm *comm;
	unsigned int arr_sz;
	enum retpoline_state_t rstate;
	struct branch_stack *br_stack_rb;
	unsigned int br_stack_sz;
	unsigned int br_stack_pos;
	bool mispred_all;
};

/*
 * Assume pid == tid == 0 identifies the idle task as defined by
 * perf_session__register_idle_thread(). The idle task is really 1 task per cpu,
 * and therefore requires a stack for each cpu.
 */
static inline bool thread_stack__per_cpu(struct thread *thread)
{
	return !(thread->tid || thread->pid_);
}

static int thread_stack__grow(struct thread_stack *ts)
{
	struct thread_stack_entry *new_stack;
	size_t sz, new_sz;

	new_sz = ts->sz + STACK_GROWTH;
	sz = new_sz * sizeof(struct thread_stack_entry);

	new_stack = realloc(ts->stack, sz);
	if (!new_stack)
		return -ENOMEM;

	ts->stack = new_stack;
	ts->sz = new_sz;

	return 0;
}

static int thread_stack__init(struct thread_stack *ts, struct thread *thread,
			      struct call_return_processor *crp,
			      bool callstack, unsigned int br_stack_sz)
{
	int err;

	if (callstack) {
		err = thread_stack__grow(ts);
		if (err)
			return err;
	}

	if (br_stack_sz) {
		size_t sz = sizeof(struct branch_stack);

		sz += br_stack_sz * sizeof(struct branch_entry);
		ts->br_stack_rb = zalloc(sz);
		if (!ts->br_stack_rb)
			return -ENOMEM;
		ts->br_stack_sz = br_stack_sz;
	}

	if (thread->maps && thread->maps->machine) {
		struct machine *machine = thread->maps->machine;
		const char *arch = perf_env__arch(machine->env);

		ts->kernel_start = machine__kernel_start(machine);
		if (!strcmp(arch, "x86"))
			ts->rstate = X86_RETPOLINE_POSSIBLE;
	} else {
		ts->kernel_start = 1ULL << 63;
	}
	ts->crp = crp;

	return 0;
}

static struct thread_stack *thread_stack__new(struct thread *thread, int cpu,
					      struct call_return_processor *crp,
					      bool callstack,
					      unsigned int br_stack_sz)
{
	struct thread_stack *ts = thread->ts, *new_ts;
	unsigned int old_sz = ts ? ts->arr_sz : 0;
	unsigned int new_sz = 1;

	if (thread_stack__per_cpu(thread) && cpu > 0)
		new_sz = roundup_pow_of_two(cpu + 1);

	if (!ts || new_sz > old_sz) {
		new_ts = calloc(new_sz, sizeof(*ts));
		if (!new_ts)
			return NULL;
		if (ts)
			memcpy(new_ts, ts, old_sz * sizeof(*ts));
		new_ts->arr_sz = new_sz;
		zfree(&thread->ts);
		thread->ts = new_ts;
		ts = new_ts;
	}

	if (thread_stack__per_cpu(thread) && cpu > 0 &&
	    (unsigned int)cpu < ts->arr_sz)
		ts += cpu;

	if (!ts->stack &&
	    thread_stack__init(ts, thread, crp, callstack, br_stack_sz))
		return NULL;

	return ts;
}

static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu)
{
	struct thread_stack *ts = thread->ts;

	if (cpu < 0)
		cpu = 0;

	if (!ts || (unsigned int)cpu >= ts->arr_sz)
		return NULL;

	ts += cpu;

	if (!ts->stack)
		return NULL;

	return ts;
}

static inline struct thread_stack *thread__stack(struct thread *thread,
						    int cpu)
{
	if (!thread)
		return NULL;

	if (thread_stack__per_cpu(thread))
		return thread__cpu_stack(thread, cpu);

	return thread->ts;
}

static int thread_stack__push(struct thread_stack *ts, u64 ret_addr,
			      bool trace_end)
{
	int err = 0;

	if (ts->cnt == ts->sz) {
		err = thread_stack__grow(ts);
		if (err) {
			pr_warning("Out of memory: discarding thread stack\n");
			ts->cnt = 0;
		}
	}

	ts->stack[ts->cnt].trace_end = trace_end;
	ts->stack[ts->cnt++].ret_addr = ret_addr;

	return err;
}

static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr)
{
	size_t i;

	/*
	 * In some cases there may be functions which are not seen to return.
	 * For example when setjmp / longjmp has been used.  Or the perf context
	 * switch in the kernel which doesn't stop and start tracing in exactly
	 * the same code path.  When that happens the return address will be
	 * further down the stack.  If the return address is not found at all,
	 * we assume the opposite (i.e. this is a return for a call that wasn't
	 * seen for some reason) and leave the stack alone.
	 */
	for (i = ts->cnt; i; ) {
		if (ts->stack[--i].ret_addr == ret_addr) {
			ts->cnt = i;
			return;
		}
	}
}

static void thread_stack__pop_trace_end(struct thread_stack *ts)
{
	size_t i;

	for (i = ts->cnt; i; ) {
		if (ts->stack[--i].trace_end)
			ts->cnt = i;
		else
			return;
	}
}

static bool thread_stack__in_kernel(struct thread_stack *ts)
{
	if (!ts->cnt)
		return false;

	return ts->stack[ts->cnt - 1].cp->in_kernel;
}

static int thread_stack__call_return(struct thread *thread,
				     struct thread_stack *ts, size_t idx,
				     u64 timestamp, u64 ref, bool no_return)
{
	struct call_return_processor *crp = ts->crp;
	struct thread_stack_entry *tse;
	struct call_return cr = {
		.thread = thread,
		.comm = ts->comm,
		.db_id = 0,
	};
	u64 *parent_db_id;

	tse = &ts->stack[idx];
	cr.cp = tse->cp;
	cr.call_time = tse->timestamp;
	cr.return_time = timestamp;
	cr.branch_count = ts->branch_count - tse->branch_count;
	cr.insn_count = ts->insn_count - tse->insn_count;
	cr.cyc_count = ts->cyc_count - tse->cyc_count;
	cr.db_id = tse->db_id;
	cr.call_ref = tse->ref;
	cr.return_ref = ref;
	if (tse->no_call)
		cr.flags |= CALL_RETURN_NO_CALL;
	if (no_return)
		cr.flags |= CALL_RETURN_NO_RETURN;
	if (tse->non_call)
		cr.flags |= CALL_RETURN_NON_CALL;

	/*
	 * The parent db_id must be assigned before exporting the child. Note
	 * it is not possible to export the parent first because its information
	 * is not yet complete because its 'return' has not yet been processed.
	 */
	parent_db_id = idx ? &(tse - 1)->db_id : NULL;

	return crp->process(&cr, parent_db_id, crp->data);
}

static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts)
{
	struct call_return_processor *crp = ts->crp;
	int err;

	if (!crp) {
		ts->cnt = 0;
		ts->br_stack_pos = 0;
		if (ts->br_stack_rb)
			ts->br_stack_rb->nr = 0;
		return 0;
	}

	while (ts->cnt) {
		err = thread_stack__call_return(thread, ts, --ts->cnt,
						ts->last_time, 0, true);
		if (err) {
			pr_err("Error flushing thread stack!\n");
			ts->cnt = 0;
			return err;
		}
	}

	return 0;
}

int thread_stack__flush(struct thread *thread)
{
	struct thread_stack *ts = thread->ts;
	unsigned int pos;
	int err = 0;

	if (ts) {
		for (pos = 0; pos < ts->arr_sz; pos++) {
			int ret = __thread_stack__flush(thread, ts + pos);

			if (ret)
				err = ret;
		}
	}

	return err;
}

static void thread_stack__update_br_stack(struct thread_stack *ts, u32 flags,
					  u64 from_ip, u64 to_ip)
{
	struct branch_stack *bs = ts->br_stack_rb;
	struct branch_entry *be;

	if (!ts->br_stack_pos)
		ts->br_stack_pos = ts->br_stack_sz;

	ts->br_stack_pos -= 1;

	be              = &bs->entries[ts->br_stack_pos];
	be->from        = from_ip;
	be->to          = to_ip;
	be->flags.value = 0;
	be->flags.abort = !!(flags & PERF_IP_FLAG_TX_ABORT);
	be->flags.in_tx = !!(flags & PERF_IP_FLAG_IN_TX);
	/* No support for mispredict */
	be->flags.mispred = ts->mispred_all;

	if (bs->nr < ts->br_stack_sz)
		bs->nr += 1;
}

int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip,
			u64 to_ip, u16 insn_len, u64 trace_nr, bool callstack,
			unsigned int br_stack_sz, bool mispred_all)
{
	struct thread_stack *ts = thread__stack(thread, cpu);

	if (!thread)
		return -EINVAL;

	if (!ts) {
		ts = thread_stack__new(thread, cpu, NULL, callstack, br_stack_sz);
		if (!ts) {
			pr_warning("Out of memory: no thread stack\n");
			return -ENOMEM;
		}
		ts->trace_nr = trace_nr;
		ts->mispred_all = mispred_all;
	}

	/*
	 * When the trace is discontinuous, the trace_nr changes.  In that case
	 * the stack might be completely invalid.  Better to report nothing than
	 * to report something misleading, so flush the stack.
	 */
	if (trace_nr != ts->trace_nr) {
		if (ts->trace_nr)
			__thread_stack__flush(thread, ts);
		ts->trace_nr = trace_nr;
	}

	if (br_stack_sz)
		thread_stack__update_br_stack(ts, flags, from_ip, to_ip);

	/*
	 * Stop here if thread_stack__process() is in use, or not recording call
	 * stack.
	 */
	if (ts->crp || !callstack)
		return 0;

	if (flags & PERF_IP_FLAG_CALL) {
		u64 ret_addr;

		if (!to_ip)
			return 0;
		ret_addr = from_ip + insn_len;
		if (ret_addr == to_ip)
			return 0; /* Zero-length calls are excluded */
		return thread_stack__push(ts, ret_addr,
					  flags & PERF_IP_FLAG_TRACE_END);
	} else if (flags & PERF_IP_FLAG_TRACE_BEGIN) {
		/*
		 * If the caller did not change the trace number (which would
		 * have flushed the stack) then try to make sense of the stack.
		 * Possibly, tracing began after returning to the current
		 * address, so try to pop that. Also, do not expect a call made
		 * when the trace ended, to return, so pop that.
		 */
		thread_stack__pop(ts, to_ip);
		thread_stack__pop_trace_end(ts);
	} else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) {
		thread_stack__pop(ts, to_ip);
	}

	return 0;
}

void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr)
{
	struct thread_stack *ts = thread__stack(thread, cpu);

	if (!ts)
		return;

	if (trace_nr != ts->trace_nr) {
		if (ts->trace_nr)
			__thread_stack__flush(thread, ts);
		ts->trace_nr = trace_nr;
	}
}

static void __thread_stack__free(struct thread *thread, struct thread_stack *ts)
{
	__thread_stack__flush(thread, ts);
	zfree(&ts->stack);
	zfree(&ts->br_stack_rb);
}

static void thread_stack__reset(struct thread *thread, struct thread_stack *ts)
{
	unsigned int arr_sz = ts->arr_sz;

	__thread_stack__free(thread, ts);
	memset(ts, 0, sizeof(*ts));
	ts->arr_sz = arr_sz;
}

void thread_stack__free(struct thread *thread)
{
	struct thread_stack *ts = thread->ts;
	unsigned int pos;

	if (ts) {
		for (pos = 0; pos < ts->arr_sz; pos++)
			__thread_stack__free(thread, ts + pos);
		zfree(&thread->ts);
	}
}

static inline u64 callchain_context(u64 ip, u64 kernel_start)
{
	return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL;
}

void thread_stack__sample(struct thread *thread, int cpu,
			  struct ip_callchain *chain,
			  size_t sz, u64 ip, u64 kernel_start)
{
	struct thread_stack *ts = thread__stack(thread, cpu);
	u64 context = callchain_context(ip, kernel_start);
	u64 last_context;
	size_t i, j;

	if (sz < 2) {
		chain->nr = 0;
		return;
	}

	chain->ips[0] = context;
	chain->ips[1] = ip;

	if (!ts) {
		chain->nr = 2;
		return;
	}

	last_context = context;

	for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) {
		ip = ts->stack[ts->cnt - j].ret_addr;
		context = callchain_context(ip, kernel_start);
		if (context != last_context) {
			if (i >= sz - 1)
				break;
			chain->ips[i++] = context;
			last_context = context;
		}
		chain->ips[i] = ip;
	}

	chain->nr = i;
}

/*
 * Hardware sample records, created some time after the event occurred, need to
 * have subsequent addresses removed from the call chain.
 */
void thread_stack__sample_late(struct thread *thread, int cpu,
			       struct ip_callchain *chain, size_t sz,
			       u64 sample_ip, u64 kernel_start)
{
	struct thread_stack *ts = thread__stack(thread, cpu);
	u64 sample_context = callchain_context(sample_ip, kernel_start);
	u64 last_context, context, ip;
	size_t nr = 0, j;

	if (sz < 2) {
		chain->nr = 0;
		return;
	}

	if (!ts)
		goto out;

	/*
	 * When tracing kernel space, kernel addresses occur at the top of the
	 * call chain after the event occurred but before tracing stopped.
	 * Skip them.
	 */
	for (j = 1; j <= ts->cnt; j++) {
		ip = ts->stack[ts->cnt - j].ret_addr;
		context = callchain_context(ip, kernel_start);
		if (context == PERF_CONTEXT_USER ||
		    (context == sample_context && ip == sample_ip))
			break;
	}

	last_context = sample_ip; /* Use sample_ip as an invalid context */

	for (; nr < sz && j <= ts->cnt; nr++, j++) {
		ip = ts->stack[ts->cnt - j].ret_addr;
		context = callchain_context(ip, kernel_start);
		if (context != last_context) {
			if (nr >= sz - 1)
				break;
			chain->ips[nr++] = context;
			last_context = context;
		}
		chain->ips[nr] = ip;
	}
out:
	if (nr) {
		chain->nr = nr;
	} else {
		chain->ips[0] = sample_context;
		chain->ips[1] = sample_ip;
		chain->nr = 2;
	}
}

void thread_stack__br_sample(struct thread *thread, int cpu,
			     struct branch_stack *dst, unsigned int sz)
{
	struct thread_stack *ts = thread__stack(thread, cpu);
	const size_t bsz = sizeof(struct branch_entry);
	struct branch_stack *src;
	struct branch_entry *be;
	unsigned int nr;

	dst->nr = 0;

	if (!ts)
		return;

	src = ts->br_stack_rb;
	if (!src->nr)
		return;

	dst->nr = min((unsigned int)src->nr, sz);

	be = &dst->entries[0];
	nr = min(ts->br_stack_sz - ts->br_stack_pos, (unsigned int)dst->nr);
	memcpy(be, &src->entries[ts->br_stack_pos], bsz * nr);

	if (src->nr >= ts->br_stack_sz) {
		sz -= nr;
		be = &dst->entries[nr];
		nr = min(ts->br_stack_pos, sz);
		memcpy(be, &src->entries[0], bsz * ts->br_stack_pos);
	}
}

/* Start of user space branch entries */
static bool us_start(struct branch_entry *be, u64 kernel_start, bool *start)
{
	if (!*start)
		*start = be->to && be->to < kernel_start;

	return *start;
}

/*
 * Start of branch entries after the ip fell in between 2 branches, or user
 * space branch entries.
 */
static bool ks_start(struct branch_entry *be, u64 sample_ip, u64 kernel_start,
		     bool *start, struct branch_entry *nb)
{
	if (!*start) {
		*start = (nb && sample_ip >= be->to && sample_ip <= nb->from) ||
			 be->from < kernel_start ||
			 (be->to && be->to < kernel_start);
	}

	return *start;
}

/*
 * Hardware sample records, created some time after the event occurred, need to
 * have subsequent addresses removed from the branch stack.
 */
void thread_stack__br_sample_late(struct thread *thread, int cpu,
				  struct branch_stack *dst, unsigned int sz,
				  u64 ip, u64 kernel_start)
{
	struct thread_stack *ts = thread__stack(thread, cpu);
	struct branch_entry *d, *s, *spos, *ssz;
	struct branch_stack *src;
	unsigned int nr = 0;
	bool start = false;

	dst->nr = 0;

	if (!ts)
		return;

	src = ts->br_stack_rb;
	if (!src->nr)
		return;

	spos = &src->entries[ts->br_stack_pos];
	ssz  = &src->entries[ts->br_stack_sz];

	d = &dst->entries[0];
	s = spos;

	if (ip < kernel_start) {
		/*
		 * User space sample: start copying branch entries when the
		 * branch is in user space.
		 */
		for (s = spos; s < ssz && nr < sz; s++) {
			if (us_start(s, kernel_start, &start)) {
				*d++ = *s;
				nr += 1;
			}
		}

		if (src->nr >= ts->br_stack_sz) {
			for (s = &src->entries[0]; s < spos && nr < sz; s++) {
				if (us_start(s, kernel_start, &start)) {
					*d++ = *s;
					nr += 1;
				}
			}
		}
	} else {
		struct branch_entry *nb = NULL;

		/*
		 * Kernel space sample: start copying branch entries when the ip
		 * falls in between 2 branches (or the branch is in user space
		 * because then the start must have been missed).
		 */
		for (s = spos; s < ssz && nr < sz; s++) {
			if (ks_start(s, ip, kernel_start, &start, nb)) {
				*d++ = *s;
				nr += 1;
			}
			nb = s;
		}

		if (src->nr >= ts->br_stack_sz) {
			for (s = &src->entries[0]; s < spos && nr < sz; s++) {
				if (ks_start(s, ip, kernel_start, &start, nb)) {
					*d++ = *s;
					nr += 1;
				}
				nb = s;
			}
		}
	}

	dst->nr = nr;
}

struct call_return_processor *
call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data),
			   void *data)
{
	struct call_return_processor *crp;

	crp = zalloc(sizeof(struct call_return_processor));
	if (!crp)
		return NULL;
	crp->cpr = call_path_root__new();
	if (!crp->cpr)
		goto out_free;
	crp->process = process;
	crp->data = data;
	return crp;

out_free:
	free(crp);
	return NULL;
}

void call_return_processor__free(struct call_return_processor *crp)
{
	if (crp) {
		call_path_root__free(crp->cpr);
		free(crp);
	}
}

static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr,
				 u64 timestamp, u64 ref, struct call_path *cp,
				 bool no_call, bool trace_end)
{
	struct thread_stack_entry *tse;
	int err;

	if (!cp)
		return -ENOMEM;

	if (ts->cnt == ts->sz) {
		err = thread_stack__grow(ts);
		if (err)
			return err;
	}

	tse = &ts->stack[ts->cnt++];
	tse->ret_addr = ret_addr;
	tse->timestamp = timestamp;
	tse->ref = ref;
	tse->branch_count = ts->branch_count;
	tse->insn_count = ts->insn_count;
	tse->cyc_count = ts->cyc_count;
	tse->cp = cp;
	tse->no_call = no_call;
	tse->trace_end = trace_end;
	tse->non_call = false;
	tse->db_id = 0;

	return 0;
}

static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts,
				u64 ret_addr, u64 timestamp, u64 ref,
				struct symbol *sym)
{
	int err;

	if (!ts->cnt)
		return 1;

	if (ts->cnt == 1) {
		struct thread_stack_entry *tse = &ts->stack[0];

		if (tse->cp->sym == sym)
			return thread_stack__call_return(thread, ts, --ts->cnt,
							 timestamp, ref, false);
	}

	if (ts->stack[ts->cnt - 1].ret_addr == ret_addr &&
	    !ts->stack[ts->cnt - 1].non_call) {
		return thread_stack__call_return(thread, ts, --ts->cnt,
						 timestamp, ref, false);
	} else {
		size_t i = ts->cnt - 1;

		while (i--) {
			if (ts->stack[i].ret_addr != ret_addr ||
			    ts->stack[i].non_call)
				continue;
			i += 1;
			while (ts->cnt > i) {
				err = thread_stack__call_return(thread, ts,
								--ts->cnt,
								timestamp, ref,
								true);
				if (err)
					return err;
			}
			return thread_stack__call_return(thread, ts, --ts->cnt,
							 timestamp, ref, false);
		}
	}

	return 1;
}

static int thread_stack__bottom(struct thread_stack *ts,
				struct perf_sample *sample,
				struct addr_location *from_al,
				struct addr_location *to_al, u64 ref)
{
	struct call_path_root *cpr = ts->crp->cpr;
	struct call_path *cp;
	struct symbol *sym;
	u64 ip;

	if (sample->ip) {
		ip = sample->ip;
		sym = from_al->sym;
	} else if (sample->addr) {
		ip = sample->addr;
		sym = to_al->sym;
	} else {
		return 0;
	}

	cp = call_path__findnew(cpr, &cpr->call_path, sym, ip,
				ts->kernel_start);

	return thread_stack__push_cp(ts, ip, sample->time, ref, cp,
				     true, false);
}

static int thread_stack__pop_ks(struct thread *thread, struct thread_stack *ts,
				struct perf_sample *sample, u64 ref)
{
	u64 tm = sample->time;
	int err;

	/* Return to userspace, so pop all kernel addresses */
	while (thread_stack__in_kernel(ts)) {
		err = thread_stack__call_return(thread, ts, --ts->cnt,
						tm, ref, true);
		if (err)
			return err;
	}

	return 0;
}

static int thread_stack__no_call_return(struct thread *thread,
					struct thread_stack *ts,
					struct perf_sample *sample,
					struct addr_location *from_al,
					struct addr_location *to_al, u64 ref)
{
	struct call_path_root *cpr = ts->crp->cpr;
	struct call_path *root = &cpr->call_path;
	struct symbol *fsym = from_al->sym;
	struct symbol *tsym = to_al->sym;
	struct call_path *cp, *parent;
	u64 ks = ts->kernel_start;
	u64 addr = sample->addr;
	u64 tm = sample->time;
	u64 ip = sample->ip;
	int err;

	if (ip >= ks && addr < ks) {
		/* Return to userspace, so pop all kernel addresses */
		err = thread_stack__pop_ks(thread, ts, sample, ref);
		if (err)
			return err;

		/* If the stack is empty, push the userspace address */
		if (!ts->cnt) {
			cp = call_path__findnew(cpr, root, tsym, addr, ks);
			return thread_stack__push_cp(ts, 0, tm, ref, cp, true,
						     false);
		}
	} else if (thread_stack__in_kernel(ts) && ip < ks) {
		/* Return to userspace, so pop all kernel addresses */
		err = thread_stack__pop_ks(thread, ts, sample, ref);
		if (err)
			return err;
	}

	if (ts->cnt)
		parent = ts->stack[ts->cnt - 1].cp;
	else
		parent = root;

	if (parent->sym == from_al->sym) {
		/*
		 * At the bottom of the stack, assume the missing 'call' was
		 * before the trace started. So, pop the current symbol and push
		 * the 'to' symbol.
		 */
		if (ts->cnt == 1) {
			err = thread_stack__call_return(thread, ts, --ts->cnt,
							tm, ref, false);
			if (err)
				return err;
		}

		if (!ts->cnt) {
			cp = call_path__findnew(cpr, root, tsym, addr, ks);

			return thread_stack__push_cp(ts, addr, tm, ref, cp,
						     true, false);
		}

		/*
		 * Otherwise assume the 'return' is being used as a jump (e.g.
		 * retpoline) and just push the 'to' symbol.
		 */
		cp = call_path__findnew(cpr, parent, tsym, addr, ks);

		err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false);
		if (!err)
			ts->stack[ts->cnt - 1].non_call = true;

		return err;
	}

	/*
	 * Assume 'parent' has not yet returned, so push 'to', and then push and
	 * pop 'from'.
	 */

	cp = call_path__findnew(cpr, parent, tsym, addr, ks);

	err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false);
	if (err)
		return err;

	cp = call_path__findnew(cpr, cp, fsym, ip, ks);

	err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false);
	if (err)
		return err;

	return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false);
}

static int thread_stack__trace_begin(struct thread *thread,
				     struct thread_stack *ts, u64 timestamp,
				     u64 ref)
{
	struct thread_stack_entry *tse;
	int err;

	if (!ts->cnt)
		return 0;

	/* Pop trace end */
	tse = &ts->stack[ts->cnt - 1];
	if (tse->trace_end) {
		err = thread_stack__call_return(thread, ts, --ts->cnt,
						timestamp, ref, false);
		if (err)
			return err;
	}

	return 0;
}

static int thread_stack__trace_end(struct thread_stack *ts,
				   struct perf_sample *sample, u64 ref)
{
	struct call_path_root *cpr = ts->crp->cpr;
	struct call_path *cp;
	u64 ret_addr;

	/* No point having 'trace end' on the bottom of the stack */
	if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref))
		return 0;

	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0,
				ts->kernel_start);

	ret_addr = sample->ip + sample->insn_len;

	return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp,
				     false, true);
}

static bool is_x86_retpoline(const char *name)
{
	const char *p = strstr(name, "__x86_indirect_thunk_");

	return p == name || !strcmp(name, "__indirect_thunk_start");
}

/*
 * x86 retpoline functions pollute the call graph. This function removes them.
 * This does not handle function return thunks, nor is there any improvement
 * for the handling of inline thunks or extern thunks.
 */
static int thread_stack__x86_retpoline(struct thread_stack *ts,
				       struct perf_sample *sample,
				       struct addr_location *to_al)
{
	struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1];
	struct call_path_root *cpr = ts->crp->cpr;
	struct symbol *sym = tse->cp->sym;
	struct symbol *tsym = to_al->sym;
	struct call_path *cp;

	if (sym && is_x86_retpoline(sym->name)) {
		/*
		 * This is a x86 retpoline fn. It pollutes the call graph by
		 * showing up everywhere there is an indirect branch, but does
		 * not itself mean anything. Here the top-of-stack is removed,
		 * by decrementing the stack count, and then further down, the
		 * resulting top-of-stack is replaced with the actual target.
		 * The result is that the retpoline functions will no longer
		 * appear in the call graph. Note this only affects the call
		 * graph, since all the original branches are left unchanged.
		 */
		ts->cnt -= 1;
		sym = ts->stack[ts->cnt - 2].cp->sym;
		if (sym && sym == tsym && to_al->addr != tsym->start) {
			/*
			 * Target is back to the middle of the symbol we came
			 * from so assume it is an indirect jmp and forget it
			 * altogether.
			 */
			ts->cnt -= 1;
			return 0;
		}
	} else if (sym && sym == tsym) {
		/*
		 * Target is back to the symbol we came from so assume it is an
		 * indirect jmp and forget it altogether.
		 */
		ts->cnt -= 1;
		return 0;
	}

	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym,
				sample->addr, ts->kernel_start);
	if (!cp)
		return -ENOMEM;

	/* Replace the top-of-stack with the actual target */
	ts->stack[ts->cnt - 1].cp = cp;

	return 0;
}

int thread_stack__process(struct thread *thread, struct comm *comm,
			  struct perf_sample *sample,
			  struct addr_location *from_al,
			  struct addr_location *to_al, u64 ref,
			  struct call_return_processor *crp)
{
	struct thread_stack *ts = thread__stack(thread, sample->cpu);
	enum retpoline_state_t rstate;
	int err = 0;

	if (ts && !ts->crp) {
		/* Supersede thread_stack__event() */
		thread_stack__reset(thread, ts);
		ts = NULL;
	}

	if (!ts) {
		ts = thread_stack__new(thread, sample->cpu, crp, true, 0);
		if (!ts)
			return -ENOMEM;
		ts->comm = comm;
	}

	rstate = ts->rstate;
	if (rstate == X86_RETPOLINE_DETECTED)
		ts->rstate = X86_RETPOLINE_POSSIBLE;

	/* Flush stack on exec */
	if (ts->comm != comm && thread->pid_ == thread->tid) {
		err = __thread_stack__flush(thread, ts);
		if (err)
			return err;
		ts->comm = comm;
	}

	/* If the stack is empty, put the current symbol on the stack */
	if (!ts->cnt) {
		err = thread_stack__bottom(ts, sample, from_al, to_al, ref);
		if (err)
			return err;
	}

	ts->branch_count += 1;
	ts->insn_count += sample->insn_cnt;
	ts->cyc_count += sample->cyc_cnt;
	ts->last_time = sample->time;

	if (sample->flags & PERF_IP_FLAG_CALL) {
		bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END;
		struct call_path_root *cpr = ts->crp->cpr;
		struct call_path *cp;
		u64 ret_addr;

		if (!sample->ip || !sample->addr)
			return 0;

		ret_addr = sample->ip + sample->insn_len;
		if (ret_addr == sample->addr)
			return 0; /* Zero-length calls are excluded */

		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
					to_al->sym, sample->addr,
					ts->kernel_start);
		err = thread_stack__push_cp(ts, ret_addr, sample->time, ref,
					    cp, false, trace_end);

		/*
		 * A call to the same symbol but not the start of the symbol,
		 * may be the start of a x86 retpoline.
		 */
		if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym &&
		    from_al->sym == to_al->sym &&
		    to_al->addr != to_al->sym->start)
			ts->rstate = X86_RETPOLINE_DETECTED;

	} else if (sample->flags & PERF_IP_FLAG_RETURN) {
		if (!sample->addr) {
			u32 return_from_kernel = PERF_IP_FLAG_SYSCALLRET |
						 PERF_IP_FLAG_INTERRUPT;

			if (!(sample->flags & return_from_kernel))
				return 0;

			/* Pop kernel stack */
			return thread_stack__pop_ks(thread, ts, sample, ref);
		}

		if (!sample->ip)
			return 0;

		/* x86 retpoline 'return' doesn't match the stack */
		if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 &&
		    ts->stack[ts->cnt - 1].ret_addr != sample->addr)
			return thread_stack__x86_retpoline(ts, sample, to_al);

		err = thread_stack__pop_cp(thread, ts, sample->addr,
					   sample->time, ref, from_al->sym);
		if (err) {
			if (err < 0)
				return err;
			err = thread_stack__no_call_return(thread, ts, sample,
							   from_al, to_al, ref);
		}
	} else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) {
		err = thread_stack__trace_begin(thread, ts, sample->time, ref);
	} else if (sample->flags & PERF_IP_FLAG_TRACE_END) {
		err = thread_stack__trace_end(ts, sample, ref);
	} else if (sample->flags & PERF_IP_FLAG_BRANCH &&
		   from_al->sym != to_al->sym && to_al->sym &&
		   to_al->addr == to_al->sym->start) {
		struct call_path_root *cpr = ts->crp->cpr;
		struct call_path *cp;

		/*
		 * The compiler might optimize a call/ret combination by making
		 * it a jmp. Make that visible by recording on the stack a
		 * branch to the start of a different symbol. Note, that means
		 * when a ret pops the stack, all jmps must be popped off first.
		 */
		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
					to_al->sym, sample->addr,
					ts->kernel_start);
		err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false,
					    false);
		if (!err)
			ts->stack[ts->cnt - 1].non_call = true;
	}

	return err;
}

size_t thread_stack__depth(struct thread *thread, int cpu)
{
	struct thread_stack *ts = thread__stack(thread, cpu);

	if (!ts)
		return 0;
	return ts->cnt;
}