Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 | // SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2016-20 Intel Corporation. */ #include <linux/file.h> #include <linux/freezer.h> #include <linux/highmem.h> #include <linux/kthread.h> #include <linux/miscdevice.h> #include <linux/node.h> #include <linux/pagemap.h> #include <linux/ratelimit.h> #include <linux/sched/mm.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <asm/sgx.h> #include "driver.h" #include "encl.h" #include "encls.h" struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS]; static int sgx_nr_epc_sections; static struct task_struct *ksgxd_tsk; static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq); static DEFINE_XARRAY(sgx_epc_address_space); /* * These variables are part of the state of the reclaimer, and must be accessed * with sgx_reclaimer_lock acquired. */ static LIST_HEAD(sgx_active_page_list); static DEFINE_SPINLOCK(sgx_reclaimer_lock); static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0); /* Nodes with one or more EPC sections. */ static nodemask_t sgx_numa_mask; /* * Array with one list_head for each possible NUMA node. Each * list contains all the sgx_epc_section's which are on that * node. */ static struct sgx_numa_node *sgx_numa_nodes; static LIST_HEAD(sgx_dirty_page_list); /* * Reset post-kexec EPC pages to the uninitialized state. The pages are removed * from the input list, and made available for the page allocator. SECS pages * prepending their children in the input list are left intact. * * Return 0 when sanitization was successful or kthread was stopped, and the * number of unsanitized pages otherwise. */ static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list) { unsigned long left_dirty = 0; struct sgx_epc_page *page; LIST_HEAD(dirty); int ret; /* dirty_page_list is thread-local, no need for a lock: */ while (!list_empty(dirty_page_list)) { if (kthread_should_stop()) return 0; page = list_first_entry(dirty_page_list, struct sgx_epc_page, list); /* * Checking page->poison without holding the node->lock * is racy, but losing the race (i.e. poison is set just * after the check) just means __eremove() will be uselessly * called for a page that sgx_free_epc_page() will put onto * the node->sgx_poison_page_list later. */ if (page->poison) { struct sgx_epc_section *section = &sgx_epc_sections[page->section]; struct sgx_numa_node *node = section->node; spin_lock(&node->lock); list_move(&page->list, &node->sgx_poison_page_list); spin_unlock(&node->lock); continue; } ret = __eremove(sgx_get_epc_virt_addr(page)); if (!ret) { /* * page is now sanitized. Make it available via the SGX * page allocator: */ list_del(&page->list); sgx_free_epc_page(page); } else { /* The page is not yet clean - move to the dirty list. */ list_move_tail(&page->list, &dirty); left_dirty++; } cond_resched(); } list_splice(&dirty, dirty_page_list); return left_dirty; } static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page) { struct sgx_encl_page *page = epc_page->owner; struct sgx_encl *encl = page->encl; struct sgx_encl_mm *encl_mm; bool ret = true; int idx; idx = srcu_read_lock(&encl->srcu); list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { if (!mmget_not_zero(encl_mm->mm)) continue; mmap_read_lock(encl_mm->mm); ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page); mmap_read_unlock(encl_mm->mm); mmput_async(encl_mm->mm); if (!ret) break; } srcu_read_unlock(&encl->srcu, idx); if (!ret) return false; return true; } static void sgx_reclaimer_block(struct sgx_epc_page *epc_page) { struct sgx_encl_page *page = epc_page->owner; unsigned long addr = page->desc & PAGE_MASK; struct sgx_encl *encl = page->encl; int ret; sgx_zap_enclave_ptes(encl, addr); mutex_lock(&encl->lock); ret = __eblock(sgx_get_epc_virt_addr(epc_page)); if (encls_failed(ret)) ENCLS_WARN(ret, "EBLOCK"); mutex_unlock(&encl->lock); } static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot, struct sgx_backing *backing) { struct sgx_pageinfo pginfo; int ret; pginfo.addr = 0; pginfo.secs = 0; pginfo.contents = (unsigned long)kmap_local_page(backing->contents); pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) + backing->pcmd_offset; ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot); set_page_dirty(backing->pcmd); set_page_dirty(backing->contents); kunmap_local((void *)(unsigned long)(pginfo.metadata - backing->pcmd_offset)); kunmap_local((void *)(unsigned long)pginfo.contents); return ret; } void sgx_ipi_cb(void *info) { } /* * Swap page to the regular memory transformed to the blocked state by using * EBLOCK, which means that it can no longer be referenced (no new TLB entries). * * The first trial just tries to write the page assuming that some other thread * has reset the count for threads inside the enclave by using ETRACK, and * previous thread count has been zeroed out. The second trial calls ETRACK * before EWB. If that fails we kick all the HW threads out, and then do EWB, * which should be guaranteed the succeed. */ static void sgx_encl_ewb(struct sgx_epc_page *epc_page, struct sgx_backing *backing) { struct sgx_encl_page *encl_page = epc_page->owner; struct sgx_encl *encl = encl_page->encl; struct sgx_va_page *va_page; unsigned int va_offset; void *va_slot; int ret; encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED; va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, list); va_offset = sgx_alloc_va_slot(va_page); va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset; if (sgx_va_page_full(va_page)) list_move_tail(&va_page->list, &encl->va_pages); ret = __sgx_encl_ewb(epc_page, va_slot, backing); if (ret == SGX_NOT_TRACKED) { ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page)); if (ret) { if (encls_failed(ret)) ENCLS_WARN(ret, "ETRACK"); } ret = __sgx_encl_ewb(epc_page, va_slot, backing); if (ret == SGX_NOT_TRACKED) { /* * Slow path, send IPIs to kick cpus out of the * enclave. Note, it's imperative that the cpu * mask is generated *after* ETRACK, else we'll * miss cpus that entered the enclave between * generating the mask and incrementing epoch. */ on_each_cpu_mask(sgx_encl_cpumask(encl), sgx_ipi_cb, NULL, 1); ret = __sgx_encl_ewb(epc_page, va_slot, backing); } } if (ret) { if (encls_failed(ret)) ENCLS_WARN(ret, "EWB"); sgx_free_va_slot(va_page, va_offset); } else { encl_page->desc |= va_offset; encl_page->va_page = va_page; } } static void sgx_reclaimer_write(struct sgx_epc_page *epc_page, struct sgx_backing *backing) { struct sgx_encl_page *encl_page = epc_page->owner; struct sgx_encl *encl = encl_page->encl; struct sgx_backing secs_backing; int ret; mutex_lock(&encl->lock); sgx_encl_ewb(epc_page, backing); encl_page->epc_page = NULL; encl->secs_child_cnt--; sgx_encl_put_backing(backing); if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) { ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size), &secs_backing); if (ret) goto out; sgx_encl_ewb(encl->secs.epc_page, &secs_backing); sgx_encl_free_epc_page(encl->secs.epc_page); encl->secs.epc_page = NULL; sgx_encl_put_backing(&secs_backing); } out: mutex_unlock(&encl->lock); } /* * Take a fixed number of pages from the head of the active page pool and * reclaim them to the enclave's private shmem files. Skip the pages, which have * been accessed since the last scan. Move those pages to the tail of active * page pool so that the pages get scanned in LRU like fashion. * * Batch process a chunk of pages (at the moment 16) in order to degrade amount * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI * + EWB) but not sufficiently. Reclaiming one page at a time would also be * problematic as it would increase the lock contention too much, which would * halt forward progress. */ static void sgx_reclaim_pages(void) { struct sgx_epc_page *chunk[SGX_NR_TO_SCAN]; struct sgx_backing backing[SGX_NR_TO_SCAN]; struct sgx_encl_page *encl_page; struct sgx_epc_page *epc_page; pgoff_t page_index; int cnt = 0; int ret; int i; spin_lock(&sgx_reclaimer_lock); for (i = 0; i < SGX_NR_TO_SCAN; i++) { if (list_empty(&sgx_active_page_list)) break; epc_page = list_first_entry(&sgx_active_page_list, struct sgx_epc_page, list); list_del_init(&epc_page->list); encl_page = epc_page->owner; if (kref_get_unless_zero(&encl_page->encl->refcount) != 0) chunk[cnt++] = epc_page; else /* The owner is freeing the page. No need to add the * page back to the list of reclaimable pages. */ epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; } spin_unlock(&sgx_reclaimer_lock); for (i = 0; i < cnt; i++) { epc_page = chunk[i]; encl_page = epc_page->owner; if (!sgx_reclaimer_age(epc_page)) goto skip; page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); mutex_lock(&encl_page->encl->lock); ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]); if (ret) { mutex_unlock(&encl_page->encl->lock); goto skip; } encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED; mutex_unlock(&encl_page->encl->lock); continue; skip: spin_lock(&sgx_reclaimer_lock); list_add_tail(&epc_page->list, &sgx_active_page_list); spin_unlock(&sgx_reclaimer_lock); kref_put(&encl_page->encl->refcount, sgx_encl_release); chunk[i] = NULL; } for (i = 0; i < cnt; i++) { epc_page = chunk[i]; if (epc_page) sgx_reclaimer_block(epc_page); } for (i = 0; i < cnt; i++) { epc_page = chunk[i]; if (!epc_page) continue; encl_page = epc_page->owner; sgx_reclaimer_write(epc_page, &backing[i]); kref_put(&encl_page->encl->refcount, sgx_encl_release); epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; sgx_free_epc_page(epc_page); } } static bool sgx_should_reclaim(unsigned long watermark) { return atomic_long_read(&sgx_nr_free_pages) < watermark && !list_empty(&sgx_active_page_list); } /* * sgx_reclaim_direct() should be called (without enclave's mutex held) * in locations where SGX memory resources might be low and might be * needed in order to make forward progress. */ void sgx_reclaim_direct(void) { if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) sgx_reclaim_pages(); } static int ksgxd(void *p) { set_freezable(); /* * Sanitize pages in order to recover from kexec(). The 2nd pass is * required for SECS pages, whose child pages blocked EREMOVE. */ __sgx_sanitize_pages(&sgx_dirty_page_list); WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list)); while (!kthread_should_stop()) { if (try_to_freeze()) continue; wait_event_freezable(ksgxd_waitq, kthread_should_stop() || sgx_should_reclaim(SGX_NR_HIGH_PAGES)); if (sgx_should_reclaim(SGX_NR_HIGH_PAGES)) sgx_reclaim_pages(); cond_resched(); } return 0; } static bool __init sgx_page_reclaimer_init(void) { struct task_struct *tsk; tsk = kthread_run(ksgxd, NULL, "ksgxd"); if (IS_ERR(tsk)) return false; ksgxd_tsk = tsk; return true; } bool current_is_ksgxd(void) { return current == ksgxd_tsk; } static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid) { struct sgx_numa_node *node = &sgx_numa_nodes[nid]; struct sgx_epc_page *page = NULL; spin_lock(&node->lock); if (list_empty(&node->free_page_list)) { spin_unlock(&node->lock); return NULL; } page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list); list_del_init(&page->list); page->flags = 0; spin_unlock(&node->lock); atomic_long_dec(&sgx_nr_free_pages); return page; } /** * __sgx_alloc_epc_page() - Allocate an EPC page * * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start * from the NUMA node, where the caller is executing. * * Return: * - an EPC page: A borrowed EPC pages were available. * - NULL: Out of EPC pages. */ struct sgx_epc_page *__sgx_alloc_epc_page(void) { struct sgx_epc_page *page; int nid_of_current = numa_node_id(); int nid = nid_of_current; if (node_isset(nid_of_current, sgx_numa_mask)) { page = __sgx_alloc_epc_page_from_node(nid_of_current); if (page) return page; } /* Fall back to the non-local NUMA nodes: */ while (true) { nid = next_node_in(nid, sgx_numa_mask); if (nid == nid_of_current) break; page = __sgx_alloc_epc_page_from_node(nid); if (page) return page; } return ERR_PTR(-ENOMEM); } /** * sgx_mark_page_reclaimable() - Mark a page as reclaimable * @page: EPC page * * Mark a page as reclaimable and add it to the active page list. Pages * are automatically removed from the active list when freed. */ void sgx_mark_page_reclaimable(struct sgx_epc_page *page) { spin_lock(&sgx_reclaimer_lock); page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED; list_add_tail(&page->list, &sgx_active_page_list); spin_unlock(&sgx_reclaimer_lock); } /** * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list * @page: EPC page * * Clear the reclaimable flag and remove the page from the active page list. * * Return: * 0 on success, * -EBUSY if the page is in the process of being reclaimed */ int sgx_unmark_page_reclaimable(struct sgx_epc_page *page) { spin_lock(&sgx_reclaimer_lock); if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) { /* The page is being reclaimed. */ if (list_empty(&page->list)) { spin_unlock(&sgx_reclaimer_lock); return -EBUSY; } list_del(&page->list); page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; } spin_unlock(&sgx_reclaimer_lock); return 0; } /** * sgx_alloc_epc_page() - Allocate an EPC page * @owner: the owner of the EPC page * @reclaim: reclaim pages if necessary * * Iterate through EPC sections and borrow a free EPC page to the caller. When a * page is no longer needed it must be released with sgx_free_epc_page(). If * @reclaim is set to true, directly reclaim pages when we are out of pages. No * mm's can be locked when @reclaim is set to true. * * Finally, wake up ksgxd when the number of pages goes below the watermark * before returning back to the caller. * * Return: * an EPC page, * -errno on error */ struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim) { struct sgx_epc_page *page; for ( ; ; ) { page = __sgx_alloc_epc_page(); if (!IS_ERR(page)) { page->owner = owner; break; } if (list_empty(&sgx_active_page_list)) return ERR_PTR(-ENOMEM); if (!reclaim) { page = ERR_PTR(-EBUSY); break; } if (signal_pending(current)) { page = ERR_PTR(-ERESTARTSYS); break; } sgx_reclaim_pages(); cond_resched(); } if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) wake_up(&ksgxd_waitq); return page; } /** * sgx_free_epc_page() - Free an EPC page * @page: an EPC page * * Put the EPC page back to the list of free pages. It's the caller's * responsibility to make sure that the page is in uninitialized state. In other * words, do EREMOVE, EWB or whatever operation is necessary before calling * this function. */ void sgx_free_epc_page(struct sgx_epc_page *page) { struct sgx_epc_section *section = &sgx_epc_sections[page->section]; struct sgx_numa_node *node = section->node; spin_lock(&node->lock); page->owner = NULL; if (page->poison) list_add(&page->list, &node->sgx_poison_page_list); else list_add_tail(&page->list, &node->free_page_list); page->flags = SGX_EPC_PAGE_IS_FREE; spin_unlock(&node->lock); atomic_long_inc(&sgx_nr_free_pages); } static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size, unsigned long index, struct sgx_epc_section *section) { unsigned long nr_pages = size >> PAGE_SHIFT; unsigned long i; section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB); if (!section->virt_addr) return false; section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page)); if (!section->pages) { memunmap(section->virt_addr); return false; } section->phys_addr = phys_addr; xa_store_range(&sgx_epc_address_space, section->phys_addr, phys_addr + size - 1, section, GFP_KERNEL); for (i = 0; i < nr_pages; i++) { section->pages[i].section = index; section->pages[i].flags = 0; section->pages[i].owner = NULL; section->pages[i].poison = 0; list_add_tail(§ion->pages[i].list, &sgx_dirty_page_list); } return true; } bool arch_is_platform_page(u64 paddr) { return !!xa_load(&sgx_epc_address_space, paddr); } EXPORT_SYMBOL_GPL(arch_is_platform_page); static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr) { struct sgx_epc_section *section; section = xa_load(&sgx_epc_address_space, paddr); if (!section) return NULL; return §ion->pages[PFN_DOWN(paddr - section->phys_addr)]; } /* * Called in process context to handle a hardware reported * error in an SGX EPC page. * If the MF_ACTION_REQUIRED bit is set in flags, then the * context is the task that consumed the poison data. Otherwise * this is called from a kernel thread unrelated to the page. */ int arch_memory_failure(unsigned long pfn, int flags) { struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT); struct sgx_epc_section *section; struct sgx_numa_node *node; /* * mm/memory-failure.c calls this routine for all errors * where there isn't a "struct page" for the address. But that * includes other address ranges besides SGX. */ if (!page) return -ENXIO; /* * If poison was consumed synchronously. Send a SIGBUS to * the task. Hardware has already exited the SGX enclave and * will not allow re-entry to an enclave that has a memory * error. The signal may help the task understand why the * enclave is broken. */ if (flags & MF_ACTION_REQUIRED) force_sig(SIGBUS); section = &sgx_epc_sections[page->section]; node = section->node; spin_lock(&node->lock); /* Already poisoned? Nothing more to do */ if (page->poison) goto out; page->poison = 1; /* * If the page is on a free list, move it to the per-node * poison page list. */ if (page->flags & SGX_EPC_PAGE_IS_FREE) { list_move(&page->list, &node->sgx_poison_page_list); goto out; } /* * TBD: Add additional plumbing to enable pre-emptive * action for asynchronous poison notification. Until * then just hope that the poison: * a) is not accessed - sgx_free_epc_page() will deal with it * when the user gives it back * b) results in a recoverable machine check rather than * a fatal one */ out: spin_unlock(&node->lock); return 0; } /** * A section metric is concatenated in a way that @low bits 12-31 define the * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the * metric. */ static inline u64 __init sgx_calc_section_metric(u64 low, u64 high) { return (low & GENMASK_ULL(31, 12)) + ((high & GENMASK_ULL(19, 0)) << 32); } #ifdef CONFIG_NUMA static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size); } static DEVICE_ATTR_RO(sgx_total_bytes); static umode_t arch_node_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { /* Make all x86/ attributes invisible when SGX is not initialized: */ if (nodes_empty(sgx_numa_mask)) return 0; return attr->mode; } static struct attribute *arch_node_dev_attrs[] = { &dev_attr_sgx_total_bytes.attr, NULL, }; const struct attribute_group arch_node_dev_group = { .name = "x86", .attrs = arch_node_dev_attrs, .is_visible = arch_node_attr_is_visible, }; static void __init arch_update_sysfs_visibility(int nid) { struct node *node = node_devices[nid]; int ret; ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group); if (ret) pr_err("sysfs update failed (%d), files may be invisible", ret); } #else /* !CONFIG_NUMA */ static void __init arch_update_sysfs_visibility(int nid) {} #endif static bool __init sgx_page_cache_init(void) { u32 eax, ebx, ecx, edx, type; u64 pa, size; int nid; int i; sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL); if (!sgx_numa_nodes) return false; for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) { cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx); type = eax & SGX_CPUID_EPC_MASK; if (type == SGX_CPUID_EPC_INVALID) break; if (type != SGX_CPUID_EPC_SECTION) { pr_err_once("Unknown EPC section type: %u\n", type); break; } pa = sgx_calc_section_metric(eax, ebx); size = sgx_calc_section_metric(ecx, edx); pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1); if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) { pr_err("No free memory for an EPC section\n"); break; } nid = numa_map_to_online_node(phys_to_target_node(pa)); if (nid == NUMA_NO_NODE) { /* The physical address is already printed above. */ pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n"); nid = 0; } if (!node_isset(nid, sgx_numa_mask)) { spin_lock_init(&sgx_numa_nodes[nid].lock); INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list); INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list); node_set(nid, sgx_numa_mask); sgx_numa_nodes[nid].size = 0; /* Make SGX-specific node sysfs files visible: */ arch_update_sysfs_visibility(nid); } sgx_epc_sections[i].node = &sgx_numa_nodes[nid]; sgx_numa_nodes[nid].size += size; sgx_nr_epc_sections++; } if (!sgx_nr_epc_sections) { pr_err("There are zero EPC sections.\n"); return false; } return true; } /* * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller. * Bare-metal driver requires to update them to hash of enclave's signer * before EINIT. KVM needs to update them to guest's virtual MSR values * before doing EINIT from guest. */ void sgx_update_lepubkeyhash(u64 *lepubkeyhash) { int i; WARN_ON_ONCE(preemptible()); for (i = 0; i < 4; i++) wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]); } const struct file_operations sgx_provision_fops = { .owner = THIS_MODULE, }; static struct miscdevice sgx_dev_provision = { .minor = MISC_DYNAMIC_MINOR, .name = "sgx_provision", .nodename = "sgx_provision", .fops = &sgx_provision_fops, }; /** * sgx_set_attribute() - Update allowed attributes given file descriptor * @allowed_attributes: Pointer to allowed enclave attributes * @attribute_fd: File descriptor for specific attribute * * Append enclave attribute indicated by file descriptor to allowed * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by * /dev/sgx_provision is supported. * * Return: * -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes * -EINVAL: Invalid, or not supported file descriptor */ int sgx_set_attribute(unsigned long *allowed_attributes, unsigned int attribute_fd) { struct file *file; file = fget(attribute_fd); if (!file) return -EINVAL; if (file->f_op != &sgx_provision_fops) { fput(file); return -EINVAL; } *allowed_attributes |= SGX_ATTR_PROVISIONKEY; fput(file); return 0; } EXPORT_SYMBOL_GPL(sgx_set_attribute); static int __init sgx_init(void) { int ret; int i; if (!cpu_feature_enabled(X86_FEATURE_SGX)) return -ENODEV; if (!sgx_page_cache_init()) return -ENOMEM; if (!sgx_page_reclaimer_init()) { ret = -ENOMEM; goto err_page_cache; } ret = misc_register(&sgx_dev_provision); if (ret) goto err_kthread; /* * Always try to initialize the native *and* KVM drivers. * The KVM driver is less picky than the native one and * can function if the native one is not supported on the * current system or fails to initialize. * * Error out only if both fail to initialize. */ ret = sgx_drv_init(); if (sgx_vepc_init() && ret) goto err_provision; return 0; err_provision: misc_deregister(&sgx_dev_provision); err_kthread: kthread_stop(ksgxd_tsk); err_page_cache: for (i = 0; i < sgx_nr_epc_sections; i++) { vfree(sgx_epc_sections[i].pages); memunmap(sgx_epc_sections[i].virt_addr); } return ret; } device_initcall(sgx_init); |