Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 | // SPDX-License-Identifier: GPL-2.0 /* * Resource Director Technology (RDT) * * Pseudo-locking support built on top of Cache Allocation Technology (CAT) * * Copyright (C) 2018 Intel Corporation * * Author: Reinette Chatre <reinette.chatre@intel.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/cacheinfo.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/debugfs.h> #include <linux/kthread.h> #include <linux/mman.h> #include <linux/perf_event.h> #include <linux/pm_qos.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <asm/cacheflush.h> #include <asm/intel-family.h> #include <asm/resctrl.h> #include <asm/perf_event.h> #include "../../events/perf_event.h" /* For X86_CONFIG() */ #include "internal.h" #define CREATE_TRACE_POINTS #include "pseudo_lock_event.h" /* * The bits needed to disable hardware prefetching varies based on the * platform. During initialization we will discover which bits to use. */ static u64 prefetch_disable_bits; /* * Major number assigned to and shared by all devices exposing * pseudo-locked regions. */ static unsigned int pseudo_lock_major; static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0); static struct class *pseudo_lock_class; /** * get_prefetch_disable_bits - prefetch disable bits of supported platforms * @void: It takes no parameters. * * Capture the list of platforms that have been validated to support * pseudo-locking. This includes testing to ensure pseudo-locked regions * with low cache miss rates can be created under variety of load conditions * as well as that these pseudo-locked regions can maintain their low cache * miss rates under variety of load conditions for significant lengths of time. * * After a platform has been validated to support pseudo-locking its * hardware prefetch disable bits are included here as they are documented * in the SDM. * * When adding a platform here also add support for its cache events to * measure_cycles_perf_fn() * * Return: * If platform is supported, the bits to disable hardware prefetchers, 0 * if platform is not supported. */ static u64 get_prefetch_disable_bits(void) { if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL || boot_cpu_data.x86 != 6) return 0; switch (boot_cpu_data.x86_model) { case INTEL_FAM6_BROADWELL_X: /* * SDM defines bits of MSR_MISC_FEATURE_CONTROL register * as: * 0 L2 Hardware Prefetcher Disable (R/W) * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W) * 2 DCU Hardware Prefetcher Disable (R/W) * 3 DCU IP Prefetcher Disable (R/W) * 63:4 Reserved */ return 0xF; case INTEL_FAM6_ATOM_GOLDMONT: case INTEL_FAM6_ATOM_GOLDMONT_PLUS: /* * SDM defines bits of MSR_MISC_FEATURE_CONTROL register * as: * 0 L2 Hardware Prefetcher Disable (R/W) * 1 Reserved * 2 DCU Hardware Prefetcher Disable (R/W) * 63:3 Reserved */ return 0x5; } return 0; } /** * pseudo_lock_minor_get - Obtain available minor number * @minor: Pointer to where new minor number will be stored * * A bitmask is used to track available minor numbers. Here the next free * minor number is marked as unavailable and returned. * * Return: 0 on success, <0 on failure. */ static int pseudo_lock_minor_get(unsigned int *minor) { unsigned long first_bit; first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS); if (first_bit == MINORBITS) return -ENOSPC; __clear_bit(first_bit, &pseudo_lock_minor_avail); *minor = first_bit; return 0; } /** * pseudo_lock_minor_release - Return minor number to available * @minor: The minor number made available */ static void pseudo_lock_minor_release(unsigned int minor) { __set_bit(minor, &pseudo_lock_minor_avail); } /** * region_find_by_minor - Locate a pseudo-lock region by inode minor number * @minor: The minor number of the device representing pseudo-locked region * * When the character device is accessed we need to determine which * pseudo-locked region it belongs to. This is done by matching the minor * number of the device to the pseudo-locked region it belongs. * * Minor numbers are assigned at the time a pseudo-locked region is associated * with a cache instance. * * Return: On success return pointer to resource group owning the pseudo-locked * region, NULL on failure. */ static struct rdtgroup *region_find_by_minor(unsigned int minor) { struct rdtgroup *rdtgrp, *rdtgrp_match = NULL; list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { if (rdtgrp->plr && rdtgrp->plr->minor == minor) { rdtgrp_match = rdtgrp; break; } } return rdtgrp_match; } /** * struct pseudo_lock_pm_req - A power management QoS request list entry * @list: Entry within the @pm_reqs list for a pseudo-locked region * @req: PM QoS request */ struct pseudo_lock_pm_req { struct list_head list; struct dev_pm_qos_request req; }; static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr) { struct pseudo_lock_pm_req *pm_req, *next; list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) { dev_pm_qos_remove_request(&pm_req->req); list_del(&pm_req->list); kfree(pm_req); } } /** * pseudo_lock_cstates_constrain - Restrict cores from entering C6 * @plr: Pseudo-locked region * * To prevent the cache from being affected by power management entering * C6 has to be avoided. This is accomplished by requesting a latency * requirement lower than lowest C6 exit latency of all supported * platforms as found in the cpuidle state tables in the intel_idle driver. * At this time it is possible to do so with a single latency requirement * for all supported platforms. * * Since Goldmont is supported, which is affected by X86_BUG_MONITOR, * the ACPI latencies need to be considered while keeping in mind that C2 * may be set to map to deeper sleep states. In this case the latency * requirement needs to prevent entering C2 also. * * Return: 0 on success, <0 on failure */ static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr) { struct pseudo_lock_pm_req *pm_req; int cpu; int ret; for_each_cpu(cpu, &plr->d->cpu_mask) { pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL); if (!pm_req) { rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n"); ret = -ENOMEM; goto out_err; } ret = dev_pm_qos_add_request(get_cpu_device(cpu), &pm_req->req, DEV_PM_QOS_RESUME_LATENCY, 30); if (ret < 0) { rdt_last_cmd_printf("Failed to add latency req CPU%d\n", cpu); kfree(pm_req); ret = -1; goto out_err; } list_add(&pm_req->list, &plr->pm_reqs); } return 0; out_err: pseudo_lock_cstates_relax(plr); return ret; } /** * pseudo_lock_region_clear - Reset pseudo-lock region data * @plr: pseudo-lock region * * All content of the pseudo-locked region is reset - any memory allocated * freed. * * Return: void */ static void pseudo_lock_region_clear(struct pseudo_lock_region *plr) { plr->size = 0; plr->line_size = 0; kfree(plr->kmem); plr->kmem = NULL; plr->s = NULL; if (plr->d) plr->d->plr = NULL; plr->d = NULL; plr->cbm = 0; plr->debugfs_dir = NULL; } /** * pseudo_lock_region_init - Initialize pseudo-lock region information * @plr: pseudo-lock region * * Called after user provided a schemata to be pseudo-locked. From the * schemata the &struct pseudo_lock_region is on entry already initialized * with the resource, domain, and capacity bitmask. Here the information * required for pseudo-locking is deduced from this data and &struct * pseudo_lock_region initialized further. This information includes: * - size in bytes of the region to be pseudo-locked * - cache line size to know the stride with which data needs to be accessed * to be pseudo-locked * - a cpu associated with the cache instance on which the pseudo-locking * flow can be executed * * Return: 0 on success, <0 on failure. Descriptive error will be written * to last_cmd_status buffer. */ static int pseudo_lock_region_init(struct pseudo_lock_region *plr) { struct cpu_cacheinfo *ci; int ret; int i; /* Pick the first cpu we find that is associated with the cache. */ plr->cpu = cpumask_first(&plr->d->cpu_mask); if (!cpu_online(plr->cpu)) { rdt_last_cmd_printf("CPU %u associated with cache not online\n", plr->cpu); ret = -ENODEV; goto out_region; } ci = get_cpu_cacheinfo(plr->cpu); plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm); for (i = 0; i < ci->num_leaves; i++) { if (ci->info_list[i].level == plr->s->res->cache_level) { plr->line_size = ci->info_list[i].coherency_line_size; return 0; } } ret = -1; rdt_last_cmd_puts("Unable to determine cache line size\n"); out_region: pseudo_lock_region_clear(plr); return ret; } /** * pseudo_lock_init - Initialize a pseudo-lock region * @rdtgrp: resource group to which new pseudo-locked region will belong * * A pseudo-locked region is associated with a resource group. When this * association is created the pseudo-locked region is initialized. The * details of the pseudo-locked region are not known at this time so only * allocation is done and association established. * * Return: 0 on success, <0 on failure */ static int pseudo_lock_init(struct rdtgroup *rdtgrp) { struct pseudo_lock_region *plr; plr = kzalloc(sizeof(*plr), GFP_KERNEL); if (!plr) return -ENOMEM; init_waitqueue_head(&plr->lock_thread_wq); INIT_LIST_HEAD(&plr->pm_reqs); rdtgrp->plr = plr; return 0; } /** * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked * @plr: pseudo-lock region * * Initialize the details required to set up the pseudo-locked region and * allocate the contiguous memory that will be pseudo-locked to the cache. * * Return: 0 on success, <0 on failure. Descriptive error will be written * to last_cmd_status buffer. */ static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr) { int ret; ret = pseudo_lock_region_init(plr); if (ret < 0) return ret; /* * We do not yet support contiguous regions larger than * KMALLOC_MAX_SIZE. */ if (plr->size > KMALLOC_MAX_SIZE) { rdt_last_cmd_puts("Requested region exceeds maximum size\n"); ret = -E2BIG; goto out_region; } plr->kmem = kzalloc(plr->size, GFP_KERNEL); if (!plr->kmem) { rdt_last_cmd_puts("Unable to allocate memory\n"); ret = -ENOMEM; goto out_region; } ret = 0; goto out; out_region: pseudo_lock_region_clear(plr); out: return ret; } /** * pseudo_lock_free - Free a pseudo-locked region * @rdtgrp: resource group to which pseudo-locked region belonged * * The pseudo-locked region's resources have already been released, or not * yet created at this point. Now it can be freed and disassociated from the * resource group. * * Return: void */ static void pseudo_lock_free(struct rdtgroup *rdtgrp) { pseudo_lock_region_clear(rdtgrp->plr); kfree(rdtgrp->plr); rdtgrp->plr = NULL; } /** * pseudo_lock_fn - Load kernel memory into cache * @_rdtgrp: resource group to which pseudo-lock region belongs * * This is the core pseudo-locking flow. * * First we ensure that the kernel memory cannot be found in the cache. * Then, while taking care that there will be as little interference as * possible, the memory to be loaded is accessed while core is running * with class of service set to the bitmask of the pseudo-locked region. * After this is complete no future CAT allocations will be allowed to * overlap with this bitmask. * * Local register variables are utilized to ensure that the memory region * to be locked is the only memory access made during the critical locking * loop. * * Return: 0. Waiter on waitqueue will be woken on completion. */ static int pseudo_lock_fn(void *_rdtgrp) { struct rdtgroup *rdtgrp = _rdtgrp; struct pseudo_lock_region *plr = rdtgrp->plr; u32 rmid_p, closid_p; unsigned long i; u64 saved_msr; #ifdef CONFIG_KASAN /* * The registers used for local register variables are also used * when KASAN is active. When KASAN is active we use a regular * variable to ensure we always use a valid pointer, but the cost * is that this variable will enter the cache through evicting the * memory we are trying to lock into the cache. Thus expect lower * pseudo-locking success rate when KASAN is active. */ unsigned int line_size; unsigned int size; void *mem_r; #else register unsigned int line_size asm("esi"); register unsigned int size asm("edi"); register void *mem_r asm(_ASM_BX); #endif /* CONFIG_KASAN */ /* * Make sure none of the allocated memory is cached. If it is we * will get a cache hit in below loop from outside of pseudo-locked * region. * wbinvd (as opposed to clflush/clflushopt) is required to * increase likelihood that allocated cache portion will be filled * with associated memory. */ native_wbinvd(); /* * Always called with interrupts enabled. By disabling interrupts * ensure that we will not be preempted during this critical section. */ local_irq_disable(); /* * Call wrmsr and rdmsr as directly as possible to avoid tracing * clobbering local register variables or affecting cache accesses. * * Disable the hardware prefetcher so that when the end of the memory * being pseudo-locked is reached the hardware will not read beyond * the buffer and evict pseudo-locked memory read earlier from the * cache. */ saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL); __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); closid_p = this_cpu_read(pqr_state.cur_closid); rmid_p = this_cpu_read(pqr_state.cur_rmid); mem_r = plr->kmem; size = plr->size; line_size = plr->line_size; /* * Critical section begin: start by writing the closid associated * with the capacity bitmask of the cache region being * pseudo-locked followed by reading of kernel memory to load it * into the cache. */ __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid); /* * Cache was flushed earlier. Now access kernel memory to read it * into cache region associated with just activated plr->closid. * Loop over data twice: * - In first loop the cache region is shared with the page walker * as it populates the paging structure caches (including TLB). * - In the second loop the paging structure caches are used and * cache region is populated with the memory being referenced. */ for (i = 0; i < size; i += PAGE_SIZE) { /* * Add a barrier to prevent speculative execution of this * loop reading beyond the end of the buffer. */ rmb(); asm volatile("mov (%0,%1,1), %%eax\n\t" : : "r" (mem_r), "r" (i) : "%eax", "memory"); } for (i = 0; i < size; i += line_size) { /* * Add a barrier to prevent speculative execution of this * loop reading beyond the end of the buffer. */ rmb(); asm volatile("mov (%0,%1,1), %%eax\n\t" : : "r" (mem_r), "r" (i) : "%eax", "memory"); } /* * Critical section end: restore closid with capacity bitmask that * does not overlap with pseudo-locked region. */ __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p); /* Re-enable the hardware prefetcher(s) */ wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr); local_irq_enable(); plr->thread_done = 1; wake_up_interruptible(&plr->lock_thread_wq); return 0; } /** * rdtgroup_monitor_in_progress - Test if monitoring in progress * @rdtgrp: resource group being queried * * Return: 1 if monitor groups have been created for this resource * group, 0 otherwise. */ static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp) { return !list_empty(&rdtgrp->mon.crdtgrp_list); } /** * rdtgroup_locksetup_user_restrict - Restrict user access to group * @rdtgrp: resource group needing access restricted * * A resource group used for cache pseudo-locking cannot have cpus or tasks * assigned to it. This is communicated to the user by restricting access * to all the files that can be used to make such changes. * * Permissions restored with rdtgroup_locksetup_user_restore() * * Return: 0 on success, <0 on failure. If a failure occurs during the * restriction of access an attempt will be made to restore permissions but * the state of the mode of these files will be uncertain when a failure * occurs. */ static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp) { int ret; ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); if (ret) return ret; ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); if (ret) goto err_tasks; ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); if (ret) goto err_cpus; if (rdt_mon_capable) { ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups"); if (ret) goto err_cpus_list; } ret = 0; goto out; err_cpus_list: rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); err_cpus: rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); err_tasks: rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); out: return ret; } /** * rdtgroup_locksetup_user_restore - Restore user access to group * @rdtgrp: resource group needing access restored * * Restore all file access previously removed using * rdtgroup_locksetup_user_restrict() * * Return: 0 on success, <0 on failure. If a failure occurs during the * restoration of access an attempt will be made to restrict permissions * again but the state of the mode of these files will be uncertain when * a failure occurs. */ static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp) { int ret; ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); if (ret) return ret; ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); if (ret) goto err_tasks; ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); if (ret) goto err_cpus; if (rdt_mon_capable) { ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777); if (ret) goto err_cpus_list; } ret = 0; goto out; err_cpus_list: rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); err_cpus: rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); err_tasks: rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); out: return ret; } /** * rdtgroup_locksetup_enter - Resource group enters locksetup mode * @rdtgrp: resource group requested to enter locksetup mode * * A resource group enters locksetup mode to reflect that it would be used * to represent a pseudo-locked region and is in the process of being set * up to do so. A resource group used for a pseudo-locked region would * lose the closid associated with it so we cannot allow it to have any * tasks or cpus assigned nor permit tasks or cpus to be assigned in the * future. Monitoring of a pseudo-locked region is not allowed either. * * The above and more restrictions on a pseudo-locked region are checked * for and enforced before the resource group enters the locksetup mode. * * Returns: 0 if the resource group successfully entered locksetup mode, <0 * on failure. On failure the last_cmd_status buffer is updated with text to * communicate details of failure to the user. */ int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp) { int ret; /* * The default resource group can neither be removed nor lose the * default closid associated with it. */ if (rdtgrp == &rdtgroup_default) { rdt_last_cmd_puts("Cannot pseudo-lock default group\n"); return -EINVAL; } /* * Cache Pseudo-locking not supported when CDP is enabled. * * Some things to consider if you would like to enable this * support (using L3 CDP as example): * - When CDP is enabled two separate resources are exposed, * L3DATA and L3CODE, but they are actually on the same cache. * The implication for pseudo-locking is that if a * pseudo-locked region is created on a domain of one * resource (eg. L3CODE), then a pseudo-locked region cannot * be created on that same domain of the other resource * (eg. L3DATA). This is because the creation of a * pseudo-locked region involves a call to wbinvd that will * affect all cache allocations on particular domain. * - Considering the previous, it may be possible to only * expose one of the CDP resources to pseudo-locking and * hide the other. For example, we could consider to only * expose L3DATA and since the L3 cache is unified it is * still possible to place instructions there are execute it. * - If only one region is exposed to pseudo-locking we should * still keep in mind that availability of a portion of cache * for pseudo-locking should take into account both resources. * Similarly, if a pseudo-locked region is created in one * resource, the portion of cache used by it should be made * unavailable to all future allocations from both resources. */ if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) || resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) { rdt_last_cmd_puts("CDP enabled\n"); return -EINVAL; } /* * Not knowing the bits to disable prefetching implies that this * platform does not support Cache Pseudo-Locking. */ prefetch_disable_bits = get_prefetch_disable_bits(); if (prefetch_disable_bits == 0) { rdt_last_cmd_puts("Pseudo-locking not supported\n"); return -EINVAL; } if (rdtgroup_monitor_in_progress(rdtgrp)) { rdt_last_cmd_puts("Monitoring in progress\n"); return -EINVAL; } if (rdtgroup_tasks_assigned(rdtgrp)) { rdt_last_cmd_puts("Tasks assigned to resource group\n"); return -EINVAL; } if (!cpumask_empty(&rdtgrp->cpu_mask)) { rdt_last_cmd_puts("CPUs assigned to resource group\n"); return -EINVAL; } if (rdtgroup_locksetup_user_restrict(rdtgrp)) { rdt_last_cmd_puts("Unable to modify resctrl permissions\n"); return -EIO; } ret = pseudo_lock_init(rdtgrp); if (ret) { rdt_last_cmd_puts("Unable to init pseudo-lock region\n"); goto out_release; } /* * If this system is capable of monitoring a rmid would have been * allocated when the control group was created. This is not needed * anymore when this group would be used for pseudo-locking. This * is safe to call on platforms not capable of monitoring. */ free_rmid(rdtgrp->mon.rmid); ret = 0; goto out; out_release: rdtgroup_locksetup_user_restore(rdtgrp); out: return ret; } /** * rdtgroup_locksetup_exit - resource group exist locksetup mode * @rdtgrp: resource group * * When a resource group exits locksetup mode the earlier restrictions are * lifted. * * Return: 0 on success, <0 on failure */ int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp) { int ret; if (rdt_mon_capable) { ret = alloc_rmid(); if (ret < 0) { rdt_last_cmd_puts("Out of RMIDs\n"); return ret; } rdtgrp->mon.rmid = ret; } ret = rdtgroup_locksetup_user_restore(rdtgrp); if (ret) { free_rmid(rdtgrp->mon.rmid); return ret; } pseudo_lock_free(rdtgrp); return 0; } /** * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked * @d: RDT domain * @cbm: CBM to test * * @d represents a cache instance and @cbm a capacity bitmask that is * considered for it. Determine if @cbm overlaps with any existing * pseudo-locked region on @d. * * @cbm is unsigned long, even if only 32 bits are used, to make the * bitmap functions work correctly. * * Return: true if @cbm overlaps with pseudo-locked region on @d, false * otherwise. */ bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm) { unsigned int cbm_len; unsigned long cbm_b; if (d->plr) { cbm_len = d->plr->s->res->cache.cbm_len; cbm_b = d->plr->cbm; if (bitmap_intersects(&cbm, &cbm_b, cbm_len)) return true; } return false; } /** * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy * @d: RDT domain under test * * The setup of a pseudo-locked region affects all cache instances within * the hierarchy of the region. It is thus essential to know if any * pseudo-locked regions exist within a cache hierarchy to prevent any * attempts to create new pseudo-locked regions in the same hierarchy. * * Return: true if a pseudo-locked region exists in the hierarchy of @d or * if it is not possible to test due to memory allocation issue, * false otherwise. */ bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d) { cpumask_var_t cpu_with_psl; struct rdt_resource *r; struct rdt_domain *d_i; bool ret = false; if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL)) return true; /* * First determine which cpus have pseudo-locked regions * associated with them. */ for_each_alloc_capable_rdt_resource(r) { list_for_each_entry(d_i, &r->domains, list) { if (d_i->plr) cpumask_or(cpu_with_psl, cpu_with_psl, &d_i->cpu_mask); } } /* * Next test if new pseudo-locked region would intersect with * existing region. */ if (cpumask_intersects(&d->cpu_mask, cpu_with_psl)) ret = true; free_cpumask_var(cpu_with_psl); return ret; } /** * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory * @_plr: pseudo-lock region to measure * * There is no deterministic way to test if a memory region is cached. One * way is to measure how long it takes to read the memory, the speed of * access is a good way to learn how close to the cpu the data was. Even * more, if the prefetcher is disabled and the memory is read at a stride * of half the cache line, then a cache miss will be easy to spot since the * read of the first half would be significantly slower than the read of * the second half. * * Return: 0. Waiter on waitqueue will be woken on completion. */ static int measure_cycles_lat_fn(void *_plr) { struct pseudo_lock_region *plr = _plr; u32 saved_low, saved_high; unsigned long i; u64 start, end; void *mem_r; local_irq_disable(); /* * Disable hardware prefetchers. */ rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); mem_r = READ_ONCE(plr->kmem); /* * Dummy execute of the time measurement to load the needed * instructions into the L1 instruction cache. */ start = rdtsc_ordered(); for (i = 0; i < plr->size; i += 32) { start = rdtsc_ordered(); asm volatile("mov (%0,%1,1), %%eax\n\t" : : "r" (mem_r), "r" (i) : "%eax", "memory"); end = rdtsc_ordered(); trace_pseudo_lock_mem_latency((u32)(end - start)); } wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); local_irq_enable(); plr->thread_done = 1; wake_up_interruptible(&plr->lock_thread_wq); return 0; } /* * Create a perf_event_attr for the hit and miss perf events that will * be used during the performance measurement. A perf_event maintains * a pointer to its perf_event_attr so a unique attribute structure is * created for each perf_event. * * The actual configuration of the event is set right before use in order * to use the X86_CONFIG macro. */ static struct perf_event_attr perf_miss_attr = { .type = PERF_TYPE_RAW, .size = sizeof(struct perf_event_attr), .pinned = 1, .disabled = 0, .exclude_user = 1, }; static struct perf_event_attr perf_hit_attr = { .type = PERF_TYPE_RAW, .size = sizeof(struct perf_event_attr), .pinned = 1, .disabled = 0, .exclude_user = 1, }; struct residency_counts { u64 miss_before, hits_before; u64 miss_after, hits_after; }; static int measure_residency_fn(struct perf_event_attr *miss_attr, struct perf_event_attr *hit_attr, struct pseudo_lock_region *plr, struct residency_counts *counts) { u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0; struct perf_event *miss_event, *hit_event; int hit_pmcnum, miss_pmcnum; u32 saved_low, saved_high; unsigned int line_size; unsigned int size; unsigned long i; void *mem_r; u64 tmp; miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu, NULL, NULL, NULL); if (IS_ERR(miss_event)) goto out; hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu, NULL, NULL, NULL); if (IS_ERR(hit_event)) goto out_miss; local_irq_disable(); /* * Check any possible error state of events used by performing * one local read. */ if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) { local_irq_enable(); goto out_hit; } if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) { local_irq_enable(); goto out_hit; } /* * Disable hardware prefetchers. */ rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); /* Initialize rest of local variables */ /* * Performance event has been validated right before this with * interrupts disabled - it is thus safe to read the counter index. */ miss_pmcnum = x86_perf_rdpmc_index(miss_event); hit_pmcnum = x86_perf_rdpmc_index(hit_event); line_size = READ_ONCE(plr->line_size); mem_r = READ_ONCE(plr->kmem); size = READ_ONCE(plr->size); /* * Read counter variables twice - first to load the instructions * used in L1 cache, second to capture accurate value that does not * include cache misses incurred because of instruction loads. */ rdpmcl(hit_pmcnum, hits_before); rdpmcl(miss_pmcnum, miss_before); /* * From SDM: Performing back-to-back fast reads are not guaranteed * to be monotonic. * Use LFENCE to ensure all previous instructions are retired * before proceeding. */ rmb(); rdpmcl(hit_pmcnum, hits_before); rdpmcl(miss_pmcnum, miss_before); /* * Use LFENCE to ensure all previous instructions are retired * before proceeding. */ rmb(); for (i = 0; i < size; i += line_size) { /* * Add a barrier to prevent speculative execution of this * loop reading beyond the end of the buffer. */ rmb(); asm volatile("mov (%0,%1,1), %%eax\n\t" : : "r" (mem_r), "r" (i) : "%eax", "memory"); } /* * Use LFENCE to ensure all previous instructions are retired * before proceeding. */ rmb(); rdpmcl(hit_pmcnum, hits_after); rdpmcl(miss_pmcnum, miss_after); /* * Use LFENCE to ensure all previous instructions are retired * before proceeding. */ rmb(); /* Re-enable hardware prefetchers */ wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); local_irq_enable(); out_hit: perf_event_release_kernel(hit_event); out_miss: perf_event_release_kernel(miss_event); out: /* * All counts will be zero on failure. */ counts->miss_before = miss_before; counts->hits_before = hits_before; counts->miss_after = miss_after; counts->hits_after = hits_after; return 0; } static int measure_l2_residency(void *_plr) { struct pseudo_lock_region *plr = _plr; struct residency_counts counts = {0}; /* * Non-architectural event for the Goldmont Microarchitecture * from Intel x86 Architecture Software Developer Manual (SDM): * MEM_LOAD_UOPS_RETIRED D1H (event number) * Umask values: * L2_HIT 02H * L2_MISS 10H */ switch (boot_cpu_data.x86_model) { case INTEL_FAM6_ATOM_GOLDMONT: case INTEL_FAM6_ATOM_GOLDMONT_PLUS: perf_miss_attr.config = X86_CONFIG(.event = 0xd1, .umask = 0x10); perf_hit_attr.config = X86_CONFIG(.event = 0xd1, .umask = 0x2); break; default: goto out; } measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts); /* * If a failure prevented the measurements from succeeding * tracepoints will still be written and all counts will be zero. */ trace_pseudo_lock_l2(counts.hits_after - counts.hits_before, counts.miss_after - counts.miss_before); out: plr->thread_done = 1; wake_up_interruptible(&plr->lock_thread_wq); return 0; } static int measure_l3_residency(void *_plr) { struct pseudo_lock_region *plr = _plr; struct residency_counts counts = {0}; /* * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event * has two "no fix" errata associated with it: BDM35 and BDM100. On * this platform the following events are used instead: * LONGEST_LAT_CACHE 2EH (Documented in SDM) * REFERENCE 4FH * MISS 41H */ switch (boot_cpu_data.x86_model) { case INTEL_FAM6_BROADWELL_X: /* On BDW the hit event counts references, not hits */ perf_hit_attr.config = X86_CONFIG(.event = 0x2e, .umask = 0x4f); perf_miss_attr.config = X86_CONFIG(.event = 0x2e, .umask = 0x41); break; default: goto out; } measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts); /* * If a failure prevented the measurements from succeeding * tracepoints will still be written and all counts will be zero. */ counts.miss_after -= counts.miss_before; if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) { /* * On BDW references and misses are counted, need to adjust. * Sometimes the "hits" counter is a bit more than the * references, for example, x references but x + 1 hits. * To not report invalid hit values in this case we treat * that as misses equal to references. */ /* First compute the number of cache references measured */ counts.hits_after -= counts.hits_before; /* Next convert references to cache hits */ counts.hits_after -= min(counts.miss_after, counts.hits_after); } else { counts.hits_after -= counts.hits_before; } trace_pseudo_lock_l3(counts.hits_after, counts.miss_after); out: plr->thread_done = 1; wake_up_interruptible(&plr->lock_thread_wq); return 0; } /** * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region * @rdtgrp: Resource group to which the pseudo-locked region belongs. * @sel: Selector of which measurement to perform on a pseudo-locked region. * * The measurement of latency to access a pseudo-locked region should be * done from a cpu that is associated with that pseudo-locked region. * Determine which cpu is associated with this region and start a thread on * that cpu to perform the measurement, wait for that thread to complete. * * Return: 0 on success, <0 on failure */ static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel) { struct pseudo_lock_region *plr = rdtgrp->plr; struct task_struct *thread; unsigned int cpu; int ret = -1; cpus_read_lock(); mutex_lock(&rdtgroup_mutex); if (rdtgrp->flags & RDT_DELETED) { ret = -ENODEV; goto out; } if (!plr->d) { ret = -ENODEV; goto out; } plr->thread_done = 0; cpu = cpumask_first(&plr->d->cpu_mask); if (!cpu_online(cpu)) { ret = -ENODEV; goto out; } plr->cpu = cpu; if (sel == 1) thread = kthread_create_on_node(measure_cycles_lat_fn, plr, cpu_to_node(cpu), "pseudo_lock_measure/%u", cpu); else if (sel == 2) thread = kthread_create_on_node(measure_l2_residency, plr, cpu_to_node(cpu), "pseudo_lock_measure/%u", cpu); else if (sel == 3) thread = kthread_create_on_node(measure_l3_residency, plr, cpu_to_node(cpu), "pseudo_lock_measure/%u", cpu); else goto out; if (IS_ERR(thread)) { ret = PTR_ERR(thread); goto out; } kthread_bind(thread, cpu); wake_up_process(thread); ret = wait_event_interruptible(plr->lock_thread_wq, plr->thread_done == 1); if (ret < 0) goto out; ret = 0; out: mutex_unlock(&rdtgroup_mutex); cpus_read_unlock(); return ret; } static ssize_t pseudo_lock_measure_trigger(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct rdtgroup *rdtgrp = file->private_data; size_t buf_size; char buf[32]; int ret; int sel; buf_size = min(count, (sizeof(buf) - 1)); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; buf[buf_size] = '\0'; ret = kstrtoint(buf, 10, &sel); if (ret == 0) { if (sel != 1 && sel != 2 && sel != 3) return -EINVAL; ret = debugfs_file_get(file->f_path.dentry); if (ret) return ret; ret = pseudo_lock_measure_cycles(rdtgrp, sel); if (ret == 0) ret = count; debugfs_file_put(file->f_path.dentry); } return ret; } static const struct file_operations pseudo_measure_fops = { .write = pseudo_lock_measure_trigger, .open = simple_open, .llseek = default_llseek, }; /** * rdtgroup_pseudo_lock_create - Create a pseudo-locked region * @rdtgrp: resource group to which pseudo-lock region belongs * * Called when a resource group in the pseudo-locksetup mode receives a * valid schemata that should be pseudo-locked. Since the resource group is * in pseudo-locksetup mode the &struct pseudo_lock_region has already been * allocated and initialized with the essential information. If a failure * occurs the resource group remains in the pseudo-locksetup mode with the * &struct pseudo_lock_region associated with it, but cleared from all * information and ready for the user to re-attempt pseudo-locking by * writing the schemata again. * * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0 * on failure. Descriptive error will be written to last_cmd_status buffer. */ int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) { struct pseudo_lock_region *plr = rdtgrp->plr; struct task_struct *thread; unsigned int new_minor; struct device *dev; int ret; ret = pseudo_lock_region_alloc(plr); if (ret < 0) return ret; ret = pseudo_lock_cstates_constrain(plr); if (ret < 0) { ret = -EINVAL; goto out_region; } plr->thread_done = 0; thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp, cpu_to_node(plr->cpu), "pseudo_lock/%u", plr->cpu); if (IS_ERR(thread)) { ret = PTR_ERR(thread); rdt_last_cmd_printf("Locking thread returned error %d\n", ret); goto out_cstates; } kthread_bind(thread, plr->cpu); wake_up_process(thread); ret = wait_event_interruptible(plr->lock_thread_wq, plr->thread_done == 1); if (ret < 0) { /* * If the thread does not get on the CPU for whatever * reason and the process which sets up the region is * interrupted then this will leave the thread in runnable * state and once it gets on the CPU it will dereference * the cleared, but not freed, plr struct resulting in an * empty pseudo-locking loop. */ rdt_last_cmd_puts("Locking thread interrupted\n"); goto out_cstates; } ret = pseudo_lock_minor_get(&new_minor); if (ret < 0) { rdt_last_cmd_puts("Unable to obtain a new minor number\n"); goto out_cstates; } /* * Unlock access but do not release the reference. The * pseudo-locked region will still be here on return. * * The mutex has to be released temporarily to avoid a potential * deadlock with the mm->mmap_lock which is obtained in the * device_create() and debugfs_create_dir() callpath below as well as * before the mmap() callback is called. */ mutex_unlock(&rdtgroup_mutex); if (!IS_ERR_OR_NULL(debugfs_resctrl)) { plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name, debugfs_resctrl); if (!IS_ERR_OR_NULL(plr->debugfs_dir)) debugfs_create_file("pseudo_lock_measure", 0200, plr->debugfs_dir, rdtgrp, &pseudo_measure_fops); } dev = device_create(pseudo_lock_class, NULL, MKDEV(pseudo_lock_major, new_minor), rdtgrp, "%s", rdtgrp->kn->name); mutex_lock(&rdtgroup_mutex); if (IS_ERR(dev)) { ret = PTR_ERR(dev); rdt_last_cmd_printf("Failed to create character device: %d\n", ret); goto out_debugfs; } /* We released the mutex - check if group was removed while we did so */ if (rdtgrp->flags & RDT_DELETED) { ret = -ENODEV; goto out_device; } plr->minor = new_minor; rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED; closid_free(rdtgrp->closid); rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444); rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444); ret = 0; goto out; out_device: device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor)); out_debugfs: debugfs_remove_recursive(plr->debugfs_dir); pseudo_lock_minor_release(new_minor); out_cstates: pseudo_lock_cstates_relax(plr); out_region: pseudo_lock_region_clear(plr); out: return ret; } /** * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region * @rdtgrp: resource group to which the pseudo-locked region belongs * * The removal of a pseudo-locked region can be initiated when the resource * group is removed from user space via a "rmdir" from userspace or the * unmount of the resctrl filesystem. On removal the resource group does * not go back to pseudo-locksetup mode before it is removed, instead it is * removed directly. There is thus asymmetry with the creation where the * &struct pseudo_lock_region is removed here while it was not created in * rdtgroup_pseudo_lock_create(). * * Return: void */ void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp) { struct pseudo_lock_region *plr = rdtgrp->plr; if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { /* * Default group cannot be a pseudo-locked region so we can * free closid here. */ closid_free(rdtgrp->closid); goto free; } pseudo_lock_cstates_relax(plr); debugfs_remove_recursive(rdtgrp->plr->debugfs_dir); device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor)); pseudo_lock_minor_release(plr->minor); free: pseudo_lock_free(rdtgrp); } static int pseudo_lock_dev_open(struct inode *inode, struct file *filp) { struct rdtgroup *rdtgrp; mutex_lock(&rdtgroup_mutex); rdtgrp = region_find_by_minor(iminor(inode)); if (!rdtgrp) { mutex_unlock(&rdtgroup_mutex); return -ENODEV; } filp->private_data = rdtgrp; atomic_inc(&rdtgrp->waitcount); /* Perform a non-seekable open - llseek is not supported */ filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE); mutex_unlock(&rdtgroup_mutex); return 0; } static int pseudo_lock_dev_release(struct inode *inode, struct file *filp) { struct rdtgroup *rdtgrp; mutex_lock(&rdtgroup_mutex); rdtgrp = filp->private_data; WARN_ON(!rdtgrp); if (!rdtgrp) { mutex_unlock(&rdtgroup_mutex); return -ENODEV; } filp->private_data = NULL; atomic_dec(&rdtgrp->waitcount); mutex_unlock(&rdtgroup_mutex); return 0; } static int pseudo_lock_dev_mremap(struct vm_area_struct *area) { /* Not supported */ return -EINVAL; } static const struct vm_operations_struct pseudo_mmap_ops = { .mremap = pseudo_lock_dev_mremap, }; static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma) { unsigned long vsize = vma->vm_end - vma->vm_start; unsigned long off = vma->vm_pgoff << PAGE_SHIFT; struct pseudo_lock_region *plr; struct rdtgroup *rdtgrp; unsigned long physical; unsigned long psize; mutex_lock(&rdtgroup_mutex); rdtgrp = filp->private_data; WARN_ON(!rdtgrp); if (!rdtgrp) { mutex_unlock(&rdtgroup_mutex); return -ENODEV; } plr = rdtgrp->plr; if (!plr->d) { mutex_unlock(&rdtgroup_mutex); return -ENODEV; } /* * Task is required to run with affinity to the cpus associated * with the pseudo-locked region. If this is not the case the task * may be scheduled elsewhere and invalidate entries in the * pseudo-locked region. */ if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) { mutex_unlock(&rdtgroup_mutex); return -EINVAL; } physical = __pa(plr->kmem) >> PAGE_SHIFT; psize = plr->size - off; if (off > plr->size) { mutex_unlock(&rdtgroup_mutex); return -ENOSPC; } /* * Ensure changes are carried directly to the memory being mapped, * do not allow copy-on-write mapping. */ if (!(vma->vm_flags & VM_SHARED)) { mutex_unlock(&rdtgroup_mutex); return -EINVAL; } if (vsize > psize) { mutex_unlock(&rdtgroup_mutex); return -ENOSPC; } memset(plr->kmem + off, 0, vsize); if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff, vsize, vma->vm_page_prot)) { mutex_unlock(&rdtgroup_mutex); return -EAGAIN; } vma->vm_ops = &pseudo_mmap_ops; mutex_unlock(&rdtgroup_mutex); return 0; } static const struct file_operations pseudo_lock_dev_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = NULL, .write = NULL, .open = pseudo_lock_dev_open, .release = pseudo_lock_dev_release, .mmap = pseudo_lock_dev_mmap, }; static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode) { const struct rdtgroup *rdtgrp; rdtgrp = dev_get_drvdata(dev); if (mode) *mode = 0600; return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name); } int rdt_pseudo_lock_init(void) { int ret; ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops); if (ret < 0) return ret; pseudo_lock_major = ret; pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock"); if (IS_ERR(pseudo_lock_class)) { ret = PTR_ERR(pseudo_lock_class); unregister_chrdev(pseudo_lock_major, "pseudo_lock"); return ret; } pseudo_lock_class->devnode = pseudo_lock_devnode; return 0; } void rdt_pseudo_lock_release(void) { class_destroy(pseudo_lock_class); pseudo_lock_class = NULL; unregister_chrdev(pseudo_lock_major, "pseudo_lock"); pseudo_lock_major = 0; } |