Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 | .. SPDX-License-Identifier: GPL-2.0 Writing Tests ============= Test Cases ---------- The fundamental unit in KUnit is the test case. A test case is a function with the signature ``void (*)(struct kunit *test)``. It calls the function under test and then sets *expectations* for what should happen. For example: .. code-block:: c void example_test_success(struct kunit *test) { } void example_test_failure(struct kunit *test) { KUNIT_FAIL(test, "This test never passes."); } In the above example, ``example_test_success`` always passes because it does nothing; no expectations are set, and therefore all expectations pass. On the other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, which is a special expectation that logs a message and causes the test case to fail. Expectations ~~~~~~~~~~~~ An *expectation* specifies that we expect a piece of code to do something in a test. An expectation is called like a function. A test is made by setting expectations about the behavior of a piece of code under test. When one or more expectations fail, the test case fails and information about the failure is logged. For example: .. code-block:: c void add_test_basic(struct kunit *test) { KUNIT_EXPECT_EQ(test, 1, add(1, 0)); KUNIT_EXPECT_EQ(test, 2, add(1, 1)); } In the above example, ``add_test_basic`` makes a number of assertions about the behavior of a function called ``add``. The first parameter is always of type ``struct kunit *``, which contains information about the current test context. The second parameter, in this case, is what the value is expected to be. The last value is what the value actually is. If ``add`` passes all of these expectations, the test case, ``add_test_basic`` will pass; if any one of these expectations fails, the test case will fail. A test case *fails* when any expectation is violated; however, the test will continue to run, and try other expectations until the test case ends or is otherwise terminated. This is as opposed to *assertions* which are discussed later. To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst. .. note:: A single test case should be short, easy to understand, and focused on a single behavior. For example, if we want to rigorously test the ``add`` function above, create additional tests cases which would test each property that an ``add`` function should have as shown below: .. code-block:: c void add_test_basic(struct kunit *test) { KUNIT_EXPECT_EQ(test, 1, add(1, 0)); KUNIT_EXPECT_EQ(test, 2, add(1, 1)); } void add_test_negative(struct kunit *test) { KUNIT_EXPECT_EQ(test, 0, add(-1, 1)); } void add_test_max(struct kunit *test) { KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX)); KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN)); } void add_test_overflow(struct kunit *test) { KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1)); } Assertions ~~~~~~~~~~ An assertion is like an expectation, except that the assertion immediately terminates the test case if the condition is not satisfied. For example: .. code-block:: c static void test_sort(struct kunit *test) { int *a, i, r = 1; a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a); for (i = 0; i < TEST_LEN; i++) { r = (r * 725861) % 6599; a[i] = r; } sort(a, TEST_LEN, sizeof(*a), cmpint, NULL); for (i = 0; i < TEST_LEN-1; i++) KUNIT_EXPECT_LE(test, a[i], a[i + 1]); } In this example, we need to be able to allocate an array to test the ``sort()`` function. So we use ``KUNIT_ASSERT_NOT_ERR_OR_NULL()`` to abort the test if there's an allocation error. .. note:: In other test frameworks, ``ASSERT`` macros are often implemented by calling ``return`` so they only work from the test function. In KUnit, we stop the current kthread on failure, so you can call them from anywhere. Customizing error messages -------------------------- Each of the ``KUNIT_EXPECT`` and ``KUNIT_ASSERT`` macros have a ``_MSG`` variant. These take a format string and arguments to provide additional context to the automatically generated error messages. .. code-block:: c char some_str[41]; generate_sha1_hex_string(some_str); /* Before. Not easy to tell why the test failed. */ KUNIT_EXPECT_EQ(test, strlen(some_str), 40); /* After. Now we see the offending string. */ KUNIT_EXPECT_EQ_MSG(test, strlen(some_str), 40, "some_str='%s'", some_str); Alternatively, one can take full control over the error message by using ``KUNIT_FAIL()``, e.g. .. code-block:: c /* Before */ KUNIT_EXPECT_EQ(test, some_setup_function(), 0); /* After: full control over the failure message. */ if (some_setup_function()) KUNIT_FAIL(test, "Failed to setup thing for testing"); Test Suites ~~~~~~~~~~~ We need many test cases covering all the unit's behaviors. It is common to have many similar tests. In order to reduce duplication in these closely related tests, most unit testing frameworks (including KUnit) provide the concept of a *test suite*. A test suite is a collection of test cases for a unit of code with optional setup and teardown functions that run before/after the whole suite and/or every test case. For example: .. code-block:: c static struct kunit_case example_test_cases[] = { KUNIT_CASE(example_test_foo), KUNIT_CASE(example_test_bar), KUNIT_CASE(example_test_baz), {} }; static struct kunit_suite example_test_suite = { .name = "example", .init = example_test_init, .exit = example_test_exit, .suite_init = example_suite_init, .suite_exit = example_suite_exit, .test_cases = example_test_cases, }; kunit_test_suite(example_test_suite); In the above example, the test suite ``example_test_suite`` would first run ``example_suite_init``, then run the test cases ``example_test_foo``, ``example_test_bar``, and ``example_test_baz``. Each would have ``example_test_init`` called immediately before it and ``example_test_exit`` called immediately after it. Finally, ``example_suite_exit`` would be called after everything else. ``kunit_test_suite(example_test_suite)`` registers the test suite with the KUnit test framework. .. note:: A test case will only run if it is associated with a test suite. ``kunit_test_suite(...)`` is a macro which tells the linker to put the specified test suite in a special linker section so that it can be run by KUnit either after ``late_init``, or when the test module is loaded (if the test was built as a module). For more information, see Documentation/dev-tools/kunit/api/test.rst. .. _kunit-on-non-uml: Writing Tests For Other Architectures ------------------------------------- It is better to write tests that run on UML to tests that only run under a particular architecture. It is better to write tests that run under QEMU or another easy to obtain (and monetarily free) software environment to a specific piece of hardware. Nevertheless, there are still valid reasons to write a test that is architecture or hardware specific. For example, we might want to test code that really belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does not depend on physical hardware. Some of our test cases may not need hardware, only few tests actually require the hardware to test it. When hardware is not available, instead of disabling tests, we can skip them. Now that we have narrowed down exactly what bits are hardware specific, the actual procedure for writing and running the tests is same as writing normal KUnit tests. .. important:: We may have to reset hardware state. If this is not possible, we may only be able to run one test case per invocation. .. TODO(brendanhiggins@google.com): Add an actual example of an architecture- dependent KUnit test. Common Patterns =============== Isolating Behavior ------------------ Unit testing limits the amount of code under test to a single unit. It controls what code gets run when the unit under test calls a function. Where a function is exposed as part of an API such that the definition of that function can be changed without affecting the rest of the code base. In the kernel, this comes from two constructs: classes, which are structs that contain function pointers provided by the implementer, and architecture-specific functions, which have definitions selected at compile time. Classes ~~~~~~~ Classes are not a construct that is built into the C programming language; however, it is an easily derived concept. Accordingly, in most cases, every project that does not use a standardized object oriented library (like GNOME's GObject) has their own slightly different way of doing object oriented programming; the Linux kernel is no exception. The central concept in kernel object oriented programming is the class. In the kernel, a *class* is a struct that contains function pointers. This creates a contract between *implementers* and *users* since it forces them to use the same function signature without having to call the function directly. To be a class, the function pointers must specify that a pointer to the class, known as a *class handle*, be one of the parameters. Thus the member functions (also known as *methods*) have access to member variables (also known as *fields*) allowing the same implementation to have multiple *instances*. A class can be *overridden* by *child classes* by embedding the *parent class* in the child class. Then when the child class *method* is called, the child implementation knows that the pointer passed to it is of a parent contained within the child. Thus, the child can compute the pointer to itself because the pointer to the parent is always a fixed offset from the pointer to the child. This offset is the offset of the parent contained in the child struct. For example: .. code-block:: c struct shape { int (*area)(struct shape *this); }; struct rectangle { struct shape parent; int length; int width; }; int rectangle_area(struct shape *this) { struct rectangle *self = container_of(this, struct rectangle, parent); return self->length * self->width; }; void rectangle_new(struct rectangle *self, int length, int width) { self->parent.area = rectangle_area; self->length = length; self->width = width; } In this example, computing the pointer to the child from the pointer to the parent is done by ``container_of``. Faking Classes ~~~~~~~~~~~~~~ In order to unit test a piece of code that calls a method in a class, the behavior of the method must be controllable, otherwise the test ceases to be a unit test and becomes an integration test. A fake class implements a piece of code that is different than what runs in a production instance, but behaves identical from the standpoint of the callers. This is done to replace a dependency that is hard to deal with, or is slow. For example, implementing a fake EEPROM that stores the "contents" in an internal buffer. Assume we have a class that represents an EEPROM: .. code-block:: c struct eeprom { ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count); ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count); }; And we want to test code that buffers writes to the EEPROM: .. code-block:: c struct eeprom_buffer { ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count); int flush(struct eeprom_buffer *this); size_t flush_count; /* Flushes when buffer exceeds flush_count. */ }; struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom); void destroy_eeprom_buffer(struct eeprom *eeprom); We can test this code by *faking out* the underlying EEPROM: .. code-block:: c struct fake_eeprom { struct eeprom parent; char contents[FAKE_EEPROM_CONTENTS_SIZE]; }; ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count) { struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); memcpy(buffer, this->contents + offset, count); return count; } ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count) { struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); memcpy(this->contents + offset, buffer, count); return count; } void fake_eeprom_init(struct fake_eeprom *this) { this->parent.read = fake_eeprom_read; this->parent.write = fake_eeprom_write; memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE); } We can now use it to test ``struct eeprom_buffer``: .. code-block:: c struct eeprom_buffer_test { struct fake_eeprom *fake_eeprom; struct eeprom_buffer *eeprom_buffer; }; static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test) { struct eeprom_buffer_test *ctx = test->priv; struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; char buffer[] = {0xff}; eeprom_buffer->flush_count = SIZE_MAX; eeprom_buffer->write(eeprom_buffer, buffer, 1); KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); eeprom_buffer->write(eeprom_buffer, buffer, 1); KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0); eeprom_buffer->flush(eeprom_buffer); KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); } static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test) { struct eeprom_buffer_test *ctx = test->priv; struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; char buffer[] = {0xff}; eeprom_buffer->flush_count = 2; eeprom_buffer->write(eeprom_buffer, buffer, 1); KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); eeprom_buffer->write(eeprom_buffer, buffer, 1); KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); } static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test) { struct eeprom_buffer_test *ctx = test->priv; struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; char buffer[] = {0xff, 0xff}; eeprom_buffer->flush_count = 2; eeprom_buffer->write(eeprom_buffer, buffer, 1); KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); eeprom_buffer->write(eeprom_buffer, buffer, 2); KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); /* Should have only flushed the first two bytes. */ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0); } static int eeprom_buffer_test_init(struct kunit *test) { struct eeprom_buffer_test *ctx; ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx); ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom); fake_eeprom_init(ctx->fake_eeprom); ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer); test->priv = ctx; return 0; } static void eeprom_buffer_test_exit(struct kunit *test) { struct eeprom_buffer_test *ctx = test->priv; destroy_eeprom_buffer(ctx->eeprom_buffer); } Testing Against Multiple Inputs ------------------------------- Testing just a few inputs is not enough to ensure that the code works correctly, for example: testing a hash function. We can write a helper macro or function. The function is called for each input. For example, to test ``sha1sum(1)``, we can write: .. code-block:: c #define TEST_SHA1(in, want) \ sha1sum(in, out); \ KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in); char out[40]; TEST_SHA1("hello world", "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed"); TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169"); Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more detailed error and make the assertions clearer within the helper macros. The ``_MSG`` variants are useful when the same expectation is called multiple times (in a loop or helper function) and thus the line number is not enough to identify what failed, as shown below. In complicated cases, we recommend using a *table-driven test* compared to the helper macro variation, for example: .. code-block:: c int i; char out[40]; struct sha1_test_case { const char *str; const char *sha1; }; struct sha1_test_case cases[] = { { .str = "hello world", .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", }, { .str = "hello world!", .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", }, }; for (i = 0; i < ARRAY_SIZE(cases); ++i) { sha1sum(cases[i].str, out); KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1, "sha1sum(%s)", cases[i].str); } There is more boilerplate code involved, but it can: * be more readable when there are multiple inputs/outputs (due to field names). * For example, see ``fs/ext4/inode-test.c``. * reduce duplication if test cases are shared across multiple tests. * For example: if we want to test ``sha256sum``, we could add a ``sha256`` field and reuse ``cases``. * be converted to a "parameterized test". Parameterized Testing ~~~~~~~~~~~~~~~~~~~~~ The table-driven testing pattern is common enough that KUnit has special support for it. By reusing the same ``cases`` array from above, we can write the test as a "parameterized test" with the following. .. code-block:: c // This is copy-pasted from above. struct sha1_test_case { const char *str; const char *sha1; }; const struct sha1_test_case cases[] = { { .str = "hello world", .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", }, { .str = "hello world!", .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", }, }; // Need a helper function to generate a name for each test case. static void case_to_desc(const struct sha1_test_case *t, char *desc) { strcpy(desc, t->str); } // Creates `sha1_gen_params()` to iterate over `cases`. KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc); // Looks no different from a normal test. static void sha1_test(struct kunit *test) { // This function can just contain the body of the for-loop. // The former `cases[i]` is accessible under test->param_value. char out[40]; struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value); sha1sum(test_param->str, out); KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1, "sha1sum(%s)", test_param->str); } // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the // function declared by KUNIT_ARRAY_PARAM. static struct kunit_case sha1_test_cases[] = { KUNIT_CASE_PARAM(sha1_test, sha1_gen_params), {} }; Allocating Memory ----------------- Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit will then ensure that the memory is freed once the test completes. This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit early from a test without having to worry about remembering to call ``kfree``. For example: .. code-block:: c void example_test_allocation(struct kunit *test) { char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL); /* Ensure allocation succeeded. */ KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer); KUNIT_ASSERT_STREQ(test, buffer, ""); } Testing Static Functions ------------------------ If we do not want to expose functions or variables for testing, one option is to conditionally ``#include`` the test file at the end of your .c file. For example: .. code-block:: c /* In my_file.c */ static int do_interesting_thing(); #ifdef CONFIG_MY_KUNIT_TEST #include "my_kunit_test.c" #endif Injecting Test-Only Code ------------------------ Similar to as shown above, we can add test-specific logic. For example: .. code-block:: c /* In my_file.h */ #ifdef CONFIG_MY_KUNIT_TEST /* Defined in my_kunit_test.c */ void test_only_hook(void); #else void test_only_hook(void) { } #endif This test-only code can be made more useful by accessing the current ``kunit_test`` as shown in next section: *Accessing The Current Test*. Accessing The Current Test -------------------------- In some cases, we need to call test-only code from outside the test file. This is helpful, for example, when providing a fake implementation of a function, or to fail any current test from within an error handler. We can do this via the ``kunit_test`` field in ``task_struct``, which we can access using the ``kunit_get_current_test()`` function in ``kunit/test-bug.h``. ``kunit_get_current_test()`` is safe to call even if KUnit is not enabled. If KUnit is not enabled, or if no test is running in the current task, it will return ``NULL``. This compiles down to either a no-op or a static key check, so will have a negligible performance impact when no test is running. The example below uses this to implement a "mock" implementation of a function, ``foo``: .. code-block:: c #include <kunit/test-bug.h> /* for kunit_get_current_test */ struct test_data { int foo_result; int want_foo_called_with; }; static int fake_foo(int arg) { struct kunit *test = kunit_get_current_test(); struct test_data *test_data = test->priv; KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg); return test_data->foo_result; } static void example_simple_test(struct kunit *test) { /* Assume priv (private, a member used to pass test data from * the init function) is allocated in the suite's .init */ struct test_data *test_data = test->priv; test_data->foo_result = 42; test_data->want_foo_called_with = 1; /* In a real test, we'd probably pass a pointer to fake_foo somewhere * like an ops struct, etc. instead of calling it directly. */ KUNIT_EXPECT_EQ(test, fake_foo(1), 42); } In this example, we are using the ``priv`` member of ``struct kunit`` as a way of passing data to the test from the init function. In general ``priv`` is pointer that can be used for any user data. This is preferred over static variables, as it avoids concurrency issues. Had we wanted something more flexible, we could have used a named ``kunit_resource``. Each test can have multiple resources which have string names providing the same flexibility as a ``priv`` member, but also, for example, allowing helper functions to create resources without conflicting with each other. It is also possible to define a clean up function for each resource, making it easy to avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/resource.rst. Failing The Current Test ------------------------ If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)`` which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``. For example, we have an option to enable some extra debug checks on some data structures as shown below: .. code-block:: c #include <kunit/test-bug.h> #ifdef CONFIG_EXTRA_DEBUG_CHECKS static void validate_my_data(struct data *data) { if (is_valid(data)) return; kunit_fail_current_test("data %p is invalid", data); /* Normal, non-KUnit, error reporting code here. */ } #else static void my_debug_function(void) { } #endif ``kunit_fail_current_test()`` is safe to call even if KUnit is not enabled. If KUnit is not enabled, or if no test is running in the current task, it will do nothing. This compiles down to either a no-op or a static key check, so will have a negligible performance impact when no test is running. |