Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | /* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2007 by Ralf Baechle * Copyright (C) 2009, 2012 Cavium, Inc. */ #include <linux/clocksource.h> #include <linux/sched/clock.h> #include <linux/export.h> #include <linux/init.h> #include <linux/smp.h> #include <asm/cpu-info.h> #include <asm/cpu-type.h> #include <asm/time.h> #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-ipd-defs.h> #include <asm/octeon/cvmx-mio-defs.h> #include <asm/octeon/cvmx-rst-defs.h> #include <asm/octeon/cvmx-fpa-defs.h> static u64 f; static u64 rdiv; static u64 sdiv; static u64 octeon_udelay_factor; static u64 octeon_ndelay_factor; void __init octeon_setup_delays(void) { octeon_udelay_factor = octeon_get_clock_rate() / 1000000; /* * For __ndelay we divide by 2^16, so the factor is multiplied * by the same amount. */ octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull; preset_lpj = octeon_get_clock_rate() / HZ; if (current_cpu_type() == CPU_CAVIUM_OCTEON2) { union cvmx_mio_rst_boot rst_boot; rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT); rdiv = rst_boot.s.c_mul; /* CPU clock */ sdiv = rst_boot.s.pnr_mul; /* I/O clock */ f = (0x8000000000000000ull / sdiv) * 2; } else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) { union cvmx_rst_boot rst_boot; rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT); rdiv = rst_boot.s.c_mul; /* CPU clock */ sdiv = rst_boot.s.pnr_mul; /* I/O clock */ f = (0x8000000000000000ull / sdiv) * 2; } } /* * Set the current core's cvmcount counter to the value of the * IPD_CLK_COUNT. We do this on all cores as they are brought * on-line. This allows for a read from a local cpu register to * access a synchronized counter. * * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv. */ void octeon_init_cvmcount(void) { u64 clk_reg; unsigned long flags; unsigned loops = 2; clk_reg = octeon_has_feature(OCTEON_FEATURE_FPA3) ? CVMX_FPA_CLK_COUNT : CVMX_IPD_CLK_COUNT; /* Clobber loops so GCC will not unroll the following while loop. */ asm("" : "+r" (loops)); local_irq_save(flags); /* * Loop several times so we are executing from the cache, * which should give more deterministic timing. */ while (loops--) { u64 clk_count = cvmx_read_csr(clk_reg); if (rdiv != 0) { clk_count *= rdiv; if (f != 0) { asm("dmultu\t%[cnt],%[f]\n\t" "mfhi\t%[cnt]" : [cnt] "+r" (clk_count) : [f] "r" (f) : "hi", "lo"); } } write_c0_cvmcount(clk_count); } local_irq_restore(flags); } static u64 octeon_cvmcount_read(struct clocksource *cs) { return read_c0_cvmcount(); } static struct clocksource clocksource_mips = { .name = "OCTEON_CVMCOUNT", .read = octeon_cvmcount_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; unsigned long long notrace sched_clock(void) { /* 64-bit arithmatic can overflow, so use 128-bit. */ u64 t1, t2, t3; unsigned long long rv; u64 mult = clocksource_mips.mult; u64 shift = clocksource_mips.shift; u64 cnt = read_c0_cvmcount(); asm ( "dmultu\t%[cnt],%[mult]\n\t" "nor\t%[t1],$0,%[shift]\n\t" "mfhi\t%[t2]\n\t" "mflo\t%[t3]\n\t" "dsll\t%[t2],%[t2],1\n\t" "dsrlv\t%[rv],%[t3],%[shift]\n\t" "dsllv\t%[t1],%[t2],%[t1]\n\t" "or\t%[rv],%[t1],%[rv]\n\t" : [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3) : [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift) : "hi", "lo"); return rv; } void __init plat_time_init(void) { clocksource_mips.rating = 300; clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate()); } void __udelay(unsigned long us) { u64 cur, end, inc; cur = read_c0_cvmcount(); inc = us * octeon_udelay_factor; end = cur + inc; while (end > cur) cur = read_c0_cvmcount(); } EXPORT_SYMBOL(__udelay); void __ndelay(unsigned long ns) { u64 cur, end, inc; cur = read_c0_cvmcount(); inc = ((ns * octeon_ndelay_factor) >> 16); end = cur + inc; while (end > cur) cur = read_c0_cvmcount(); } EXPORT_SYMBOL(__ndelay); void __delay(unsigned long loops) { u64 cur, end; cur = read_c0_cvmcount(); end = cur + loops; while (end > cur) cur = read_c0_cvmcount(); } EXPORT_SYMBOL(__delay); /** * octeon_io_clk_delay - wait for a given number of io clock cycles to pass. * * We scale the wait by the clock ratio, and then wait for the * corresponding number of core clocks. * * @count: The number of clocks to wait. */ void octeon_io_clk_delay(unsigned long count) { u64 cur, end; cur = read_c0_cvmcount(); if (rdiv != 0) { end = count * rdiv; if (f != 0) { asm("dmultu\t%[cnt],%[f]\n\t" "mfhi\t%[cnt]" : [cnt] "+r" (end) : [f] "r" (f) : "hi", "lo"); } end = cur + end; } else { end = cur + count; } while (end > cur) cur = read_c0_cvmcount(); } EXPORT_SYMBOL(octeon_io_clk_delay); |