// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2015-2019 Netronome Systems, Inc. */
/*
* nfp_net_common.c
* Netronome network device driver: Common functions between PF and VF
* Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
* Jason McMullan <jason.mcmullan@netronome.com>
* Rolf Neugebauer <rolf.neugebauer@netronome.com>
* Brad Petrus <brad.petrus@netronome.com>
* Chris Telfer <chris.telfer@netronome.com>
*/
#include <linux/bitfield.h>
#include <linux/bpf.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/mm.h>
#include <linux/overflow.h>
#include <linux/page_ref.h>
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/if_bridge.h>
#include <linux/random.h>
#include <linux/vmalloc.h>
#include <linux/ktime.h>
#include <net/tls.h>
#include <net/vxlan.h>
#include <net/xdp_sock_drv.h>
#include <net/xfrm.h>
#include "nfpcore/nfp_dev.h"
#include "nfpcore/nfp_nsp.h"
#include "ccm.h"
#include "nfp_app.h"
#include "nfp_net_ctrl.h"
#include "nfp_net.h"
#include "nfp_net_dp.h"
#include "nfp_net_sriov.h"
#include "nfp_net_xsk.h"
#include "nfp_port.h"
#include "crypto/crypto.h"
#include "crypto/fw.h"
/**
* nfp_net_get_fw_version() - Read and parse the FW version
* @fw_ver: Output fw_version structure to read to
* @ctrl_bar: Mapped address of the control BAR
*/
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
void __iomem *ctrl_bar)
{
u32 reg;
reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
put_unaligned_le32(reg, fw_ver);
}
u32 nfp_qcp_queue_offset(const struct nfp_dev_info *dev_info, u16 queue)
{
queue &= dev_info->qc_idx_mask;
return dev_info->qc_addr_offset + NFP_QCP_QUEUE_ADDR_SZ * queue;
}
/* Firmware reconfig
*
* Firmware reconfig may take a while so we have two versions of it -
* synchronous and asynchronous (posted). All synchronous callers are holding
* RTNL so we don't have to worry about serializing them.
*/
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
nn_writel(nn, NFP_NET_CFG_UPDATE, update);
/* ensure update is written before pinging HW */
nn_pci_flush(nn);
nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
nn->reconfig_in_progress_update = update;
}
/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
update |= nn->reconfig_posted;
nn->reconfig_posted = 0;
nfp_net_reconfig_start(nn, update);
nn->reconfig_timer_active = true;
mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}
static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
u32 reg;
reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
if (reg == 0)
return true;
if (reg & NFP_NET_CFG_UPDATE_ERR) {
nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
reg, nn->reconfig_in_progress_update,
nn_readl(nn, NFP_NET_CFG_CTRL));
return true;
} else if (last_check) {
nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
reg, nn->reconfig_in_progress_update,
nn_readl(nn, NFP_NET_CFG_CTRL));
return true;
}
return false;
}
static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
bool timed_out = false;
int i;
/* Poll update field, waiting for NFP to ack the config.
* Do an opportunistic wait-busy loop, afterward sleep.
*/
for (i = 0; i < 50; i++) {
if (nfp_net_reconfig_check_done(nn, false))
return false;
udelay(4);
}
while (!nfp_net_reconfig_check_done(nn, timed_out)) {
usleep_range(250, 500);
timed_out = time_is_before_eq_jiffies(deadline);
}
return timed_out;
}
static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
if (__nfp_net_reconfig_wait(nn, deadline))
return -EIO;
if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
return -EIO;
return 0;
}
static void nfp_net_reconfig_timer(struct timer_list *t)
{
struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
spin_lock_bh(&nn->reconfig_lock);
nn->reconfig_timer_active = false;
/* If sync caller is present it will take over from us */
if (nn->reconfig_sync_present)
goto done;
/* Read reconfig status and report errors */
nfp_net_reconfig_check_done(nn, true);
if (nn->reconfig_posted)
nfp_net_reconfig_start_async(nn, 0);
done:
spin_unlock_bh(&nn->reconfig_lock);
}
/**
* nfp_net_reconfig_post() - Post async reconfig request
* @nn: NFP Net device to reconfigure
* @update: The value for the update field in the BAR config
*
* Record FW reconfiguration request. Reconfiguration will be kicked off
* whenever reconfiguration machinery is idle. Multiple requests can be
* merged together!
*/
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
spin_lock_bh(&nn->reconfig_lock);
/* Sync caller will kick off async reconf when it's done, just post */
if (nn->reconfig_sync_present) {
nn->reconfig_posted |= update;
goto done;
}
/* Opportunistically check if the previous command is done */
if (!nn->reconfig_timer_active ||
nfp_net_reconfig_check_done(nn, false))
nfp_net_reconfig_start_async(nn, update);
else
nn->reconfig_posted |= update;
done:
spin_unlock_bh(&nn->reconfig_lock);
}
static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
{
bool cancelled_timer = false;
u32 pre_posted_requests;
spin_lock_bh(&nn->reconfig_lock);
WARN_ON(nn->reconfig_sync_present);
nn->reconfig_sync_present = true;
if (nn->reconfig_timer_active) {
nn->reconfig_timer_active = false;
cancelled_timer = true;
}
pre_posted_requests = nn->reconfig_posted;
nn->reconfig_posted = 0;
spin_unlock_bh(&nn->reconfig_lock);
if (cancelled_timer) {
del_timer_sync(&nn->reconfig_timer);
nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
}
/* Run the posted reconfigs which were issued before we started */
if (pre_posted_requests) {
nfp_net_reconfig_start(nn, pre_posted_requests);
nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
}
}
static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
{
nfp_net_reconfig_sync_enter(nn);
spin_lock_bh(&nn->reconfig_lock);
nn->reconfig_sync_present = false;
spin_unlock_bh(&nn->reconfig_lock);
}
/**
* __nfp_net_reconfig() - Reconfigure the firmware
* @nn: NFP Net device to reconfigure
* @update: The value for the update field in the BAR config
*
* Write the update word to the BAR and ping the reconfig queue. The
* poll until the firmware has acknowledged the update by zeroing the
* update word.
*
* Return: Negative errno on error, 0 on success
*/
int __nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
int ret;
nfp_net_reconfig_sync_enter(nn);
nfp_net_reconfig_start(nn, update);
ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
spin_lock_bh(&nn->reconfig_lock);
if (nn->reconfig_posted)
nfp_net_reconfig_start_async(nn, 0);
nn->reconfig_sync_present = false;
spin_unlock_bh(&nn->reconfig_lock);
return ret;
}
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
int ret;
nn_ctrl_bar_lock(nn);
ret = __nfp_net_reconfig(nn, update);
nn_ctrl_bar_unlock(nn);
return ret;
}
int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size)
{
if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) {
nn_err(nn, "mailbox too small for %u of data (%u)\n",
data_size, nn->tlv_caps.mbox_len);
return -EIO;
}
nn_ctrl_bar_lock(nn);
return 0;
}
/**
* nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
* @nn: NFP Net device to reconfigure
* @mbox_cmd: The value for the mailbox command
*
* Helper function for mailbox updates
*
* Return: Negative errno on error, 0 on success
*/
int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd)
{
u32 mbox = nn->tlv_caps.mbox_off;
int ret;
nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
if (ret) {
nn_err(nn, "Mailbox update error\n");
return ret;
}
return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
}
void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd)
{
u32 mbox = nn->tlv_caps.mbox_off;
nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX);
}
int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn)
{
u32 mbox = nn->tlv_caps.mbox_off;
nfp_net_reconfig_wait_posted(nn);
return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
}
int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd)
{
int ret;
ret = nfp_net_mbox_reconfig(nn, mbox_cmd);
nn_ctrl_bar_unlock(nn);
return ret;
}
/* Interrupt configuration and handling
*/
/**
* nfp_net_irqs_alloc() - allocates MSI-X irqs
* @pdev: PCI device structure
* @irq_entries: Array to be initialized and used to hold the irq entries
* @min_irqs: Minimal acceptable number of interrupts
* @wanted_irqs: Target number of interrupts to allocate
*
* Return: Number of irqs obtained or 0 on error.
*/
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
unsigned int min_irqs, unsigned int wanted_irqs)
{
unsigned int i;
int got_irqs;
for (i = 0; i < wanted_irqs; i++)
irq_entries[i].entry = i;
got_irqs = pci_enable_msix_range(pdev, irq_entries,
min_irqs, wanted_irqs);
if (got_irqs < 0) {
dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
min_irqs, wanted_irqs, got_irqs);
return 0;
}
if (got_irqs < wanted_irqs)
dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
wanted_irqs, got_irqs);
return got_irqs;
}
/**
* nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
* @nn: NFP Network structure
* @irq_entries: Table of allocated interrupts
* @n: Size of @irq_entries (number of entries to grab)
*
* After interrupts are allocated with nfp_net_irqs_alloc() this function
* should be called to assign them to a specific netdev (port).
*/
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
unsigned int n)
{
struct nfp_net_dp *dp = &nn->dp;
nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
dp->num_r_vecs = nn->max_r_vecs;
memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
if (dp->num_rx_rings > dp->num_r_vecs ||
dp->num_tx_rings > dp->num_r_vecs)
dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
dp->num_rx_rings, dp->num_tx_rings,
dp->num_r_vecs);
dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
dp->num_stack_tx_rings = dp->num_tx_rings;
}
/**
* nfp_net_irqs_disable() - Disable interrupts
* @pdev: PCI device structure
*
* Undoes what @nfp_net_irqs_alloc() does.
*/
void nfp_net_irqs_disable(struct pci_dev *pdev)
{
pci_disable_msix(pdev);
}
/**
* nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
* @irq: Interrupt
* @data: Opaque data structure
*
* Return: Indicate if the interrupt has been handled.
*/
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
struct nfp_net_r_vector *r_vec = data;
/* Currently we cannot tell if it's a rx or tx interrupt,
* since dim does not need accurate event_ctr to calculate,
* we just use this counter for both rx and tx dim.
*/
r_vec->event_ctr++;
napi_schedule_irqoff(&r_vec->napi);
/* The FW auto-masks any interrupt, either via the MASK bit in
* the MSI-X table or via the per entry ICR field. So there
* is no need to disable interrupts here.
*/
return IRQ_HANDLED;
}
static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
{
struct nfp_net_r_vector *r_vec = data;
tasklet_schedule(&r_vec->tasklet);
return IRQ_HANDLED;
}
/**
* nfp_net_read_link_status() - Reread link status from control BAR
* @nn: NFP Network structure
*/
static void nfp_net_read_link_status(struct nfp_net *nn)
{
unsigned long flags;
bool link_up;
u16 sts;
spin_lock_irqsave(&nn->link_status_lock, flags);
sts = nn_readw(nn, NFP_NET_CFG_STS);
link_up = !!(sts & NFP_NET_CFG_STS_LINK);
if (nn->link_up == link_up)
goto out;
nn->link_up = link_up;
if (nn->port) {
set_bit(NFP_PORT_CHANGED, &nn->port->flags);
if (nn->port->link_cb)
nn->port->link_cb(nn->port);
}
if (nn->link_up) {
netif_carrier_on(nn->dp.netdev);
netdev_info(nn->dp.netdev, "NIC Link is Up\n");
} else {
netif_carrier_off(nn->dp.netdev);
netdev_info(nn->dp.netdev, "NIC Link is Down\n");
}
out:
spin_unlock_irqrestore(&nn->link_status_lock, flags);
}
/**
* nfp_net_irq_lsc() - Interrupt service routine for link state changes
* @irq: Interrupt
* @data: Opaque data structure
*
* Return: Indicate if the interrupt has been handled.
*/
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
struct nfp_net *nn = data;
struct msix_entry *entry;
entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
nfp_net_read_link_status(nn);
nfp_net_irq_unmask(nn, entry->entry);
return IRQ_HANDLED;
}
/**
* nfp_net_irq_exn() - Interrupt service routine for exceptions
* @irq: Interrupt
* @data: Opaque data structure
*
* Return: Indicate if the interrupt has been handled.
*/
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
struct nfp_net *nn = data;
nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
/* XXX TO BE IMPLEMENTED */
return IRQ_HANDLED;
}
/**
* nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
* @nn: NFP Network structure
* @ctrl_offset: Control BAR offset where IRQ configuration should be written
* @format: printf-style format to construct the interrupt name
* @name: Pointer to allocated space for interrupt name
* @name_sz: Size of space for interrupt name
* @vector_idx: Index of MSI-X vector used for this interrupt
* @handler: IRQ handler to register for this interrupt
*/
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
const char *format, char *name, size_t name_sz,
unsigned int vector_idx, irq_handler_t handler)
{
struct msix_entry *entry;
int err;
entry = &nn->irq_entries[vector_idx];
snprintf(name, name_sz, format, nfp_net_name(nn));
err = request_irq(entry->vector, handler, 0, name, nn);
if (err) {
nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
entry->vector, err);
return err;
}
nn_writeb(nn, ctrl_offset, entry->entry);
nfp_net_irq_unmask(nn, entry->entry);
return 0;
}
/**
* nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
* @nn: NFP Network structure
* @ctrl_offset: Control BAR offset where IRQ configuration should be written
* @vector_idx: Index of MSI-X vector used for this interrupt
*/
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
unsigned int vector_idx)
{
nn_writeb(nn, ctrl_offset, 0xff);
nn_pci_flush(nn);
free_irq(nn->irq_entries[vector_idx].vector, nn);
}
struct sk_buff *
nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
struct sk_buff *skb, u64 *tls_handle, int *nr_frags)
{
#ifdef CONFIG_TLS_DEVICE
struct nfp_net_tls_offload_ctx *ntls;
struct sk_buff *nskb;
bool resync_pending;
u32 datalen, seq;
if (likely(!dp->ktls_tx))
return skb;
if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))
return skb;
datalen = skb->len - skb_tcp_all_headers(skb);
seq = ntohl(tcp_hdr(skb)->seq);
ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
resync_pending = tls_offload_tx_resync_pending(skb->sk);
if (unlikely(resync_pending || ntls->next_seq != seq)) {
/* Pure ACK out of order already */
if (!datalen)
return skb;
u64_stats_update_begin(&r_vec->tx_sync);
r_vec->tls_tx_fallback++;
u64_stats_update_end(&r_vec->tx_sync);
nskb = tls_encrypt_skb(skb);
if (!nskb) {
u64_stats_update_begin(&r_vec->tx_sync);
r_vec->tls_tx_no_fallback++;
u64_stats_update_end(&r_vec->tx_sync);
return NULL;
}
/* encryption wasn't necessary */
if (nskb == skb)
return skb;
/* we don't re-check ring space */
if (unlikely(skb_is_nonlinear(nskb))) {
nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n");
u64_stats_update_begin(&r_vec->tx_sync);
r_vec->tx_errors++;
u64_stats_update_end(&r_vec->tx_sync);
dev_kfree_skb_any(nskb);
return NULL;
}
/* jump forward, a TX may have gotten lost, need to sync TX */
if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4)
tls_offload_tx_resync_request(nskb->sk, seq,
ntls->next_seq);
*nr_frags = 0;
return nskb;
}
if (datalen) {
u64_stats_update_begin(&r_vec->tx_sync);
if (!skb_is_gso(skb))
r_vec->hw_tls_tx++;
else
r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs;
u64_stats_update_end(&r_vec->tx_sync);
}
memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle));
ntls->next_seq += datalen;
#endif
return skb;
}
void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle)
{
#ifdef CONFIG_TLS_DEVICE
struct nfp_net_tls_offload_ctx *ntls;
u32 datalen, seq;
if (!tls_handle)
return;
if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)))
return;
datalen = skb->len - skb_tcp_all_headers(skb);
seq = ntohl(tcp_hdr(skb)->seq);
ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
if (ntls->next_seq == seq + datalen)
ntls->next_seq = seq;
else
WARN_ON_ONCE(1);
#endif
}
static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct nfp_net *nn = netdev_priv(netdev);
nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue);
}
/* Receive processing */
static unsigned int
nfp_net_calc_fl_bufsz_data(struct nfp_net_dp *dp)
{
unsigned int fl_bufsz = 0;
if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
fl_bufsz += NFP_NET_MAX_PREPEND;
else
fl_bufsz += dp->rx_offset;
fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
return fl_bufsz;
}
static unsigned int nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
{
unsigned int fl_bufsz;
fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
fl_bufsz += dp->rx_dma_off;
fl_bufsz += nfp_net_calc_fl_bufsz_data(dp);
fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
return fl_bufsz;
}
static unsigned int nfp_net_calc_fl_bufsz_xsk(struct nfp_net_dp *dp)
{
unsigned int fl_bufsz;
fl_bufsz = XDP_PACKET_HEADROOM;
fl_bufsz += nfp_net_calc_fl_bufsz_data(dp);
return fl_bufsz;
}
/* Setup and Configuration
*/
/**
* nfp_net_vecs_init() - Assign IRQs and setup rvecs.
* @nn: NFP Network structure
*/
static void nfp_net_vecs_init(struct nfp_net *nn)
{
int numa_node = dev_to_node(&nn->pdev->dev);
struct nfp_net_r_vector *r_vec;
unsigned int r;
nn->lsc_handler = nfp_net_irq_lsc;
nn->exn_handler = nfp_net_irq_exn;
for (r = 0; r < nn->max_r_vecs; r++) {
struct msix_entry *entry;
entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
r_vec = &nn->r_vecs[r];
r_vec->nfp_net = nn;
r_vec->irq_entry = entry->entry;
r_vec->irq_vector = entry->vector;
if (nn->dp.netdev) {
r_vec->handler = nfp_net_irq_rxtx;
} else {
r_vec->handler = nfp_ctrl_irq_rxtx;
__skb_queue_head_init(&r_vec->queue);
spin_lock_init(&r_vec->lock);
tasklet_setup(&r_vec->tasklet, nn->dp.ops->ctrl_poll);
tasklet_disable(&r_vec->tasklet);
}
cpumask_set_cpu(cpumask_local_spread(r, numa_node), &r_vec->affinity_mask);
}
}
static void
nfp_net_napi_add(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, int idx)
{
if (dp->netdev)
netif_napi_add(dp->netdev, &r_vec->napi,
nfp_net_has_xsk_pool_slow(dp, idx) ? dp->ops->xsk_poll : dp->ops->poll);
else
tasklet_enable(&r_vec->tasklet);
}
static void
nfp_net_napi_del(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec)
{
if (dp->netdev)
netif_napi_del(&r_vec->napi);
else
tasklet_disable(&r_vec->tasklet);
}
static void
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
struct nfp_net_r_vector *r_vec, int idx)
{
r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
r_vec->tx_ring =
idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
if (nfp_net_has_xsk_pool_slow(dp, idx) || r_vec->xsk_pool) {
r_vec->xsk_pool = dp->xdp_prog ? dp->xsk_pools[idx] : NULL;
if (r_vec->xsk_pool)
xsk_pool_set_rxq_info(r_vec->xsk_pool,
&r_vec->rx_ring->xdp_rxq);
nfp_net_napi_del(dp, r_vec);
nfp_net_napi_add(dp, r_vec, idx);
}
}
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
int idx)
{
int err;
nfp_net_napi_add(&nn->dp, r_vec, idx);
snprintf(r_vec->name, sizeof(r_vec->name),
"%s-rxtx-%d", nfp_net_name(nn), idx);
err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
r_vec);
if (err) {
nfp_net_napi_del(&nn->dp, r_vec);
nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
return err;
}
disable_irq(r_vec->irq_vector);
irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
r_vec->irq_entry);
return 0;
}
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
{
irq_set_affinity_hint(r_vec->irq_vector, NULL);
nfp_net_napi_del(&nn->dp, r_vec);
free_irq(r_vec->irq_vector, r_vec);
}
/**
* nfp_net_rss_write_itbl() - Write RSS indirection table to device
* @nn: NFP Net device to reconfigure
*/
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
int i;
for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
get_unaligned_le32(nn->rss_itbl + i));
}
/**
* nfp_net_rss_write_key() - Write RSS hash key to device
* @nn: NFP Net device to reconfigure
*/
void nfp_net_rss_write_key(struct nfp_net *nn)
{
int i;
for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
get_unaligned_le32(nn->rss_key + i));
}
/**
* nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
* @nn: NFP Net device to reconfigure
*/
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
u8 i;
u32 factor;
u32 value;
/* Compute factor used to convert coalesce '_usecs' parameters to
* ME timestamp ticks. There are 16 ME clock cycles for each timestamp
* count.
*/
factor = nn->tlv_caps.me_freq_mhz / 16;
/* copy RX interrupt coalesce parameters */
value = (nn->rx_coalesce_max_frames << 16) |
(factor * nn->rx_coalesce_usecs);
for (i = 0; i < nn->dp.num_rx_rings; i++)
nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
/* copy TX interrupt coalesce parameters */
value = (nn->tx_coalesce_max_frames << 16) |
(factor * nn->tx_coalesce_usecs);
for (i = 0; i < nn->dp.num_tx_rings; i++)
nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}
/**
* nfp_net_write_mac_addr() - Write mac address to the device control BAR
* @nn: NFP Net device to reconfigure
* @addr: MAC address to write
*
* Writes the MAC address from the netdev to the device control BAR. Does not
* perform the required reconfig. We do a bit of byte swapping dance because
* firmware is LE.
*/
static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
{
nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
}
/**
* nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
* @nn: NFP Net device to reconfigure
*
* Warning: must be fully idempotent.
*/
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
u32 new_ctrl, update;
unsigned int r;
int err;
new_ctrl = nn->dp.ctrl;
new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
update = NFP_NET_CFG_UPDATE_GEN;
update |= NFP_NET_CFG_UPDATE_MSIX;
update |= NFP_NET_CFG_UPDATE_RING;
if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
err = nfp_net_reconfig(nn, update);
if (err)
nn_err(nn, "Could not disable device: %d\n", err);
for (r = 0; r < nn->dp.num_rx_rings; r++) {
nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
if (nfp_net_has_xsk_pool_slow(&nn->dp, nn->dp.rx_rings[r].idx))
nfp_net_xsk_rx_bufs_free(&nn->dp.rx_rings[r]);
}
for (r = 0; r < nn->dp.num_tx_rings; r++)
nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
for (r = 0; r < nn->dp.num_r_vecs; r++)
nfp_net_vec_clear_ring_data(nn, r);
nn->dp.ctrl = new_ctrl;
}
/**
* nfp_net_set_config_and_enable() - Write control BAR and enable NFP
* @nn: NFP Net device to reconfigure
*/
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
{
u32 bufsz, new_ctrl, update = 0;
unsigned int r;
int err;
new_ctrl = nn->dp.ctrl;
if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
nfp_net_rss_write_key(nn);
nfp_net_rss_write_itbl(nn);
nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
update |= NFP_NET_CFG_UPDATE_RSS;
}
if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
nfp_net_coalesce_write_cfg(nn);
update |= NFP_NET_CFG_UPDATE_IRQMOD;
}
for (r = 0; r < nn->dp.num_tx_rings; r++)
nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
for (r = 0; r < nn->dp.num_rx_rings; r++)
nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE,
U64_MAX >> (64 - nn->dp.num_tx_rings));
nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE,
U64_MAX >> (64 - nn->dp.num_rx_rings));
if (nn->dp.netdev)
nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
/* Enable device */
new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
update |= NFP_NET_CFG_UPDATE_GEN;
update |= NFP_NET_CFG_UPDATE_MSIX;
update |= NFP_NET_CFG_UPDATE_RING;
if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, nn->dp.ctrl_w1);
err = nfp_net_reconfig(nn, update);
if (err) {
nfp_net_clear_config_and_disable(nn);
return err;
}
nn->dp.ctrl = new_ctrl;
for (r = 0; r < nn->dp.num_rx_rings; r++)
nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
return 0;
}
/**
* nfp_net_close_stack() - Quiesce the stack (part of close)
* @nn: NFP Net device to reconfigure
*/
static void nfp_net_close_stack(struct nfp_net *nn)
{
struct nfp_net_r_vector *r_vec;
unsigned int r;
disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
netif_carrier_off(nn->dp.netdev);
nn->link_up = false;
for (r = 0; r < nn->dp.num_r_vecs; r++) {
r_vec = &nn->r_vecs[r];
disable_irq(r_vec->irq_vector);
napi_disable(&r_vec->napi);
if (r_vec->rx_ring)
cancel_work_sync(&r_vec->rx_dim.work);
if (r_vec->tx_ring)
cancel_work_sync(&r_vec->tx_dim.work);
}
netif_tx_disable(nn->dp.netdev);
}
/**
* nfp_net_close_free_all() - Free all runtime resources
* @nn: NFP Net device to reconfigure
*/
static void nfp_net_close_free_all(struct nfp_net *nn)
{
unsigned int r;
nfp_net_tx_rings_free(&nn->dp);
nfp_net_rx_rings_free(&nn->dp);
for (r = 0; r < nn->dp.num_r_vecs; r++)
nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
}
/**
* nfp_net_netdev_close() - Called when the device is downed
* @netdev: netdev structure
*/
static int nfp_net_netdev_close(struct net_device *netdev)
{
struct nfp_net *nn = netdev_priv(netdev);
/* Step 1: Disable RX and TX rings from the Linux kernel perspective
*/
nfp_net_close_stack(nn);
/* Step 2: Tell NFP
*/
nfp_net_clear_config_and_disable(nn);
nfp_port_configure(netdev, false);
/* Step 3: Free resources
*/
nfp_net_close_free_all(nn);
nn_dbg(nn, "%s down", netdev->name);
return 0;
}
void nfp_ctrl_close(struct nfp_net *nn)
{
int r;
rtnl_lock();
for (r = 0; r < nn->dp.num_r_vecs; r++) {
disable_irq(nn->r_vecs[r].irq_vector);
tasklet_disable(&nn->r_vecs[r].tasklet);
}
nfp_net_clear_config_and_disable(nn);
nfp_net_close_free_all(nn);
rtnl_unlock();
}
static void nfp_net_rx_dim_work(struct work_struct *work)
{
struct nfp_net_r_vector *r_vec;
unsigned int factor, value;
struct dim_cq_moder moder;
struct nfp_net *nn;
struct dim *dim;
dim = container_of(work, struct dim, work);
moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim);
nn = r_vec->nfp_net;
/* Compute factor used to convert coalesce '_usecs' parameters to
* ME timestamp ticks. There are 16 ME clock cycles for each timestamp
* count.
*/
factor = nn->tlv_caps.me_freq_mhz / 16;
if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts))
return;
/* copy RX interrupt coalesce parameters */
value = (moder.pkts << 16) | (factor * moder.usec);
nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value);
(void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD);
dim->state = DIM_START_MEASURE;
}
static void nfp_net_tx_dim_work(struct work_struct *work)
{
struct nfp_net_r_vector *r_vec;
unsigned int factor, value;
struct dim_cq_moder moder;
struct nfp_net *nn;
struct dim *dim;
dim = container_of(work, struct dim, work);
moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim);
nn = r_vec->nfp_net;
/* Compute factor used to convert coalesce '_usecs' parameters to
* ME timestamp ticks. There are 16 ME clock cycles for each timestamp
* count.
*/
factor = nn->tlv_caps.me_freq_mhz / 16;
if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts))
return;
/* copy TX interrupt coalesce parameters */
value = (moder.pkts << 16) | (factor * moder.usec);
nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value);
(void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD);
dim->state = DIM_START_MEASURE;
}
/**
* nfp_net_open_stack() - Start the device from stack's perspective
* @nn: NFP Net device to reconfigure
*/
static void nfp_net_open_stack(struct nfp_net *nn)
{
struct nfp_net_r_vector *r_vec;
unsigned int r;
for (r = 0; r < nn->dp.num_r_vecs; r++) {
r_vec = &nn->r_vecs[r];
if (r_vec->rx_ring) {
INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work);
r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
}
if (r_vec->tx_ring) {
INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work);
r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
}
napi_enable(&r_vec->napi);
enable_irq(r_vec->irq_vector);
}
netif_tx_wake_all_queues(nn->dp.netdev);
enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
nfp_net_read_link_status(nn);
}
static int nfp_net_open_alloc_all(struct nfp_net *nn)
{
int err, r;
err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
nn->exn_name, sizeof(nn->exn_name),
NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
if (err)
return err;
err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
nn->lsc_name, sizeof(nn->lsc_name),
NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
if (err)
goto err_free_exn;
disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
for (r = 0; r < nn->dp.num_r_vecs; r++) {
err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
if (err)
goto err_cleanup_vec_p;
}
err = nfp_net_rx_rings_prepare(nn, &nn->dp);
if (err)
goto err_cleanup_vec;
err = nfp_net_tx_rings_prepare(nn, &nn->dp);
if (err)
goto err_free_rx_rings;
for (r = 0; r < nn->max_r_vecs; r++)
nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
return 0;
err_free_rx_rings:
nfp_net_rx_rings_free(&nn->dp);
err_cleanup_vec:
r = nn->dp.num_r_vecs;
err_cleanup_vec_p:
while (r--)
nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
err_free_exn:
nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
return err;
}
static int nfp_net_netdev_open(struct net_device *netdev)
{
struct nfp_net *nn = netdev_priv(netdev);
int err;
/* Step 1: Allocate resources for rings and the like
* - Request interrupts
* - Allocate RX and TX ring resources
* - Setup initial RSS table
*/
err = nfp_net_open_alloc_all(nn);
if (err)
return err;
err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
if (err)
goto err_free_all;
err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
if (err)
goto err_free_all;
/* Step 2: Configure the NFP
* - Ifup the physical interface if it exists
* - Enable rings from 0 to tx_rings/rx_rings - 1.
* - Write MAC address (in case it changed)
* - Set the MTU
* - Set the Freelist buffer size
* - Enable the FW
*/
err = nfp_port_configure(netdev, true);
if (err)
goto err_free_all;
err = nfp_net_set_config_and_enable(nn);
if (err)
goto err_port_disable;
/* Step 3: Enable for kernel
* - put some freelist descriptors on each RX ring
* - enable NAPI on each ring
* - enable all TX queues
* - set link state
*/
nfp_net_open_stack(nn);
return 0;
err_port_disable:
nfp_port_configure(netdev, false);
err_free_all:
nfp_net_close_free_all(nn);
return err;
}
int nfp_ctrl_open(struct nfp_net *nn)
{
int err, r;
/* ring dumping depends on vNICs being opened/closed under rtnl */
rtnl_lock();
err = nfp_net_open_alloc_all(nn);
if (err)
goto err_unlock;
err = nfp_net_set_config_and_enable(nn);
if (err)
goto err_free_all;
for (r = 0; r < nn->dp.num_r_vecs; r++)
enable_irq(nn->r_vecs[r].irq_vector);
rtnl_unlock();
return 0;
err_free_all:
nfp_net_close_free_all(nn);
err_unlock:
rtnl_unlock();
return err;
}
int nfp_net_sched_mbox_amsg_work(struct nfp_net *nn, u32 cmd, const void *data, size_t len,
int (*cb)(struct nfp_net *, struct nfp_mbox_amsg_entry *))
{
struct nfp_mbox_amsg_entry *entry;
entry = kmalloc(sizeof(*entry) + len, GFP_ATOMIC);
if (!entry)
return -ENOMEM;
memcpy(entry->msg, data, len);
entry->cmd = cmd;
entry->cfg = cb;
spin_lock_bh(&nn->mbox_amsg.lock);
list_add_tail(&entry->list, &nn->mbox_amsg.list);
spin_unlock_bh(&nn->mbox_amsg.lock);
schedule_work(&nn->mbox_amsg.work);
return 0;
}
static void nfp_net_mbox_amsg_work(struct work_struct *work)
{
struct nfp_net *nn = container_of(work, struct nfp_net, mbox_amsg.work);
struct nfp_mbox_amsg_entry *entry, *tmp;
struct list_head tmp_list;
INIT_LIST_HEAD(&tmp_list);
spin_lock_bh(&nn->mbox_amsg.lock);
list_splice_init(&nn->mbox_amsg.list, &tmp_list);
spin_unlock_bh(&nn->mbox_amsg.lock);
list_for_each_entry_safe(entry, tmp, &tmp_list, list) {
int err = entry->cfg(nn, entry);
if (err)
nn_err(nn, "Config cmd %d to HW failed %d.\n", entry->cmd, err);
list_del(&entry->list);
kfree(entry);
}
}
static int nfp_net_mc_cfg(struct nfp_net *nn, struct nfp_mbox_amsg_entry *entry)
{
unsigned char *addr = entry->msg;
int ret;
ret = nfp_net_mbox_lock(nn, NFP_NET_CFG_MULTICAST_SZ);
if (ret)
return ret;
nn_writel(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_MULTICAST_MAC_HI,
get_unaligned_be32(addr));
nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_MULTICAST_MAC_LO,
get_unaligned_be16(addr + 4));
return nfp_net_mbox_reconfig_and_unlock(nn, entry->cmd);
}
static int nfp_net_mc_sync(struct net_device *netdev, const unsigned char *addr)
{
struct nfp_net *nn = netdev_priv(netdev);
if (netdev_mc_count(netdev) > NFP_NET_CFG_MAC_MC_MAX) {
nn_err(nn, "Requested number of MC addresses (%d) exceeds maximum (%d).\n",
netdev_mc_count(netdev), NFP_NET_CFG_MAC_MC_MAX);
return -EINVAL;
}
return nfp_net_sched_mbox_amsg_work(nn, NFP_NET_CFG_MBOX_CMD_MULTICAST_ADD, addr,
NFP_NET_CFG_MULTICAST_SZ, nfp_net_mc_cfg);
}
static int nfp_net_mc_unsync(struct net_device *netdev, const unsigned char *addr)
{
struct nfp_net *nn = netdev_priv(netdev);
return nfp_net_sched_mbox_amsg_work(nn, NFP_NET_CFG_MBOX_CMD_MULTICAST_DEL, addr,
NFP_NET_CFG_MULTICAST_SZ, nfp_net_mc_cfg);
}
static void nfp_net_set_rx_mode(struct net_device *netdev)
{
struct nfp_net *nn = netdev_priv(netdev);
u32 new_ctrl, new_ctrl_w1;
new_ctrl = nn->dp.ctrl;
new_ctrl_w1 = nn->dp.ctrl_w1;
if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
else
new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
if (netdev->flags & IFF_ALLMULTI)
new_ctrl_w1 &= ~NFP_NET_CFG_CTRL_MCAST_FILTER;
else
new_ctrl_w1 |= nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER;
if (netdev->flags & IFF_PROMISC) {
if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
else
nn_warn(nn, "FW does not support promiscuous mode\n");
} else {
new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
}
if ((nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER) &&
__dev_mc_sync(netdev, nfp_net_mc_sync, nfp_net_mc_unsync))
netdev_err(netdev, "Sync mc address failed\n");
if (new_ctrl == nn->dp.ctrl && new_ctrl_w1 == nn->dp.ctrl_w1)
return;
if (new_ctrl != nn->dp.ctrl)
nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
if (new_ctrl_w1 != nn->dp.ctrl_w1)
nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1);
nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
nn->dp.ctrl = new_ctrl;
nn->dp.ctrl_w1 = new_ctrl_w1;
}
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
int i;
for (i = 0; i < sizeof(nn->rss_itbl); i++)
nn->rss_itbl[i] =
ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
}
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
struct nfp_net_dp new_dp = *dp;
*dp = nn->dp;
nn->dp = new_dp;
nn->dp.netdev->mtu = new_dp.mtu;
if (!netif_is_rxfh_configured(nn->dp.netdev))
nfp_net_rss_init_itbl(nn);
}
static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
{
unsigned int r;
int err;
nfp_net_dp_swap(nn, dp);
for (r = 0; r < nn->max_r_vecs; r++)
nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
err = netif_set_real_num_queues(nn->dp.netdev,
nn->dp.num_stack_tx_rings,
nn->dp.num_rx_rings);
if (err)
return err;
return nfp_net_set_config_and_enable(nn);
}
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
struct nfp_net_dp *new;
new = kmalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return NULL;
*new = nn->dp;
new->xsk_pools = kmemdup(new->xsk_pools,
array_size(nn->max_r_vecs,
sizeof(new->xsk_pools)),
GFP_KERNEL);
if (!new->xsk_pools) {
kfree(new);
return NULL;
}
/* Clear things which need to be recomputed */
new->fl_bufsz = 0;
new->tx_rings = NULL;
new->rx_rings = NULL;
new->num_r_vecs = 0;
new->num_stack_tx_rings = 0;
new->txrwb = NULL;
new->txrwb_dma = 0;
return new;
}
static void nfp_net_free_dp(struct nfp_net_dp *dp)
{
kfree(dp->xsk_pools);
kfree(dp);
}
static int
nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
struct netlink_ext_ack *extack)
{
unsigned int r, xsk_min_fl_bufsz;
/* XDP-enabled tests */
if (!dp->xdp_prog)
return 0;
if (dp->fl_bufsz > PAGE_SIZE) {
NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
return -EINVAL;
}
if (dp->num_tx_rings > nn->max_tx_rings) {
NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
return -EINVAL;
}
xsk_min_fl_bufsz = nfp_net_calc_fl_bufsz_xsk(dp);
for (r = 0; r < nn->max_r_vecs; r++) {
if (!dp->xsk_pools[r])
continue;
if (xsk_pool_get_rx_frame_size(dp->xsk_pools[r]) < xsk_min_fl_bufsz) {
NL_SET_ERR_MSG_MOD(extack,
"XSK buffer pool chunk size too small");
return -EINVAL;
}
}
return 0;
}
int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
struct netlink_ext_ack *extack)
{
int r, err;
dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
dp->num_stack_tx_rings = dp->num_tx_rings;
if (dp->xdp_prog)
dp->num_stack_tx_rings -= dp->num_rx_rings;
dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
err = nfp_net_check_config(nn, dp, extack);
if (err)
goto exit_free_dp;
if (!netif_running(dp->netdev)) {
nfp_net_dp_swap(nn, dp);
err = 0;
goto exit_free_dp;
}
/* Prepare new rings */
for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
if (err) {
dp->num_r_vecs = r;
goto err_cleanup_vecs;
}
}
err = nfp_net_rx_rings_prepare(nn, dp);
if (err)
goto err_cleanup_vecs;
err = nfp_net_tx_rings_prepare(nn, dp);
if (err)
goto err_free_rx;
/* Stop device, swap in new rings, try to start the firmware */
nfp_net_close_stack(nn);
nfp_net_clear_config_and_disable(nn);
err = nfp_net_dp_swap_enable(nn, dp);
if (err) {
int err2;
nfp_net_clear_config_and_disable(nn);
/* Try with old configuration and old rings */
err2 = nfp_net_dp_swap_enable(nn, dp);
if (err2)
nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
err, err2);
}
for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
nfp_net_rx_rings_free(dp);
nfp_net_tx_rings_free(dp);
nfp_net_open_stack(nn);
exit_free_dp:
nfp_net_free_dp(dp);
return err;
err_free_rx:
nfp_net_rx_rings_free(dp);
err_cleanup_vecs:
for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
nfp_net_free_dp(dp);
return err;
}
static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
struct nfp_net *nn = netdev_priv(netdev);
struct nfp_net_dp *dp;
int err;
err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
if (err)
return err;
dp = nfp_net_clone_dp(nn);
if (!dp)
return -ENOMEM;
dp->mtu = new_mtu;
return nfp_net_ring_reconfig(nn, dp, NULL);
}
static int
nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
{
const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD;
struct nfp_net *nn = netdev_priv(netdev);
int err;
/* Priority tagged packets with vlan id 0 are processed by the
* NFP as untagged packets
*/
if (!vid)
return 0;
err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
if (err)
return err;
nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
ETH_P_8021Q);
return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
}
static int
nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
{
const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL;
struct nfp_net *nn = netdev_priv(netdev);
int err;
/* Priority tagged packets with vlan id 0 are processed by the
* NFP as untagged packets
*/
if (!vid)
return 0;
err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
if (err)
return err;
nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
ETH_P_8021Q);
return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
}
static void nfp_net_stat64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct nfp_net *nn = netdev_priv(netdev);
int r;
/* Collect software stats */
for (r = 0; r < nn->max_r_vecs; r++) {
struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
u64 data[3];
unsigned int start;
do {
start = u64_stats_fetch_begin(&r_vec->rx_sync);
data[0] = r_vec->rx_pkts;
data[1] = r_vec->rx_bytes;
data[2] = r_vec->rx_drops;
} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
stats->rx_packets += data[0];
stats->rx_bytes += data[1];
stats->rx_dropped += data[2];
do {
start = u64_stats_fetch_begin(&r_vec->tx_sync);
data[0] = r_vec->tx_pkts;
data[1] = r_vec->tx_bytes;
data[2] = r_vec->tx_errors;
} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
stats->tx_packets += data[0];
stats->tx_bytes += data[1];
stats->tx_errors += data[2];
}
/* Add in device stats */
stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
}
static int nfp_net_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
struct nfp_net *nn = netdev_priv(netdev);
u32 new_ctrl;
int err;
/* Assume this is not called with features we have not advertised */
new_ctrl = nn->dp.ctrl;
if (changed & NETIF_F_RXCSUM) {
if (features & NETIF_F_RXCSUM)
new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
else
new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
}
if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
else
new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
}
if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
if (features & (NETIF_F_TSO | NETIF_F_TSO6))
new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
NFP_NET_CFG_CTRL_LSO;
else
new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
}
if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
if (features & NETIF_F_HW_VLAN_CTAG_RX)
new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?:
NFP_NET_CFG_CTRL_RXVLAN;
else
new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN_ANY;
}
if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
if (features & NETIF_F_HW_VLAN_CTAG_TX)
new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?:
NFP_NET_CFG_CTRL_TXVLAN;
else
new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN_ANY;
}
if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
else
new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
}
if (changed & NETIF_F_HW_VLAN_STAG_RX) {
if (features & NETIF_F_HW_VLAN_STAG_RX)
new_ctrl |= NFP_NET_CFG_CTRL_RXQINQ;
else
new_ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ;
}
if (changed & NETIF_F_SG) {
if (features & NETIF_F_SG)
new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
else
new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
}
err = nfp_port_set_features(netdev, features);
if (err)
return err;
nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
netdev->features, features, changed);
if (new_ctrl == nn->dp.ctrl)
return 0;
nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
if (err)
return err;
nn->dp.ctrl = new_ctrl;
return 0;
}
static netdev_features_t
nfp_net_fix_features(struct net_device *netdev,
netdev_features_t features)
{
if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
(features & NETIF_F_HW_VLAN_STAG_RX)) {
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
features &= ~NETIF_F_HW_VLAN_CTAG_RX;
netdev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
netdev_warn(netdev,
"S-tag and C-tag stripping can't be enabled at the same time. Enabling S-tag stripping and disabling C-tag stripping\n");
} else if (netdev->features & NETIF_F_HW_VLAN_STAG_RX) {
features &= ~NETIF_F_HW_VLAN_STAG_RX;
netdev->wanted_features &= ~NETIF_F_HW_VLAN_STAG_RX;
netdev_warn(netdev,
"S-tag and C-tag stripping can't be enabled at the same time. Enabling C-tag stripping and disabling S-tag stripping\n");
}
}
return features;
}
static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
u8 l4_hdr;
/* We can't do TSO over double tagged packets (802.1AD) */
features &= vlan_features_check(skb, features);
if (!skb->encapsulation)
return features;
/* Ensure that inner L4 header offset fits into TX descriptor field */
if (skb_is_gso(skb)) {
u32 hdrlen;
hdrlen = skb_inner_tcp_all_headers(skb);
/* Assume worst case scenario of having longest possible
* metadata prepend - 8B
*/
if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
features &= ~NETIF_F_GSO_MASK;
}
if (xfrm_offload(skb))
return features;
/* VXLAN/GRE check */
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
l4_hdr = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
l4_hdr = ipv6_hdr(skb)->nexthdr;
break;
default:
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
skb->inner_protocol != htons(ETH_P_TEB) ||
(l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
(l4_hdr == IPPROTO_UDP &&
(skb_inner_mac_header(skb) - skb_transport_header(skb) !=
sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
return features;
}
static int
nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
{
struct nfp_net *nn = netdev_priv(netdev);
int n;
/* If port is defined, devlink_port is registered and devlink core
* is taking care of name formatting.
*/
if (nn->port)
return -EOPNOTSUPP;
if (nn->dp.is_vf || nn->vnic_no_name)
return -EOPNOTSUPP;
n = snprintf(name, len, "n%d", nn->id);
if (n >= len)
return -EINVAL;
return 0;
}
static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
{
struct bpf_prog *prog = bpf->prog;
struct nfp_net_dp *dp;
int err;
if (!prog == !nn->dp.xdp_prog) {
WRITE_ONCE(nn->dp.xdp_prog, prog);
xdp_attachment_setup(&nn->xdp, bpf);
return 0;
}
dp = nfp_net_clone_dp(nn);
if (!dp)
return -ENOMEM;
dp->xdp_prog = prog;
dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
if (err)
return err;
xdp_attachment_setup(&nn->xdp, bpf);
return 0;
}
static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
{
int err;
err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
if (err)
return err;
xdp_attachment_setup(&nn->xdp_hw, bpf);
return 0;
}
static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
{
struct nfp_net *nn = netdev_priv(netdev);
switch (xdp->command) {
case XDP_SETUP_PROG:
return nfp_net_xdp_setup_drv(nn, xdp);
case XDP_SETUP_PROG_HW:
return nfp_net_xdp_setup_hw(nn, xdp);
case XDP_SETUP_XSK_POOL:
return nfp_net_xsk_setup_pool(netdev, xdp->xsk.pool,
xdp->xsk.queue_id);
default:
return nfp_app_bpf(nn->app, nn, xdp);
}
}
static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
{
struct nfp_net *nn = netdev_priv(netdev);
struct sockaddr *saddr = addr;
int err;
err = eth_prepare_mac_addr_change(netdev, addr);
if (err)
return err;
nfp_net_write_mac_addr(nn, saddr->sa_data);
err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
if (err)
return err;
eth_commit_mac_addr_change(netdev, addr);
return 0;
}
static int nfp_net_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev, u32 filter_mask,
int nlflags)
{
struct nfp_net *nn = netdev_priv(dev);
u16 mode;
if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA))
return -EOPNOTSUPP;
mode = (nn->dp.ctrl & NFP_NET_CFG_CTRL_VEPA) ?
BRIDGE_MODE_VEPA : BRIDGE_MODE_VEB;
return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0,
nlflags, filter_mask, NULL);
}
static int nfp_net_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
u16 flags, struct netlink_ext_ack *extack)
{
struct nfp_net *nn = netdev_priv(dev);
struct nlattr *attr, *br_spec;
int rem, err;
u32 new_ctrl;
u16 mode;
if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA))
return -EOPNOTSUPP;
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (!br_spec)
return -EINVAL;
nla_for_each_nested(attr, br_spec, rem) {
if (nla_type(attr) != IFLA_BRIDGE_MODE)
continue;
if (nla_len(attr) < sizeof(mode))
return -EINVAL;
new_ctrl = nn->dp.ctrl;
mode = nla_get_u16(attr);
if (mode == BRIDGE_MODE_VEPA)
new_ctrl |= NFP_NET_CFG_CTRL_VEPA;
else if (mode == BRIDGE_MODE_VEB)
new_ctrl &= ~NFP_NET_CFG_CTRL_VEPA;
else
return -EOPNOTSUPP;
if (new_ctrl == nn->dp.ctrl)
return 0;
nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
if (!err)
nn->dp.ctrl = new_ctrl;
return err;
}
return -EINVAL;
}
const struct net_device_ops nfp_nfd3_netdev_ops = {
.ndo_init = nfp_app_ndo_init,
.ndo_uninit = nfp_app_ndo_uninit,
.ndo_open = nfp_net_netdev_open,
.ndo_stop = nfp_net_netdev_close,
.ndo_start_xmit = nfp_net_tx,
.ndo_get_stats64 = nfp_net_stat64,
.ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid,
.ndo_set_vf_mac = nfp_app_set_vf_mac,
.ndo_set_vf_vlan = nfp_app_set_vf_vlan,
.ndo_set_vf_rate = nfp_app_set_vf_rate,
.ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk,
.ndo_set_vf_trust = nfp_app_set_vf_trust,
.ndo_get_vf_config = nfp_app_get_vf_config,
.ndo_set_vf_link_state = nfp_app_set_vf_link_state,
.ndo_setup_tc = nfp_port_setup_tc,
.ndo_tx_timeout = nfp_net_tx_timeout,
.ndo_set_rx_mode = nfp_net_set_rx_mode,
.ndo_change_mtu = nfp_net_change_mtu,
.ndo_set_mac_address = nfp_net_set_mac_address,
.ndo_set_features = nfp_net_set_features,
.ndo_fix_features = nfp_net_fix_features,
.ndo_features_check = nfp_net_features_check,
.ndo_get_phys_port_name = nfp_net_get_phys_port_name,
.ndo_bpf = nfp_net_xdp,
.ndo_xsk_wakeup = nfp_net_xsk_wakeup,
.ndo_bridge_getlink = nfp_net_bridge_getlink,
.ndo_bridge_setlink = nfp_net_bridge_setlink,
};
const struct net_device_ops nfp_nfdk_netdev_ops = {
.ndo_init = nfp_app_ndo_init,
.ndo_uninit = nfp_app_ndo_uninit,
.ndo_open = nfp_net_netdev_open,
.ndo_stop = nfp_net_netdev_close,
.ndo_start_xmit = nfp_net_tx,
.ndo_get_stats64 = nfp_net_stat64,
.ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid,
.ndo_set_vf_mac = nfp_app_set_vf_mac,
.ndo_set_vf_vlan = nfp_app_set_vf_vlan,
.ndo_set_vf_rate = nfp_app_set_vf_rate,
.ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk,
.ndo_set_vf_trust = nfp_app_set_vf_trust,
.ndo_get_vf_config = nfp_app_get_vf_config,
.ndo_set_vf_link_state = nfp_app_set_vf_link_state,
.ndo_setup_tc = nfp_port_setup_tc,
.ndo_tx_timeout = nfp_net_tx_timeout,
.ndo_set_rx_mode = nfp_net_set_rx_mode,
.ndo_change_mtu = nfp_net_change_mtu,
.ndo_set_mac_address = nfp_net_set_mac_address,
.ndo_set_features = nfp_net_set_features,
.ndo_fix_features = nfp_net_fix_features,
.ndo_features_check = nfp_net_features_check,
.ndo_get_phys_port_name = nfp_net_get_phys_port_name,
.ndo_bpf = nfp_net_xdp,
.ndo_bridge_getlink = nfp_net_bridge_getlink,
.ndo_bridge_setlink = nfp_net_bridge_setlink,
};
static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
{
struct nfp_net *nn = netdev_priv(netdev);
int i;
BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) {
struct udp_tunnel_info ti0, ti1;
udp_tunnel_nic_get_port(netdev, table, i, &ti0);
udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1);
nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port),
be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port));
}
return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN);
}
static const struct udp_tunnel_nic_info nfp_udp_tunnels = {
.sync_table = nfp_udp_tunnel_sync,
.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
.tables = {
{
.n_entries = NFP_NET_N_VXLAN_PORTS,
.tunnel_types = UDP_TUNNEL_TYPE_VXLAN,
},
},
};
/**
* nfp_net_info() - Print general info about the NIC
* @nn: NFP Net device to reconfigure
*/
void nfp_net_info(struct nfp_net *nn)
{
nn_info(nn, "NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
nn->dp.is_vf ? "VF " : "",
nn->dp.num_tx_rings, nn->max_tx_rings,
nn->dp.num_rx_rings, nn->max_rx_rings);
nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
nn->fw_ver.extend, nn->fw_ver.class,
nn->fw_ver.major, nn->fw_ver.minor,
nn->max_mtu);
nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
nn->cap,
nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
nn->cap & NFP_NET_CFG_CTRL_RXQINQ ? "RXQINQ " : "",
nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ? "RXVLANv2 " : "",
nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ? "TXVLANv2 " : "",
nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "",
nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "",
nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "",
nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "",
nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
nn->cap & NFP_NET_CFG_CTRL_TXRWB ? "TXRWB " : "",
nn->cap & NFP_NET_CFG_CTRL_VEPA ? "VEPA " : "",
nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "",
nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
"RXCSUM_COMPLETE " : "",
nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER ? "MULTICAST_FILTER " : "",
nfp_app_extra_cap(nn->app, nn));
}
/**
* nfp_net_alloc() - Allocate netdev and related structure
* @pdev: PCI device
* @dev_info: NFP ASIC params
* @ctrl_bar: PCI IOMEM with vNIC config memory
* @needs_netdev: Whether to allocate a netdev for this vNIC
* @max_tx_rings: Maximum number of TX rings supported by device
* @max_rx_rings: Maximum number of RX rings supported by device
*
* This function allocates a netdev device and fills in the initial
* part of the @struct nfp_net structure. In case of control device
* nfp_net structure is allocated without the netdev.
*
* Return: NFP Net device structure, or ERR_PTR on error.
*/
struct nfp_net *
nfp_net_alloc(struct pci_dev *pdev, const struct nfp_dev_info *dev_info,
void __iomem *ctrl_bar, bool needs_netdev,
unsigned int max_tx_rings, unsigned int max_rx_rings)
{
u64 dma_mask = dma_get_mask(&pdev->dev);
struct nfp_net *nn;
int err;
if (needs_netdev) {
struct net_device *netdev;
netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
max_tx_rings, max_rx_rings);
if (!netdev)
return ERR_PTR(-ENOMEM);
SET_NETDEV_DEV(netdev, &pdev->dev);
nn = netdev_priv(netdev);
nn->dp.netdev = netdev;
} else {
nn = vzalloc(sizeof(*nn));
if (!nn)
return ERR_PTR(-ENOMEM);
}
nn->dp.dev = &pdev->dev;
nn->dp.ctrl_bar = ctrl_bar;
nn->dev_info = dev_info;
nn->pdev = pdev;
nfp_net_get_fw_version(&nn->fw_ver, ctrl_bar);
switch (FIELD_GET(NFP_NET_CFG_VERSION_DP_MASK, nn->fw_ver.extend)) {
case NFP_NET_CFG_VERSION_DP_NFD3:
nn->dp.ops = &nfp_nfd3_ops;
break;
case NFP_NET_CFG_VERSION_DP_NFDK:
if (nn->fw_ver.major < 5) {
dev_err(&pdev->dev,
"NFDK must use ABI 5 or newer, found: %d\n",
nn->fw_ver.major);
err = -EINVAL;
goto err_free_nn;
}
nn->dp.ops = &nfp_nfdk_ops;
break;
default:
err = -EINVAL;
goto err_free_nn;
}
if ((dma_mask & nn->dp.ops->dma_mask) != dma_mask) {
dev_err(&pdev->dev,
"DMA mask of loaded firmware: %llx, required DMA mask: %llx\n",
nn->dp.ops->dma_mask, dma_mask);
err = -EINVAL;
goto err_free_nn;
}
nn->max_tx_rings = max_tx_rings;
nn->max_rx_rings = max_rx_rings;
nn->dp.num_tx_rings = min_t(unsigned int,
max_tx_rings, num_online_cpus());
nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
netif_get_num_default_rss_queues());
nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
nn->dp.num_r_vecs = min_t(unsigned int,
nn->dp.num_r_vecs, num_online_cpus());
nn->max_r_vecs = nn->dp.num_r_vecs;
nn->dp.xsk_pools = kcalloc(nn->max_r_vecs, sizeof(nn->dp.xsk_pools),
GFP_KERNEL);
if (!nn->dp.xsk_pools) {
err = -ENOMEM;
goto err_free_nn;
}
nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
sema_init(&nn->bar_lock, 1);
spin_lock_init(&nn->reconfig_lock);
spin_lock_init(&nn->link_status_lock);
timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
&nn->tlv_caps);
if (err)
goto err_free_nn;
err = nfp_ccm_mbox_alloc(nn);
if (err)
goto err_free_nn;
return nn;
err_free_nn:
if (nn->dp.netdev)
free_netdev(nn->dp.netdev);
else
vfree(nn);
return ERR_PTR(err);
}
/**
* nfp_net_free() - Undo what @nfp_net_alloc() did
* @nn: NFP Net device to reconfigure
*/
void nfp_net_free(struct nfp_net *nn)
{
WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
nfp_ccm_mbox_free(nn);
kfree(nn->dp.xsk_pools);
if (nn->dp.netdev)
free_netdev(nn->dp.netdev);
else
vfree(nn);
}
/**
* nfp_net_rss_key_sz() - Get current size of the RSS key
* @nn: NFP Net device instance
*
* Return: size of the RSS key for currently selected hash function.
*/
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
switch (nn->rss_hfunc) {
case ETH_RSS_HASH_TOP:
return NFP_NET_CFG_RSS_KEY_SZ;
case ETH_RSS_HASH_XOR:
return 0;
case ETH_RSS_HASH_CRC32:
return 4;
}
nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
return 0;
}
/**
* nfp_net_rss_init() - Set the initial RSS parameters
* @nn: NFP Net device to reconfigure
*/
static void nfp_net_rss_init(struct nfp_net *nn)
{
unsigned long func_bit, rss_cap_hfunc;
u32 reg;
/* Read the RSS function capability and select first supported func */
reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
if (!rss_cap_hfunc)
rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
NFP_NET_CFG_RSS_TOEPLITZ);
func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
dev_warn(nn->dp.dev,
"Bad RSS config, defaulting to Toeplitz hash\n");
func_bit = ETH_RSS_HASH_TOP_BIT;
}
nn->rss_hfunc = 1 << func_bit;
netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
nfp_net_rss_init_itbl(nn);
/* Enable IPv4/IPv6 TCP by default */
nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
NFP_NET_CFG_RSS_IPV6_TCP |
FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
NFP_NET_CFG_RSS_MASK;
}
/**
* nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
* @nn: NFP Net device to reconfigure
*/
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
nn->rx_coalesce_usecs = 50;
nn->rx_coalesce_max_frames = 64;
nn->tx_coalesce_usecs = 50;
nn->tx_coalesce_max_frames = 64;
nn->rx_coalesce_adapt_on = true;
nn->tx_coalesce_adapt_on = true;
}
static void nfp_net_netdev_init(struct nfp_net *nn)
{
struct net_device *netdev = nn->dp.netdev;
nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
netdev->mtu = nn->dp.mtu;
/* Advertise/enable offloads based on capabilities
*
* Note: netdev->features show the currently enabled features
* and netdev->hw_features advertises which features are
* supported. By default we enable most features.
*/
if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
netdev->hw_features = NETIF_F_HIGHDMA;
if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
netdev->hw_features |= NETIF_F_RXCSUM;
nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
}
if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
}
if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
netdev->hw_features |= NETIF_F_SG;
nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
}
if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
nn->cap & NFP_NET_CFG_CTRL_LSO2) {
netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
NFP_NET_CFG_CTRL_LSO;
}
if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
netdev->hw_features |= NETIF_F_RXHASH;
#ifdef CONFIG_NFP_NET_IPSEC
if (nn->cap_w1 & NFP_NET_CFG_CTRL_IPSEC)
netdev->hw_features |= NETIF_F_HW_ESP | NETIF_F_HW_ESP_TX_CSUM;
#endif
if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
if (nn->cap & NFP_NET_CFG_CTRL_LSO) {
netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_GSO_PARTIAL;
netdev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM;
}
netdev->udp_tunnel_nic_info = &nfp_udp_tunnels;
nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
}
if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
if (nn->cap & NFP_NET_CFG_CTRL_LSO)
netdev->hw_features |= NETIF_F_GSO_GRE;
nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
}
if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
netdev->hw_enc_features = netdev->hw_features;
netdev->vlan_features = netdev->hw_features;
if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN_ANY) {
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?:
NFP_NET_CFG_CTRL_RXVLAN;
}
if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN_ANY) {
if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
} else {
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?:
NFP_NET_CFG_CTRL_TXVLAN;
}
}
if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
}
if (nn->cap & NFP_NET_CFG_CTRL_RXQINQ) {
netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX;
nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXQINQ;
}
netdev->features = netdev->hw_features;
if (nfp_app_has_tc(nn->app) && nn->port)
netdev->hw_features |= NETIF_F_HW_TC;
/* C-Tag strip and S-Tag strip can't be supported simultaneously,
* so enable C-Tag strip and disable S-Tag strip by default.
*/
netdev->features &= ~NETIF_F_HW_VLAN_STAG_RX;
nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ;
netdev->xdp_features = NETDEV_XDP_ACT_BASIC;
if (nn->app && nn->app->type->id == NFP_APP_BPF_NIC)
netdev->xdp_features |= NETDEV_XDP_ACT_HW_OFFLOAD;
/* Finalise the netdev setup */
switch (nn->dp.ops->version) {
case NFP_NFD_VER_NFD3:
netdev->netdev_ops = &nfp_nfd3_netdev_ops;
netdev->xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY;
break;
case NFP_NFD_VER_NFDK:
netdev->netdev_ops = &nfp_nfdk_netdev_ops;
break;
}
netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
/* MTU range: 68 - hw-specific max */
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = nn->max_mtu;
netif_set_tso_max_segs(netdev, NFP_NET_LSO_MAX_SEGS);
netif_carrier_off(netdev);
nfp_net_set_ethtool_ops(netdev);
}
static int nfp_net_read_caps(struct nfp_net *nn)
{
/* Get some of the read-only fields from the BAR */
nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
nn->cap_w1 = nn_readl(nn, NFP_NET_CFG_CAP_WORD1);
nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
/* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
* we allow use of non-chained metadata if RSS(v1) is the only
* advertised capability requiring metadata.
*/
nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
!nn->dp.netdev ||
!(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
/* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
* it has the same meaning as RSSv2.
*/
if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
/* Determine RX packet/metadata boundary offset */
if (nn->fw_ver.major >= 2) {
u32 reg;
reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
if (reg > NFP_NET_MAX_PREPEND) {
nn_err(nn, "Invalid rx offset: %d\n", reg);
return -EINVAL;
}
nn->dp.rx_offset = reg;
} else {
nn->dp.rx_offset = NFP_NET_RX_OFFSET;
}
/* Mask out NFD-version-specific features */
nn->cap &= nn->dp.ops->cap_mask;
/* For control vNICs mask out the capabilities app doesn't want. */
if (!nn->dp.netdev)
nn->cap &= nn->app->type->ctrl_cap_mask;
return 0;
}
/**
* nfp_net_init() - Initialise/finalise the nfp_net structure
* @nn: NFP Net device structure
*
* Return: 0 on success or negative errno on error.
*/
int nfp_net_init(struct nfp_net *nn)
{
int err;
nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
err = nfp_net_read_caps(nn);
if (err)
return err;
/* Set default MTU and Freelist buffer size */
if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu);
} else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
nn->dp.mtu = nn->max_mtu;
} else {
nn->dp.mtu = NFP_NET_DEFAULT_MTU;
}
nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
if (nfp_app_ctrl_uses_data_vnics(nn->app))
nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
nfp_net_rss_init(nn);
nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
NFP_NET_CFG_CTRL_RSS;
}
/* Allow L2 Broadcast and Multicast through by default, if supported */
if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
/* Allow IRQ moderation, if supported */
if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
nfp_net_irqmod_init(nn);
nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
}
/* Enable TX pointer writeback, if supported */
if (nn->cap & NFP_NET_CFG_CTRL_TXRWB)
nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXRWB;
if (nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER)
nn->dp.ctrl_w1 |= NFP_NET_CFG_CTRL_MCAST_FILTER;
/* Stash the re-configuration queue away. First odd queue in TX Bar */
nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
/* Make sure the FW knows the netdev is supposed to be disabled here */
nn_writel(nn, NFP_NET_CFG_CTRL, 0);
nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, 0);
err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
NFP_NET_CFG_UPDATE_GEN);
if (err)
return err;
if (nn->dp.netdev) {
nfp_net_netdev_init(nn);
err = nfp_ccm_mbox_init(nn);
if (err)
return err;
err = nfp_net_tls_init(nn);
if (err)
goto err_clean_mbox;
nfp_net_ipsec_init(nn);
}
nfp_net_vecs_init(nn);
if (!nn->dp.netdev)
return 0;
spin_lock_init(&nn->mbox_amsg.lock);
INIT_LIST_HEAD(&nn->mbox_amsg.list);
INIT_WORK(&nn->mbox_amsg.work, nfp_net_mbox_amsg_work);
return register_netdev(nn->dp.netdev);
err_clean_mbox:
nfp_ccm_mbox_clean(nn);
return err;
}
/**
* nfp_net_clean() - Undo what nfp_net_init() did.
* @nn: NFP Net device structure
*/
void nfp_net_clean(struct nfp_net *nn)
{
if (!nn->dp.netdev)
return;
unregister_netdev(nn->dp.netdev);
nfp_net_ipsec_clean(nn);
nfp_ccm_mbox_clean(nn);
flush_work(&nn->mbox_amsg.work);
nfp_net_reconfig_wait_posted(nn);
}