Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010 Google, Inc. * * Author: * Colin Cross <ccross@google.com> */ #define pr_fmt(fmt) "tegra-timer: " fmt #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/percpu.h> #include <linux/sched_clock.h> #include <linux/time.h> #include "timer-of.h" #define RTC_SECONDS 0x08 #define RTC_SHADOW_SECONDS 0x0c #define RTC_MILLISECONDS 0x10 #define TIMERUS_CNTR_1US 0x10 #define TIMERUS_USEC_CFG 0x14 #define TIMERUS_CNTR_FREEZE 0x4c #define TIMER_PTV 0x0 #define TIMER_PTV_EN BIT(31) #define TIMER_PTV_PER BIT(30) #define TIMER_PCR 0x4 #define TIMER_PCR_INTR_CLR BIT(30) #define TIMER1_BASE 0x00 #define TIMER2_BASE 0x08 #define TIMER3_BASE 0x50 #define TIMER4_BASE 0x58 #define TIMER10_BASE 0x90 #define TIMER1_IRQ_IDX 0 #define TIMER10_IRQ_IDX 10 #define TIMER_1MHz 1000000 static u32 usec_config; static void __iomem *timer_reg_base; static int tegra_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); /* * Tegra's timer uses n+1 scheme for the counter, i.e. timer will * fire after one tick if 0 is loaded. * * The minimum and maximum numbers of oneshot ticks are defined * by clockevents_config_and_register(1, 0x1fffffff + 1) invocation * below in the code. Hence the cycles (ticks) can't be outside of * a range supportable by hardware. */ writel_relaxed(TIMER_PTV_EN | (cycles - 1), reg_base + TIMER_PTV); return 0; } static int tegra_timer_shutdown(struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel_relaxed(0, reg_base + TIMER_PTV); return 0; } static int tegra_timer_set_periodic(struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); unsigned long period = timer_of_period(to_timer_of(evt)); writel_relaxed(TIMER_PTV_EN | TIMER_PTV_PER | (period - 1), reg_base + TIMER_PTV); return 0; } static irqreturn_t tegra_timer_isr(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR); evt->event_handler(evt); return IRQ_HANDLED; } static void tegra_timer_suspend(struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR); } static void tegra_timer_resume(struct clock_event_device *evt) { writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG); } static DEFINE_PER_CPU(struct timer_of, tegra_to) = { .flags = TIMER_OF_CLOCK | TIMER_OF_BASE, .clkevt = { .name = "tegra_timer", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .set_next_event = tegra_timer_set_next_event, .set_state_shutdown = tegra_timer_shutdown, .set_state_periodic = tegra_timer_set_periodic, .set_state_oneshot = tegra_timer_shutdown, .tick_resume = tegra_timer_shutdown, .suspend = tegra_timer_suspend, .resume = tegra_timer_resume, }, }; static int tegra_timer_setup(unsigned int cpu) { struct timer_of *to = per_cpu_ptr(&tegra_to, cpu); writel_relaxed(0, timer_of_base(to) + TIMER_PTV); writel_relaxed(TIMER_PCR_INTR_CLR, timer_of_base(to) + TIMER_PCR); irq_force_affinity(to->clkevt.irq, cpumask_of(cpu)); enable_irq(to->clkevt.irq); /* * Tegra's timer uses n+1 scheme for the counter, i.e. timer will * fire after one tick if 0 is loaded and thus minimum number of * ticks is 1. In result both of the clocksource's tick limits are * higher than a minimum and maximum that hardware register can * take by 1, this is then taken into account by set_next_event * callback. */ clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 1, /* min */ 0x1fffffff + 1); /* max 29 bits + 1 */ return 0; } static int tegra_timer_stop(unsigned int cpu) { struct timer_of *to = per_cpu_ptr(&tegra_to, cpu); to->clkevt.set_state_shutdown(&to->clkevt); disable_irq_nosync(to->clkevt.irq); return 0; } static u64 notrace tegra_read_sched_clock(void) { return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US); } #ifdef CONFIG_ARM static unsigned long tegra_delay_timer_read_counter_long(void) { return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US); } static struct delay_timer tegra_delay_timer = { .read_current_timer = tegra_delay_timer_read_counter_long, .freq = TIMER_1MHz, }; #endif static struct timer_of suspend_rtc_to = { .flags = TIMER_OF_BASE | TIMER_OF_CLOCK, }; /* * tegra_rtc_read - Reads the Tegra RTC registers * Care must be taken that this function is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ static u64 tegra_rtc_read_ms(struct clocksource *cs) { void __iomem *reg_base = timer_of_base(&suspend_rtc_to); u32 ms = readl_relaxed(reg_base + RTC_MILLISECONDS); u32 s = readl_relaxed(reg_base + RTC_SHADOW_SECONDS); return (u64)s * MSEC_PER_SEC + ms; } static struct clocksource suspend_rtc_clocksource = { .name = "tegra_suspend_timer", .rating = 200, .read = tegra_rtc_read_ms, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, }; static inline unsigned int tegra_base_for_cpu(int cpu, bool tegra20) { if (tegra20) { switch (cpu) { case 0: return TIMER1_BASE; case 1: return TIMER2_BASE; case 2: return TIMER3_BASE; default: return TIMER4_BASE; } } return TIMER10_BASE + cpu * 8; } static inline unsigned int tegra_irq_idx_for_cpu(int cpu, bool tegra20) { if (tegra20) return TIMER1_IRQ_IDX + cpu; return TIMER10_IRQ_IDX + cpu; } static inline unsigned long tegra_rate_for_timer(struct timer_of *to, bool tegra20) { /* * TIMER1-9 are fixed to 1MHz, TIMER10-13 are running off the * parent clock. */ if (tegra20) return TIMER_1MHz; return timer_of_rate(to); } static int __init tegra_init_timer(struct device_node *np, bool tegra20, int rating) { struct timer_of *to; int cpu, ret; to = this_cpu_ptr(&tegra_to); ret = timer_of_init(np, to); if (ret) goto out; timer_reg_base = timer_of_base(to); /* * Configure microsecond timers to have 1MHz clock * Config register is 0xqqww, where qq is "dividend", ww is "divisor" * Uses n+1 scheme */ switch (timer_of_rate(to)) { case 12000000: usec_config = 0x000b; /* (11+1)/(0+1) */ break; case 12800000: usec_config = 0x043f; /* (63+1)/(4+1) */ break; case 13000000: usec_config = 0x000c; /* (12+1)/(0+1) */ break; case 16800000: usec_config = 0x0453; /* (83+1)/(4+1) */ break; case 19200000: usec_config = 0x045f; /* (95+1)/(4+1) */ break; case 26000000: usec_config = 0x0019; /* (25+1)/(0+1) */ break; case 38400000: usec_config = 0x04bf; /* (191+1)/(4+1) */ break; case 48000000: usec_config = 0x002f; /* (47+1)/(0+1) */ break; default: ret = -EINVAL; goto out; } writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG); for_each_possible_cpu(cpu) { struct timer_of *cpu_to = per_cpu_ptr(&tegra_to, cpu); unsigned long flags = IRQF_TIMER | IRQF_NOBALANCING; unsigned long rate = tegra_rate_for_timer(to, tegra20); unsigned int base = tegra_base_for_cpu(cpu, tegra20); unsigned int idx = tegra_irq_idx_for_cpu(cpu, tegra20); unsigned int irq = irq_of_parse_and_map(np, idx); if (!irq) { pr_err("failed to map irq for cpu%d\n", cpu); ret = -EINVAL; goto out_irq; } cpu_to->clkevt.irq = irq; cpu_to->clkevt.rating = rating; cpu_to->clkevt.cpumask = cpumask_of(cpu); cpu_to->of_base.base = timer_reg_base + base; cpu_to->of_clk.period = rate / HZ; cpu_to->of_clk.rate = rate; irq_set_status_flags(cpu_to->clkevt.irq, IRQ_NOAUTOEN); ret = request_irq(cpu_to->clkevt.irq, tegra_timer_isr, flags, cpu_to->clkevt.name, &cpu_to->clkevt); if (ret) { pr_err("failed to set up irq for cpu%d: %d\n", cpu, ret); irq_dispose_mapping(cpu_to->clkevt.irq); cpu_to->clkevt.irq = 0; goto out_irq; } } sched_clock_register(tegra_read_sched_clock, 32, TIMER_1MHz); ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US, "timer_us", TIMER_1MHz, 300, 32, clocksource_mmio_readl_up); if (ret) pr_err("failed to register clocksource: %d\n", ret); #ifdef CONFIG_ARM register_current_timer_delay(&tegra_delay_timer); #endif ret = cpuhp_setup_state(CPUHP_AP_TEGRA_TIMER_STARTING, "AP_TEGRA_TIMER_STARTING", tegra_timer_setup, tegra_timer_stop); if (ret) pr_err("failed to set up cpu hp state: %d\n", ret); return ret; out_irq: for_each_possible_cpu(cpu) { struct timer_of *cpu_to; cpu_to = per_cpu_ptr(&tegra_to, cpu); if (cpu_to->clkevt.irq) { free_irq(cpu_to->clkevt.irq, &cpu_to->clkevt); irq_dispose_mapping(cpu_to->clkevt.irq); } } to->of_base.base = timer_reg_base; out: timer_of_cleanup(to); return ret; } static int __init tegra210_init_timer(struct device_node *np) { /* * Arch-timer can't survive across power cycle of CPU core and * after CPUPORESET signal due to a system design shortcoming, * hence tegra-timer is more preferable on Tegra210. */ return tegra_init_timer(np, false, 460); } TIMER_OF_DECLARE(tegra210_timer, "nvidia,tegra210-timer", tegra210_init_timer); static int __init tegra20_init_timer(struct device_node *np) { int rating; /* * Tegra20 and Tegra30 have Cortex A9 CPU that has a TWD timer, * that timer runs off the CPU clock and hence is subjected to * a jitter caused by DVFS clock rate changes. Tegra-timer is * more preferable for older Tegra's, while later SoC generations * have arch-timer as a main per-CPU timer and it is not affected * by DVFS changes. */ if (of_machine_is_compatible("nvidia,tegra20") || of_machine_is_compatible("nvidia,tegra30")) rating = 460; else rating = 330; return tegra_init_timer(np, true, rating); } TIMER_OF_DECLARE(tegra20_timer, "nvidia,tegra20-timer", tegra20_init_timer); static int __init tegra20_init_rtc(struct device_node *np) { int ret; ret = timer_of_init(np, &suspend_rtc_to); if (ret) return ret; return clocksource_register_hz(&suspend_rtc_clocksource, 1000); } TIMER_OF_DECLARE(tegra20_rtc, "nvidia,tegra20-rtc", tegra20_init_rtc); |