Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2011 Red Hat, Inc. * * This file is released under the GPL. */ #include "dm-btree-internal.h" #include "dm-space-map.h" #include "dm-transaction-manager.h" #include <linux/export.h> #include <linux/device-mapper.h> #define DM_MSG_PREFIX "btree" /* *-------------------------------------------------------------- * Array manipulation *-------------------------------------------------------------- */ static void memcpy_disk(void *dest, const void *src, size_t len) __dm_written_to_disk(src) { memcpy(dest, src, len); __dm_unbless_for_disk(src); } static void array_insert(void *base, size_t elt_size, unsigned int nr_elts, unsigned int index, void *elt) __dm_written_to_disk(elt) { if (index < nr_elts) memmove(base + (elt_size * (index + 1)), base + (elt_size * index), (nr_elts - index) * elt_size); memcpy_disk(base + (elt_size * index), elt, elt_size); } /*----------------------------------------------------------------*/ /* makes the assumption that no two keys are the same. */ static int bsearch(struct btree_node *n, uint64_t key, int want_hi) { int lo = -1, hi = le32_to_cpu(n->header.nr_entries); while (hi - lo > 1) { int mid = lo + ((hi - lo) / 2); uint64_t mid_key = le64_to_cpu(n->keys[mid]); if (mid_key == key) return mid; if (mid_key < key) lo = mid; else hi = mid; } return want_hi ? hi : lo; } int lower_bound(struct btree_node *n, uint64_t key) { return bsearch(n, key, 0); } static int upper_bound(struct btree_node *n, uint64_t key) { return bsearch(n, key, 1); } void inc_children(struct dm_transaction_manager *tm, struct btree_node *n, struct dm_btree_value_type *vt) { uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range); else if (vt->inc) vt->inc(vt->context, value_ptr(n, 0), nr_entries); } static int insert_at(size_t value_size, struct btree_node *node, unsigned int index, uint64_t key, void *value) __dm_written_to_disk(value) { uint32_t nr_entries = le32_to_cpu(node->header.nr_entries); uint32_t max_entries = le32_to_cpu(node->header.max_entries); __le64 key_le = cpu_to_le64(key); if (index > nr_entries || index >= max_entries || nr_entries >= max_entries) { DMERR("too many entries in btree node for insert"); __dm_unbless_for_disk(value); return -ENOMEM; } __dm_bless_for_disk(&key_le); array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le); array_insert(value_base(node), value_size, nr_entries, index, value); node->header.nr_entries = cpu_to_le32(nr_entries + 1); return 0; } /*----------------------------------------------------------------*/ /* * We want 3n entries (for some n). This works more nicely for repeated * insert remove loops than (2n + 1). */ static uint32_t calc_max_entries(size_t value_size, size_t block_size) { uint32_t total, n; size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */ block_size -= sizeof(struct node_header); total = block_size / elt_size; n = total / 3; /* rounds down */ return 3 * n; } int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root) { int r; struct dm_block *b; struct btree_node *n; size_t block_size; uint32_t max_entries; r = new_block(info, &b); if (r < 0) return r; block_size = dm_bm_block_size(dm_tm_get_bm(info->tm)); max_entries = calc_max_entries(info->value_type.size, block_size); n = dm_block_data(b); memset(n, 0, block_size); n->header.flags = cpu_to_le32(LEAF_NODE); n->header.nr_entries = cpu_to_le32(0); n->header.max_entries = cpu_to_le32(max_entries); n->header.value_size = cpu_to_le32(info->value_type.size); *root = dm_block_location(b); unlock_block(info, b); return 0; } EXPORT_SYMBOL_GPL(dm_btree_empty); /*----------------------------------------------------------------*/ /* * Deletion uses a recursive algorithm, since we have limited stack space * we explicitly manage our own stack on the heap. */ #define MAX_SPINE_DEPTH 64 struct frame { struct dm_block *b; struct btree_node *n; unsigned int level; unsigned int nr_children; unsigned int current_child; }; struct del_stack { struct dm_btree_info *info; struct dm_transaction_manager *tm; int top; struct frame spine[MAX_SPINE_DEPTH]; }; static int top_frame(struct del_stack *s, struct frame **f) { if (s->top < 0) { DMERR("btree deletion stack empty"); return -EINVAL; } *f = s->spine + s->top; return 0; } static int unprocessed_frames(struct del_stack *s) { return s->top >= 0; } static void prefetch_children(struct del_stack *s, struct frame *f) { unsigned int i; struct dm_block_manager *bm = dm_tm_get_bm(s->tm); for (i = 0; i < f->nr_children; i++) dm_bm_prefetch(bm, value64(f->n, i)); } static bool is_internal_level(struct dm_btree_info *info, struct frame *f) { return f->level < (info->levels - 1); } static int push_frame(struct del_stack *s, dm_block_t b, unsigned int level) { int r; uint32_t ref_count; if (s->top >= MAX_SPINE_DEPTH - 1) { DMERR("btree deletion stack out of memory"); return -ENOMEM; } r = dm_tm_ref(s->tm, b, &ref_count); if (r) return r; if (ref_count > 1) /* * This is a shared node, so we can just decrement it's * reference counter and leave the children. */ dm_tm_dec(s->tm, b); else { uint32_t flags; struct frame *f = s->spine + ++s->top; r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b); if (r) { s->top--; return r; } f->n = dm_block_data(f->b); f->level = level; f->nr_children = le32_to_cpu(f->n->header.nr_entries); f->current_child = 0; flags = le32_to_cpu(f->n->header.flags); if (flags & INTERNAL_NODE || is_internal_level(s->info, f)) prefetch_children(s, f); } return 0; } static void pop_frame(struct del_stack *s) { struct frame *f = s->spine + s->top--; dm_tm_dec(s->tm, dm_block_location(f->b)); dm_tm_unlock(s->tm, f->b); } static void unlock_all_frames(struct del_stack *s) { struct frame *f; while (unprocessed_frames(s)) { f = s->spine + s->top--; dm_tm_unlock(s->tm, f->b); } } int dm_btree_del(struct dm_btree_info *info, dm_block_t root) { int r; struct del_stack *s; /* * dm_btree_del() is called via an ioctl, as such should be * considered an FS op. We can't recurse back into the FS, so we * allocate GFP_NOFS. */ s = kmalloc(sizeof(*s), GFP_NOFS); if (!s) return -ENOMEM; s->info = info; s->tm = info->tm; s->top = -1; r = push_frame(s, root, 0); if (r) goto out; while (unprocessed_frames(s)) { uint32_t flags; struct frame *f; dm_block_t b; r = top_frame(s, &f); if (r) goto out; if (f->current_child >= f->nr_children) { pop_frame(s); continue; } flags = le32_to_cpu(f->n->header.flags); if (flags & INTERNAL_NODE) { b = value64(f->n, f->current_child); f->current_child++; r = push_frame(s, b, f->level); if (r) goto out; } else if (is_internal_level(info, f)) { b = value64(f->n, f->current_child); f->current_child++; r = push_frame(s, b, f->level + 1); if (r) goto out; } else { if (info->value_type.dec) info->value_type.dec(info->value_type.context, value_ptr(f->n, 0), f->nr_children); pop_frame(s); } } out: if (r) { /* cleanup all frames of del_stack */ unlock_all_frames(s); } kfree(s); return r; } EXPORT_SYMBOL_GPL(dm_btree_del); /*----------------------------------------------------------------*/ static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key, int (*search_fn)(struct btree_node *, uint64_t), uint64_t *result_key, void *v, size_t value_size) { int i, r; uint32_t flags, nr_entries; do { r = ro_step(s, block); if (r < 0) return r; i = search_fn(ro_node(s), key); flags = le32_to_cpu(ro_node(s)->header.flags); nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries); if (i < 0 || i >= nr_entries) return -ENODATA; if (flags & INTERNAL_NODE) block = value64(ro_node(s), i); } while (!(flags & LEAF_NODE)); *result_key = le64_to_cpu(ro_node(s)->keys[i]); if (v) memcpy(v, value_ptr(ro_node(s), i), value_size); return 0; } int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, void *value_le) { unsigned int level, last_level = info->levels - 1; int r = -ENODATA; uint64_t rkey; __le64 internal_value_le; struct ro_spine spine; init_ro_spine(&spine, info); for (level = 0; level < info->levels; level++) { size_t size; void *value_p; if (level == last_level) { value_p = value_le; size = info->value_type.size; } else { value_p = &internal_value_le; size = sizeof(uint64_t); } r = btree_lookup_raw(&spine, root, keys[level], lower_bound, &rkey, value_p, size); if (!r) { if (rkey != keys[level]) { exit_ro_spine(&spine); return -ENODATA; } } else { exit_ro_spine(&spine); return r; } root = le64_to_cpu(internal_value_le); } exit_ro_spine(&spine); return r; } EXPORT_SYMBOL_GPL(dm_btree_lookup); static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root, uint64_t key, uint64_t *rkey, void *value_le) { int r, i; uint32_t flags, nr_entries; struct dm_block *node; struct btree_node *n; r = bn_read_lock(info, root, &node); if (r) return r; n = dm_block_data(node); flags = le32_to_cpu(n->header.flags); nr_entries = le32_to_cpu(n->header.nr_entries); if (flags & INTERNAL_NODE) { i = lower_bound(n, key); if (i < 0) { /* * avoid early -ENODATA return when all entries are * higher than the search @key. */ i = 0; } if (i >= nr_entries) { r = -ENODATA; goto out; } r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le); if (r == -ENODATA && i < (nr_entries - 1)) { i++; r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le); } } else { i = upper_bound(n, key); if (i < 0 || i >= nr_entries) { r = -ENODATA; goto out; } *rkey = le64_to_cpu(n->keys[i]); memcpy(value_le, value_ptr(n, i), info->value_type.size); } out: dm_tm_unlock(info->tm, node); return r; } int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, uint64_t *rkey, void *value_le) { unsigned int level; int r = -ENODATA; __le64 internal_value_le; struct ro_spine spine; init_ro_spine(&spine, info); for (level = 0; level < info->levels - 1u; level++) { r = btree_lookup_raw(&spine, root, keys[level], lower_bound, rkey, &internal_value_le, sizeof(uint64_t)); if (r) goto out; if (*rkey != keys[level]) { r = -ENODATA; goto out; } root = le64_to_cpu(internal_value_le); } r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le); out: exit_ro_spine(&spine); return r; } EXPORT_SYMBOL_GPL(dm_btree_lookup_next); /*----------------------------------------------------------------*/ /* * Copies entries from one region of a btree node to another. The regions * must not overlap. */ static void copy_entries(struct btree_node *dest, unsigned int dest_offset, struct btree_node *src, unsigned int src_offset, unsigned int count) { size_t value_size = le32_to_cpu(dest->header.value_size); memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t)); memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size); } /* * Moves entries from one region fo a btree node to another. The regions * may overlap. */ static void move_entries(struct btree_node *dest, unsigned int dest_offset, struct btree_node *src, unsigned int src_offset, unsigned int count) { size_t value_size = le32_to_cpu(dest->header.value_size); memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t)); memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size); } /* * Erases the first 'count' entries of a btree node, shifting following * entries down into their place. */ static void shift_down(struct btree_node *n, unsigned int count) { move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count); } /* * Moves entries in a btree node up 'count' places, making space for * new entries at the start of the node. */ static void shift_up(struct btree_node *n, unsigned int count) { move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries)); } /* * Redistributes entries between two btree nodes to make them * have similar numbers of entries. */ static void redistribute2(struct btree_node *left, struct btree_node *right) { unsigned int nr_left = le32_to_cpu(left->header.nr_entries); unsigned int nr_right = le32_to_cpu(right->header.nr_entries); unsigned int total = nr_left + nr_right; unsigned int target_left = total / 2; unsigned int target_right = total - target_left; if (nr_left < target_left) { unsigned int delta = target_left - nr_left; copy_entries(left, nr_left, right, 0, delta); shift_down(right, delta); } else if (nr_left > target_left) { unsigned int delta = nr_left - target_left; if (nr_right) shift_up(right, delta); copy_entries(right, 0, left, target_left, delta); } left->header.nr_entries = cpu_to_le32(target_left); right->header.nr_entries = cpu_to_le32(target_right); } /* * Redistribute entries between three nodes. Assumes the central * node is empty. */ static void redistribute3(struct btree_node *left, struct btree_node *center, struct btree_node *right) { unsigned int nr_left = le32_to_cpu(left->header.nr_entries); unsigned int nr_center = le32_to_cpu(center->header.nr_entries); unsigned int nr_right = le32_to_cpu(right->header.nr_entries); unsigned int total, target_left, target_center, target_right; BUG_ON(nr_center); total = nr_left + nr_right; target_left = total / 3; target_center = (total - target_left) / 2; target_right = (total - target_left - target_center); if (nr_left < target_left) { unsigned int left_short = target_left - nr_left; copy_entries(left, nr_left, right, 0, left_short); copy_entries(center, 0, right, left_short, target_center); shift_down(right, nr_right - target_right); } else if (nr_left < (target_left + target_center)) { unsigned int left_to_center = nr_left - target_left; copy_entries(center, 0, left, target_left, left_to_center); copy_entries(center, left_to_center, right, 0, target_center - left_to_center); shift_down(right, nr_right - target_right); } else { unsigned int right_short = target_right - nr_right; shift_up(right, right_short); copy_entries(right, 0, left, nr_left - right_short, right_short); copy_entries(center, 0, left, target_left, nr_left - target_left); } left->header.nr_entries = cpu_to_le32(target_left); center->header.nr_entries = cpu_to_le32(target_center); right->header.nr_entries = cpu_to_le32(target_right); } /* * Splits a node by creating a sibling node and shifting half the nodes * contents across. Assumes there is a parent node, and it has room for * another child. * * Before: * +--------+ * | Parent | * +--------+ * | * v * +----------+ * | A ++++++ | * +----------+ * * * After: * +--------+ * | Parent | * +--------+ * | | * v +------+ * +---------+ | * | A* +++ | v * +---------+ +-------+ * | B +++ | * +-------+ * * Where A* is a shadow of A. */ static int split_one_into_two(struct shadow_spine *s, unsigned int parent_index, struct dm_btree_value_type *vt, uint64_t key) { int r; struct dm_block *left, *right, *parent; struct btree_node *ln, *rn, *pn; __le64 location; left = shadow_current(s); r = new_block(s->info, &right); if (r < 0) return r; ln = dm_block_data(left); rn = dm_block_data(right); rn->header.flags = ln->header.flags; rn->header.nr_entries = cpu_to_le32(0); rn->header.max_entries = ln->header.max_entries; rn->header.value_size = ln->header.value_size; redistribute2(ln, rn); /* patch up the parent */ parent = shadow_parent(s); pn = dm_block_data(parent); location = cpu_to_le64(dm_block_location(right)); __dm_bless_for_disk(&location); r = insert_at(sizeof(__le64), pn, parent_index + 1, le64_to_cpu(rn->keys[0]), &location); if (r) { unlock_block(s->info, right); return r; } /* patch up the spine */ if (key < le64_to_cpu(rn->keys[0])) { unlock_block(s->info, right); s->nodes[1] = left; } else { unlock_block(s->info, left); s->nodes[1] = right; } return 0; } /* * We often need to modify a sibling node. This function shadows a particular * child of the given parent node. Making sure to update the parent to point * to the new shadow. */ static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt, struct btree_node *parent, unsigned int index, struct dm_block **result) { int r, inc; dm_block_t root; struct btree_node *node; root = value64(parent, index); r = dm_tm_shadow_block(info->tm, root, &btree_node_validator, result, &inc); if (r) return r; node = dm_block_data(*result); if (inc) inc_children(info->tm, node, vt); *((__le64 *) value_ptr(parent, index)) = cpu_to_le64(dm_block_location(*result)); return 0; } /* * Splits two nodes into three. This is more work, but results in fuller * nodes, so saves metadata space. */ static int split_two_into_three(struct shadow_spine *s, unsigned int parent_index, struct dm_btree_value_type *vt, uint64_t key) { int r; unsigned int middle_index; struct dm_block *left, *middle, *right, *parent; struct btree_node *ln, *rn, *mn, *pn; __le64 location; parent = shadow_parent(s); pn = dm_block_data(parent); if (parent_index == 0) { middle_index = 1; left = shadow_current(s); r = shadow_child(s->info, vt, pn, parent_index + 1, &right); if (r) return r; } else { middle_index = parent_index; right = shadow_current(s); r = shadow_child(s->info, vt, pn, parent_index - 1, &left); if (r) return r; } r = new_block(s->info, &middle); if (r < 0) return r; ln = dm_block_data(left); mn = dm_block_data(middle); rn = dm_block_data(right); mn->header.nr_entries = cpu_to_le32(0); mn->header.flags = ln->header.flags; mn->header.max_entries = ln->header.max_entries; mn->header.value_size = ln->header.value_size; redistribute3(ln, mn, rn); /* patch up the parent */ pn->keys[middle_index] = rn->keys[0]; location = cpu_to_le64(dm_block_location(middle)); __dm_bless_for_disk(&location); r = insert_at(sizeof(__le64), pn, middle_index, le64_to_cpu(mn->keys[0]), &location); if (r) { if (shadow_current(s) != left) unlock_block(s->info, left); unlock_block(s->info, middle); if (shadow_current(s) != right) unlock_block(s->info, right); return r; } /* patch up the spine */ if (key < le64_to_cpu(mn->keys[0])) { unlock_block(s->info, middle); unlock_block(s->info, right); s->nodes[1] = left; } else if (key < le64_to_cpu(rn->keys[0])) { unlock_block(s->info, left); unlock_block(s->info, right); s->nodes[1] = middle; } else { unlock_block(s->info, left); unlock_block(s->info, middle); s->nodes[1] = right; } return 0; } /*----------------------------------------------------------------*/ /* * Splits a node by creating two new children beneath the given node. * * Before: * +----------+ * | A ++++++ | * +----------+ * * * After: * +------------+ * | A (shadow) | * +------------+ * | | * +------+ +----+ * | | * v v * +-------+ +-------+ * | B +++ | | C +++ | * +-------+ +-------+ */ static int btree_split_beneath(struct shadow_spine *s, uint64_t key) { int r; size_t size; unsigned int nr_left, nr_right; struct dm_block *left, *right, *new_parent; struct btree_node *pn, *ln, *rn; __le64 val; new_parent = shadow_current(s); pn = dm_block_data(new_parent); size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ? sizeof(__le64) : s->info->value_type.size; /* create & init the left block */ r = new_block(s->info, &left); if (r < 0) return r; ln = dm_block_data(left); nr_left = le32_to_cpu(pn->header.nr_entries) / 2; ln->header.flags = pn->header.flags; ln->header.nr_entries = cpu_to_le32(nr_left); ln->header.max_entries = pn->header.max_entries; ln->header.value_size = pn->header.value_size; memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0])); memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size); /* create & init the right block */ r = new_block(s->info, &right); if (r < 0) { unlock_block(s->info, left); return r; } rn = dm_block_data(right); nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left; rn->header.flags = pn->header.flags; rn->header.nr_entries = cpu_to_le32(nr_right); rn->header.max_entries = pn->header.max_entries; rn->header.value_size = pn->header.value_size; memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0])); memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left), nr_right * size); /* new_parent should just point to l and r now */ pn->header.flags = cpu_to_le32(INTERNAL_NODE); pn->header.nr_entries = cpu_to_le32(2); pn->header.max_entries = cpu_to_le32( calc_max_entries(sizeof(__le64), dm_bm_block_size( dm_tm_get_bm(s->info->tm)))); pn->header.value_size = cpu_to_le32(sizeof(__le64)); val = cpu_to_le64(dm_block_location(left)); __dm_bless_for_disk(&val); pn->keys[0] = ln->keys[0]; memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64)); val = cpu_to_le64(dm_block_location(right)); __dm_bless_for_disk(&val); pn->keys[1] = rn->keys[0]; memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64)); unlock_block(s->info, left); unlock_block(s->info, right); return 0; } /*----------------------------------------------------------------*/ /* * Redistributes a node's entries with its left sibling. */ static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt, unsigned int parent_index, uint64_t key) { int r; struct dm_block *sib; struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s)); r = shadow_child(s->info, vt, parent, parent_index - 1, &sib); if (r) return r; left = dm_block_data(sib); right = dm_block_data(shadow_current(s)); redistribute2(left, right); *key_ptr(parent, parent_index) = right->keys[0]; if (key < le64_to_cpu(right->keys[0])) { unlock_block(s->info, s->nodes[1]); s->nodes[1] = sib; } else { unlock_block(s->info, sib); } return 0; } /* * Redistributes a nodes entries with its right sibling. */ static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt, unsigned int parent_index, uint64_t key) { int r; struct dm_block *sib; struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s)); r = shadow_child(s->info, vt, parent, parent_index + 1, &sib); if (r) return r; left = dm_block_data(shadow_current(s)); right = dm_block_data(sib); redistribute2(left, right); *key_ptr(parent, parent_index + 1) = right->keys[0]; if (key < le64_to_cpu(right->keys[0])) { unlock_block(s->info, sib); } else { unlock_block(s->info, s->nodes[1]); s->nodes[1] = sib; } return 0; } /* * Returns the number of spare entries in a node. */ static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned int *space) { int r; unsigned int nr_entries; struct dm_block *block; struct btree_node *node; r = bn_read_lock(info, b, &block); if (r) return r; node = dm_block_data(block); nr_entries = le32_to_cpu(node->header.nr_entries); *space = le32_to_cpu(node->header.max_entries) - nr_entries; unlock_block(info, block); return 0; } /* * Make space in a node, either by moving some entries to a sibling, * or creating a new sibling node. SPACE_THRESHOLD defines the minimum * number of free entries that must be in the sibling to make the move * worth while. If the siblings are shared (eg, part of a snapshot), * then they are not touched, since this break sharing and so consume * more space than we save. */ #define SPACE_THRESHOLD 8 static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt, unsigned int parent_index, uint64_t key) { int r; struct btree_node *parent = dm_block_data(shadow_parent(s)); unsigned int nr_parent = le32_to_cpu(parent->header.nr_entries); unsigned int free_space; int left_shared = 0, right_shared = 0; /* Should we move entries to the left sibling? */ if (parent_index > 0) { dm_block_t left_b = value64(parent, parent_index - 1); r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared); if (r) return r; if (!left_shared) { r = get_node_free_space(s->info, left_b, &free_space); if (r) return r; if (free_space >= SPACE_THRESHOLD) return rebalance_left(s, vt, parent_index, key); } } /* Should we move entries to the right sibling? */ if (parent_index < (nr_parent - 1)) { dm_block_t right_b = value64(parent, parent_index + 1); r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared); if (r) return r; if (!right_shared) { r = get_node_free_space(s->info, right_b, &free_space); if (r) return r; if (free_space >= SPACE_THRESHOLD) return rebalance_right(s, vt, parent_index, key); } } /* * We need to split the node, normally we split two nodes * into three. But when inserting a sequence that is either * monotonically increasing or decreasing it's better to split * a single node into two. */ if (left_shared || right_shared || (nr_parent <= 2) || (parent_index == 0) || (parent_index + 1 == nr_parent)) { return split_one_into_two(s, parent_index, vt, key); } else { return split_two_into_three(s, parent_index, vt, key); } } /* * Does the node contain a particular key? */ static bool contains_key(struct btree_node *node, uint64_t key) { int i = lower_bound(node, key); if (i >= 0 && le64_to_cpu(node->keys[i]) == key) return true; return false; } /* * In general we preemptively make sure there's a free entry in every * node on the spine when doing an insert. But we can avoid that with * leaf nodes if we know it's an overwrite. */ static bool has_space_for_insert(struct btree_node *node, uint64_t key) { if (node->header.nr_entries == node->header.max_entries) { if (le32_to_cpu(node->header.flags) & LEAF_NODE) { /* we don't need space if it's an overwrite */ return contains_key(node, key); } return false; } return true; } static int btree_insert_raw(struct shadow_spine *s, dm_block_t root, struct dm_btree_value_type *vt, uint64_t key, unsigned int *index) { int r, i = *index, top = 1; struct btree_node *node; for (;;) { r = shadow_step(s, root, vt); if (r < 0) return r; node = dm_block_data(shadow_current(s)); /* * We have to patch up the parent node, ugly, but I don't * see a way to do this automatically as part of the spine * op. */ if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */ __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); __dm_bless_for_disk(&location); memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i), &location, sizeof(__le64)); } node = dm_block_data(shadow_current(s)); if (!has_space_for_insert(node, key)) { if (top) r = btree_split_beneath(s, key); else r = rebalance_or_split(s, vt, i, key); if (r < 0) return r; /* making space can cause the current node to change */ node = dm_block_data(shadow_current(s)); } i = lower_bound(node, key); if (le32_to_cpu(node->header.flags) & LEAF_NODE) break; if (i < 0) { /* change the bounds on the lowest key */ node->keys[0] = cpu_to_le64(key); i = 0; } root = value64(node, i); top = 0; } if (i < 0 || le64_to_cpu(node->keys[i]) != key) i++; *index = i; return 0; } static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root, uint64_t key, int *index) { int r, i = -1; struct btree_node *node; *index = 0; for (;;) { r = shadow_step(s, root, &s->info->value_type); if (r < 0) return r; node = dm_block_data(shadow_current(s)); /* * We have to patch up the parent node, ugly, but I don't * see a way to do this automatically as part of the spine * op. */ if (shadow_has_parent(s) && i >= 0) { __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); __dm_bless_for_disk(&location); memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i), &location, sizeof(__le64)); } node = dm_block_data(shadow_current(s)); i = lower_bound(node, key); BUG_ON(i < 0); BUG_ON(i >= le32_to_cpu(node->header.nr_entries)); if (le32_to_cpu(node->header.flags) & LEAF_NODE) { if (key != le64_to_cpu(node->keys[i])) return -EINVAL; break; } root = value64(node, i); } *index = i; return 0; } int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root, uint64_t key, int *index, dm_block_t *new_root, struct dm_block **leaf) { int r; struct shadow_spine spine; BUG_ON(info->levels > 1); init_shadow_spine(&spine, info); r = __btree_get_overwrite_leaf(&spine, root, key, index); if (!r) { *new_root = shadow_root(&spine); *leaf = shadow_current(&spine); /* * Decrement the count so exit_shadow_spine() doesn't * unlock the leaf. */ spine.count--; } exit_shadow_spine(&spine); return r; } static bool need_insert(struct btree_node *node, uint64_t *keys, unsigned int level, unsigned int index) { return ((index >= le32_to_cpu(node->header.nr_entries)) || (le64_to_cpu(node->keys[index]) != keys[level])); } static int insert(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, void *value, dm_block_t *new_root, int *inserted) __dm_written_to_disk(value) { int r; unsigned int level, index = -1, last_level = info->levels - 1; dm_block_t block = root; struct shadow_spine spine; struct btree_node *n; struct dm_btree_value_type le64_type; init_le64_type(info->tm, &le64_type); init_shadow_spine(&spine, info); for (level = 0; level < (info->levels - 1); level++) { r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index); if (r < 0) goto bad; n = dm_block_data(shadow_current(&spine)); if (need_insert(n, keys, level, index)) { dm_block_t new_tree; __le64 new_le; r = dm_btree_empty(info, &new_tree); if (r < 0) goto bad; new_le = cpu_to_le64(new_tree); __dm_bless_for_disk(&new_le); r = insert_at(sizeof(uint64_t), n, index, keys[level], &new_le); if (r) goto bad; } if (level < last_level) block = value64(n, index); } r = btree_insert_raw(&spine, block, &info->value_type, keys[level], &index); if (r < 0) goto bad; n = dm_block_data(shadow_current(&spine)); if (need_insert(n, keys, level, index)) { if (inserted) *inserted = 1; r = insert_at(info->value_type.size, n, index, keys[level], value); if (r) goto bad_unblessed; } else { if (inserted) *inserted = 0; if (info->value_type.dec && (!info->value_type.equal || !info->value_type.equal( info->value_type.context, value_ptr(n, index), value))) { info->value_type.dec(info->value_type.context, value_ptr(n, index), 1); } memcpy_disk(value_ptr(n, index), value, info->value_type.size); } *new_root = shadow_root(&spine); exit_shadow_spine(&spine); return 0; bad: __dm_unbless_for_disk(value); bad_unblessed: exit_shadow_spine(&spine); return r; } int dm_btree_insert(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, void *value, dm_block_t *new_root) __dm_written_to_disk(value) { return insert(info, root, keys, value, new_root, NULL); } EXPORT_SYMBOL_GPL(dm_btree_insert); int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, void *value, dm_block_t *new_root, int *inserted) __dm_written_to_disk(value) { return insert(info, root, keys, value, new_root, inserted); } EXPORT_SYMBOL_GPL(dm_btree_insert_notify); /*----------------------------------------------------------------*/ static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest, uint64_t *result_key, dm_block_t *next_block) { int i, r; uint32_t flags; do { r = ro_step(s, block); if (r < 0) return r; flags = le32_to_cpu(ro_node(s)->header.flags); i = le32_to_cpu(ro_node(s)->header.nr_entries); if (!i) return -ENODATA; i--; if (find_highest) *result_key = le64_to_cpu(ro_node(s)->keys[i]); else *result_key = le64_to_cpu(ro_node(s)->keys[0]); if (next_block || flags & INTERNAL_NODE) { if (find_highest) block = value64(ro_node(s), i); else block = value64(ro_node(s), 0); } } while (flags & INTERNAL_NODE); if (next_block) *next_block = block; return 0; } static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root, bool find_highest, uint64_t *result_keys) { int r = 0, count = 0, level; struct ro_spine spine; init_ro_spine(&spine, info); for (level = 0; level < info->levels; level++) { r = find_key(&spine, root, find_highest, result_keys + level, level == info->levels - 1 ? NULL : &root); if (r == -ENODATA) { r = 0; break; } else if (r) break; count++; } exit_ro_spine(&spine); return r ? r : count; } int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root, uint64_t *result_keys) { return dm_btree_find_key(info, root, true, result_keys); } EXPORT_SYMBOL_GPL(dm_btree_find_highest_key); int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root, uint64_t *result_keys) { return dm_btree_find_key(info, root, false, result_keys); } EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key); /*----------------------------------------------------------------*/ /* * FIXME: We shouldn't use a recursive algorithm when we have limited stack * space. Also this only works for single level trees. */ static int walk_node(struct dm_btree_info *info, dm_block_t block, int (*fn)(void *context, uint64_t *keys, void *leaf), void *context) { int r; unsigned int i, nr; struct dm_block *node; struct btree_node *n; uint64_t keys; r = bn_read_lock(info, block, &node); if (r) return r; n = dm_block_data(node); nr = le32_to_cpu(n->header.nr_entries); for (i = 0; i < nr; i++) { if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) { r = walk_node(info, value64(n, i), fn, context); if (r) goto out; } else { keys = le64_to_cpu(*key_ptr(n, i)); r = fn(context, &keys, value_ptr(n, i)); if (r) goto out; } } out: dm_tm_unlock(info->tm, node); return r; } int dm_btree_walk(struct dm_btree_info *info, dm_block_t root, int (*fn)(void *context, uint64_t *keys, void *leaf), void *context) { BUG_ON(info->levels > 1); return walk_node(info, root, fn, context); } EXPORT_SYMBOL_GPL(dm_btree_walk); /*----------------------------------------------------------------*/ static void prefetch_values(struct dm_btree_cursor *c) { unsigned int i, nr; __le64 value_le; struct cursor_node *n = c->nodes + c->depth - 1; struct btree_node *bn = dm_block_data(n->b); struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm); BUG_ON(c->info->value_type.size != sizeof(value_le)); nr = le32_to_cpu(bn->header.nr_entries); for (i = 0; i < nr; i++) { memcpy(&value_le, value_ptr(bn, i), sizeof(value_le)); dm_bm_prefetch(bm, le64_to_cpu(value_le)); } } static bool leaf_node(struct dm_btree_cursor *c) { struct cursor_node *n = c->nodes + c->depth - 1; struct btree_node *bn = dm_block_data(n->b); return le32_to_cpu(bn->header.flags) & LEAF_NODE; } static int push_node(struct dm_btree_cursor *c, dm_block_t b) { int r; struct cursor_node *n = c->nodes + c->depth; if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) { DMERR("couldn't push cursor node, stack depth too high"); return -EINVAL; } r = bn_read_lock(c->info, b, &n->b); if (r) return r; n->index = 0; c->depth++; if (c->prefetch_leaves || !leaf_node(c)) prefetch_values(c); return 0; } static void pop_node(struct dm_btree_cursor *c) { c->depth--; unlock_block(c->info, c->nodes[c->depth].b); } static int inc_or_backtrack(struct dm_btree_cursor *c) { struct cursor_node *n; struct btree_node *bn; for (;;) { if (!c->depth) return -ENODATA; n = c->nodes + c->depth - 1; bn = dm_block_data(n->b); n->index++; if (n->index < le32_to_cpu(bn->header.nr_entries)) break; pop_node(c); } return 0; } static int find_leaf(struct dm_btree_cursor *c) { int r = 0; struct cursor_node *n; struct btree_node *bn; __le64 value_le; for (;;) { n = c->nodes + c->depth - 1; bn = dm_block_data(n->b); if (le32_to_cpu(bn->header.flags) & LEAF_NODE) break; memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le)); r = push_node(c, le64_to_cpu(value_le)); if (r) { DMERR("push_node failed"); break; } } if (!r && (le32_to_cpu(bn->header.nr_entries) == 0)) return -ENODATA; return r; } int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root, bool prefetch_leaves, struct dm_btree_cursor *c) { int r; c->info = info; c->root = root; c->depth = 0; c->prefetch_leaves = prefetch_leaves; r = push_node(c, root); if (r) return r; return find_leaf(c); } EXPORT_SYMBOL_GPL(dm_btree_cursor_begin); void dm_btree_cursor_end(struct dm_btree_cursor *c) { while (c->depth) pop_node(c); } EXPORT_SYMBOL_GPL(dm_btree_cursor_end); int dm_btree_cursor_next(struct dm_btree_cursor *c) { int r = inc_or_backtrack(c); if (!r) { r = find_leaf(c); if (r) DMERR("find_leaf failed"); } return r; } EXPORT_SYMBOL_GPL(dm_btree_cursor_next); int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count) { int r = 0; while (count-- && !r) r = dm_btree_cursor_next(c); return r; } EXPORT_SYMBOL_GPL(dm_btree_cursor_skip); int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le) { if (c->depth) { struct cursor_node *n = c->nodes + c->depth - 1; struct btree_node *bn = dm_block_data(n->b); if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE) return -EINVAL; *key = le64_to_cpu(*key_ptr(bn, n->index)); memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size); return 0; } else return -ENODATA; } EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value); |