Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2007 Alan Stern
 * Copyright (C) IBM Corporation, 2009
 * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
 *
 * Thanks to Ingo Molnar for his many suggestions.
 *
 * Authors: Alan Stern <stern@rowland.harvard.edu>
 *          K.Prasad <prasad@linux.vnet.ibm.com>
 *          Frederic Weisbecker <fweisbec@gmail.com>
 */

/*
 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
 * using the CPU's debug registers.
 * This file contains the arch-independent routines.
 */

#include <linux/hw_breakpoint.h>

#include <linux/atomic.h>
#include <linux/bug.h>
#include <linux/cpu.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/irqflags.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/notifier.h>
#include <linux/percpu-rwsem.h>
#include <linux/percpu.h>
#include <linux/rhashtable.h>
#include <linux/sched.h>
#include <linux/slab.h>

/*
 * Datastructure to track the total uses of N slots across tasks or CPUs;
 * bp_slots_histogram::count[N] is the number of assigned N+1 breakpoint slots.
 */
struct bp_slots_histogram {
#ifdef hw_breakpoint_slots
	atomic_t count[hw_breakpoint_slots(0)];
#else
	atomic_t *count;
#endif
};

/*
 * Per-CPU constraints data.
 */
struct bp_cpuinfo {
	/* Number of pinned CPU breakpoints in a CPU. */
	unsigned int			cpu_pinned;
	/* Histogram of pinned task breakpoints in a CPU. */
	struct bp_slots_histogram	tsk_pinned;
};

static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);

static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
{
	return per_cpu_ptr(bp_cpuinfo + type, cpu);
}

/* Number of pinned CPU breakpoints globally. */
static struct bp_slots_histogram cpu_pinned[TYPE_MAX];
/* Number of pinned CPU-independent task breakpoints. */
static struct bp_slots_histogram tsk_pinned_all[TYPE_MAX];

/* Keep track of the breakpoints attached to tasks */
static struct rhltable task_bps_ht;
static const struct rhashtable_params task_bps_ht_params = {
	.head_offset = offsetof(struct hw_perf_event, bp_list),
	.key_offset = offsetof(struct hw_perf_event, target),
	.key_len = sizeof_field(struct hw_perf_event, target),
	.automatic_shrinking = true,
};

static bool constraints_initialized __ro_after_init;

/*
 * Synchronizes accesses to the per-CPU constraints; the locking rules are:
 *
 *  1. Atomic updates to bp_cpuinfo::tsk_pinned only require a held read-lock
 *     (due to bp_slots_histogram::count being atomic, no update are lost).
 *
 *  2. Holding a write-lock is required for computations that require a
 *     stable snapshot of all bp_cpuinfo::tsk_pinned.
 *
 *  3. In all other cases, non-atomic accesses require the appropriately held
 *     lock (read-lock for read-only accesses; write-lock for reads/writes).
 */
DEFINE_STATIC_PERCPU_RWSEM(bp_cpuinfo_sem);

/*
 * Return mutex to serialize accesses to per-task lists in task_bps_ht. Since
 * rhltable synchronizes concurrent insertions/deletions, independent tasks may
 * insert/delete concurrently; therefore, a mutex per task is sufficient.
 *
 * Uses task_struct::perf_event_mutex, to avoid extending task_struct with a
 * hw_breakpoint-only mutex, which may be infrequently used. The caveat here is
 * that hw_breakpoint may contend with per-task perf event list management. The
 * assumption is that perf usecases involving hw_breakpoints are very unlikely
 * to result in unnecessary contention.
 */
static inline struct mutex *get_task_bps_mutex(struct perf_event *bp)
{
	struct task_struct *tsk = bp->hw.target;

	return tsk ? &tsk->perf_event_mutex : NULL;
}

static struct mutex *bp_constraints_lock(struct perf_event *bp)
{
	struct mutex *tsk_mtx = get_task_bps_mutex(bp);

	if (tsk_mtx) {
		/*
		 * Fully analogous to the perf_try_init_event() nesting
		 * argument in the comment near perf_event_ctx_lock_nested();
		 * this child->perf_event_mutex cannot ever deadlock against
		 * the parent->perf_event_mutex usage from
		 * perf_event_task_{en,dis}able().
		 *
		 * Specifically, inherited events will never occur on
		 * ->perf_event_list.
		 */
		mutex_lock_nested(tsk_mtx, SINGLE_DEPTH_NESTING);
		percpu_down_read(&bp_cpuinfo_sem);
	} else {
		percpu_down_write(&bp_cpuinfo_sem);
	}

	return tsk_mtx;
}

static void bp_constraints_unlock(struct mutex *tsk_mtx)
{
	if (tsk_mtx) {
		percpu_up_read(&bp_cpuinfo_sem);
		mutex_unlock(tsk_mtx);
	} else {
		percpu_up_write(&bp_cpuinfo_sem);
	}
}

static bool bp_constraints_is_locked(struct perf_event *bp)
{
	struct mutex *tsk_mtx = get_task_bps_mutex(bp);

	return percpu_is_write_locked(&bp_cpuinfo_sem) ||
	       (tsk_mtx ? mutex_is_locked(tsk_mtx) :
			  percpu_is_read_locked(&bp_cpuinfo_sem));
}

static inline void assert_bp_constraints_lock_held(struct perf_event *bp)
{
	struct mutex *tsk_mtx = get_task_bps_mutex(bp);

	if (tsk_mtx)
		lockdep_assert_held(tsk_mtx);
	lockdep_assert_held(&bp_cpuinfo_sem);
}

#ifdef hw_breakpoint_slots
/*
 * Number of breakpoint slots is constant, and the same for all types.
 */
static_assert(hw_breakpoint_slots(TYPE_INST) == hw_breakpoint_slots(TYPE_DATA));
static inline int hw_breakpoint_slots_cached(int type)	{ return hw_breakpoint_slots(type); }
static inline int init_breakpoint_slots(void)		{ return 0; }
#else
/*
 * Dynamic number of breakpoint slots.
 */
static int __nr_bp_slots[TYPE_MAX] __ro_after_init;

static inline int hw_breakpoint_slots_cached(int type)
{
	return __nr_bp_slots[type];
}

static __init bool
bp_slots_histogram_alloc(struct bp_slots_histogram *hist, enum bp_type_idx type)
{
	hist->count = kcalloc(hw_breakpoint_slots_cached(type), sizeof(*hist->count), GFP_KERNEL);
	return hist->count;
}

static __init void bp_slots_histogram_free(struct bp_slots_histogram *hist)
{
	kfree(hist->count);
}

static __init int init_breakpoint_slots(void)
{
	int i, cpu, err_cpu;

	for (i = 0; i < TYPE_MAX; i++)
		__nr_bp_slots[i] = hw_breakpoint_slots(i);

	for_each_possible_cpu(cpu) {
		for (i = 0; i < TYPE_MAX; i++) {
			struct bp_cpuinfo *info = get_bp_info(cpu, i);

			if (!bp_slots_histogram_alloc(&info->tsk_pinned, i))
				goto err;
		}
	}
	for (i = 0; i < TYPE_MAX; i++) {
		if (!bp_slots_histogram_alloc(&cpu_pinned[i], i))
			goto err;
		if (!bp_slots_histogram_alloc(&tsk_pinned_all[i], i))
			goto err;
	}

	return 0;
err:
	for_each_possible_cpu(err_cpu) {
		for (i = 0; i < TYPE_MAX; i++)
			bp_slots_histogram_free(&get_bp_info(err_cpu, i)->tsk_pinned);
		if (err_cpu == cpu)
			break;
	}
	for (i = 0; i < TYPE_MAX; i++) {
		bp_slots_histogram_free(&cpu_pinned[i]);
		bp_slots_histogram_free(&tsk_pinned_all[i]);
	}

	return -ENOMEM;
}
#endif

static inline void
bp_slots_histogram_add(struct bp_slots_histogram *hist, int old, int val)
{
	const int old_idx = old - 1;
	const int new_idx = old_idx + val;

	if (old_idx >= 0)
		WARN_ON(atomic_dec_return_relaxed(&hist->count[old_idx]) < 0);
	if (new_idx >= 0)
		WARN_ON(atomic_inc_return_relaxed(&hist->count[new_idx]) < 0);
}

static int
bp_slots_histogram_max(struct bp_slots_histogram *hist, enum bp_type_idx type)
{
	for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
		const int count = atomic_read(&hist->count[i]);

		/* Catch unexpected writers; we want a stable snapshot. */
		ASSERT_EXCLUSIVE_WRITER(hist->count[i]);
		if (count > 0)
			return i + 1;
		WARN(count < 0, "inconsistent breakpoint slots histogram");
	}

	return 0;
}

static int
bp_slots_histogram_max_merge(struct bp_slots_histogram *hist1, struct bp_slots_histogram *hist2,
			     enum bp_type_idx type)
{
	for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
		const int count1 = atomic_read(&hist1->count[i]);
		const int count2 = atomic_read(&hist2->count[i]);

		/* Catch unexpected writers; we want a stable snapshot. */
		ASSERT_EXCLUSIVE_WRITER(hist1->count[i]);
		ASSERT_EXCLUSIVE_WRITER(hist2->count[i]);
		if (count1 + count2 > 0)
			return i + 1;
		WARN(count1 < 0, "inconsistent breakpoint slots histogram");
		WARN(count2 < 0, "inconsistent breakpoint slots histogram");
	}

	return 0;
}

#ifndef hw_breakpoint_weight
static inline int hw_breakpoint_weight(struct perf_event *bp)
{
	return 1;
}
#endif

static inline enum bp_type_idx find_slot_idx(u64 bp_type)
{
	if (bp_type & HW_BREAKPOINT_RW)
		return TYPE_DATA;

	return TYPE_INST;
}

/*
 * Return the maximum number of pinned breakpoints a task has in this CPU.
 */
static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
{
	struct bp_slots_histogram *tsk_pinned = &get_bp_info(cpu, type)->tsk_pinned;

	/*
	 * At this point we want to have acquired the bp_cpuinfo_sem as a
	 * writer to ensure that there are no concurrent writers in
	 * toggle_bp_task_slot() to tsk_pinned, and we get a stable snapshot.
	 */
	lockdep_assert_held_write(&bp_cpuinfo_sem);
	return bp_slots_histogram_max_merge(tsk_pinned, &tsk_pinned_all[type], type);
}

/*
 * Count the number of breakpoints of the same type and same task.
 * The given event must be not on the list.
 *
 * If @cpu is -1, but the result of task_bp_pinned() is not CPU-independent,
 * returns a negative value.
 */
static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
{
	struct rhlist_head *head, *pos;
	struct perf_event *iter;
	int count = 0;

	/*
	 * We need a stable snapshot of the per-task breakpoint list.
	 */
	assert_bp_constraints_lock_held(bp);

	rcu_read_lock();
	head = rhltable_lookup(&task_bps_ht, &bp->hw.target, task_bps_ht_params);
	if (!head)
		goto out;

	rhl_for_each_entry_rcu(iter, pos, head, hw.bp_list) {
		if (find_slot_idx(iter->attr.bp_type) != type)
			continue;

		if (iter->cpu >= 0) {
			if (cpu == -1) {
				count = -1;
				goto out;
			} else if (cpu != iter->cpu)
				continue;
		}

		count += hw_breakpoint_weight(iter);
	}

out:
	rcu_read_unlock();
	return count;
}

static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
{
	if (bp->cpu >= 0)
		return cpumask_of(bp->cpu);
	return cpu_possible_mask;
}

/*
 * Returns the max pinned breakpoint slots in a given
 * CPU (cpu > -1) or across all of them (cpu = -1).
 */
static int
max_bp_pinned_slots(struct perf_event *bp, enum bp_type_idx type)
{
	const struct cpumask *cpumask = cpumask_of_bp(bp);
	int pinned_slots = 0;
	int cpu;

	if (bp->hw.target && bp->cpu < 0) {
		int max_pinned = task_bp_pinned(-1, bp, type);

		if (max_pinned >= 0) {
			/*
			 * Fast path: task_bp_pinned() is CPU-independent and
			 * returns the same value for any CPU.
			 */
			max_pinned += bp_slots_histogram_max(&cpu_pinned[type], type);
			return max_pinned;
		}
	}

	for_each_cpu(cpu, cpumask) {
		struct bp_cpuinfo *info = get_bp_info(cpu, type);
		int nr;

		nr = info->cpu_pinned;
		if (!bp->hw.target)
			nr += max_task_bp_pinned(cpu, type);
		else
			nr += task_bp_pinned(cpu, bp, type);

		pinned_slots = max(nr, pinned_slots);
	}

	return pinned_slots;
}

/*
 * Add/remove the given breakpoint in our constraint table
 */
static int
toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight)
{
	int cpu, next_tsk_pinned;

	if (!enable)
		weight = -weight;

	if (!bp->hw.target) {
		/*
		 * Update the pinned CPU slots, in per-CPU bp_cpuinfo and in the
		 * global histogram.
		 */
		struct bp_cpuinfo *info = get_bp_info(bp->cpu, type);

		lockdep_assert_held_write(&bp_cpuinfo_sem);
		bp_slots_histogram_add(&cpu_pinned[type], info->cpu_pinned, weight);
		info->cpu_pinned += weight;
		return 0;
	}

	/*
	 * If bp->hw.target, tsk_pinned is only modified, but not used
	 * otherwise. We can permit concurrent updates as long as there are no
	 * other uses: having acquired bp_cpuinfo_sem as a reader allows
	 * concurrent updates here. Uses of tsk_pinned will require acquiring
	 * bp_cpuinfo_sem as a writer to stabilize tsk_pinned's value.
	 */
	lockdep_assert_held_read(&bp_cpuinfo_sem);

	/*
	 * Update the pinned task slots, in per-CPU bp_cpuinfo and in the global
	 * histogram. We need to take care of 4 cases:
	 *
	 *  1. This breakpoint targets all CPUs (cpu < 0), and there may only
	 *     exist other task breakpoints targeting all CPUs. In this case we
	 *     can simply update the global slots histogram.
	 *
	 *  2. This breakpoint targets a specific CPU (cpu >= 0), but there may
	 *     only exist other task breakpoints targeting all CPUs.
	 *
	 *     a. On enable: remove the existing breakpoints from the global
	 *        slots histogram and use the per-CPU histogram.
	 *
	 *     b. On disable: re-insert the existing breakpoints into the global
	 *        slots histogram and remove from per-CPU histogram.
	 *
	 *  3. Some other existing task breakpoints target specific CPUs. Only
	 *     update the per-CPU slots histogram.
	 */

	if (!enable) {
		/*
		 * Remove before updating histograms so we can determine if this
		 * was the last task breakpoint for a specific CPU.
		 */
		int ret = rhltable_remove(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);

		if (ret)
			return ret;
	}
	/*
	 * Note: If !enable, next_tsk_pinned will not count the to-be-removed breakpoint.
	 */
	next_tsk_pinned = task_bp_pinned(-1, bp, type);

	if (next_tsk_pinned >= 0) {
		if (bp->cpu < 0) { /* Case 1: fast path */
			if (!enable)
				next_tsk_pinned += hw_breakpoint_weight(bp);
			bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned, weight);
		} else if (enable) { /* Case 2.a: slow path */
			/* Add existing to per-CPU histograms. */
			for_each_possible_cpu(cpu) {
				bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
						       0, next_tsk_pinned);
			}
			/* Add this first CPU-pinned task breakpoint. */
			bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
					       next_tsk_pinned, weight);
			/* Rebalance global task pinned histogram. */
			bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned,
					       -next_tsk_pinned);
		} else { /* Case 2.b: slow path */
			/* Remove this last CPU-pinned task breakpoint. */
			bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
					       next_tsk_pinned + hw_breakpoint_weight(bp), weight);
			/* Remove all from per-CPU histograms. */
			for_each_possible_cpu(cpu) {
				bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
						       next_tsk_pinned, -next_tsk_pinned);
			}
			/* Rebalance global task pinned histogram. */
			bp_slots_histogram_add(&tsk_pinned_all[type], 0, next_tsk_pinned);
		}
	} else { /* Case 3: slow path */
		const struct cpumask *cpumask = cpumask_of_bp(bp);

		for_each_cpu(cpu, cpumask) {
			next_tsk_pinned = task_bp_pinned(cpu, bp, type);
			if (!enable)
				next_tsk_pinned += hw_breakpoint_weight(bp);
			bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
					       next_tsk_pinned, weight);
		}
	}

	/*
	 * Readers want a stable snapshot of the per-task breakpoint list.
	 */
	assert_bp_constraints_lock_held(bp);

	if (enable)
		return rhltable_insert(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);

	return 0;
}

__weak int arch_reserve_bp_slot(struct perf_event *bp)
{
	return 0;
}

__weak void arch_release_bp_slot(struct perf_event *bp)
{
}

/*
 * Function to perform processor-specific cleanup during unregistration
 */
__weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
{
	/*
	 * A weak stub function here for those archs that don't define
	 * it inside arch/.../kernel/hw_breakpoint.c
	 */
}

/*
 * Constraints to check before allowing this new breakpoint counter.
 *
 * Note: Flexible breakpoints are currently unimplemented, but outlined in the
 * below algorithm for completeness.  The implementation treats flexible as
 * pinned due to no guarantee that we currently always schedule flexible events
 * before a pinned event in a same CPU.
 *
 *  == Non-pinned counter == (Considered as pinned for now)
 *
 *   - If attached to a single cpu, check:
 *
 *       (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
 *           + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
 *
 *       -> If there are already non-pinned counters in this cpu, it means
 *          there is already a free slot for them.
 *          Otherwise, we check that the maximum number of per task
 *          breakpoints (for this cpu) plus the number of per cpu breakpoint
 *          (for this cpu) doesn't cover every registers.
 *
 *   - If attached to every cpus, check:
 *
 *       (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
 *           + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
 *
 *       -> This is roughly the same, except we check the number of per cpu
 *          bp for every cpu and we keep the max one. Same for the per tasks
 *          breakpoints.
 *
 *
 * == Pinned counter ==
 *
 *   - If attached to a single cpu, check:
 *
 *       ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
 *            + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
 *
 *       -> Same checks as before. But now the info->flexible, if any, must keep
 *          one register at least (or they will never be fed).
 *
 *   - If attached to every cpus, check:
 *
 *       ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
 *            + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
 */
static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
{
	enum bp_type_idx type;
	int max_pinned_slots;
	int weight;
	int ret;

	/* We couldn't initialize breakpoint constraints on boot */
	if (!constraints_initialized)
		return -ENOMEM;

	/* Basic checks */
	if (bp_type == HW_BREAKPOINT_EMPTY ||
	    bp_type == HW_BREAKPOINT_INVALID)
		return -EINVAL;

	type = find_slot_idx(bp_type);
	weight = hw_breakpoint_weight(bp);

	/* Check if this new breakpoint can be satisfied across all CPUs. */
	max_pinned_slots = max_bp_pinned_slots(bp, type) + weight;
	if (max_pinned_slots > hw_breakpoint_slots_cached(type))
		return -ENOSPC;

	ret = arch_reserve_bp_slot(bp);
	if (ret)
		return ret;

	return toggle_bp_slot(bp, true, type, weight);
}

int reserve_bp_slot(struct perf_event *bp)
{
	struct mutex *mtx = bp_constraints_lock(bp);
	int ret = __reserve_bp_slot(bp, bp->attr.bp_type);

	bp_constraints_unlock(mtx);
	return ret;
}

static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
{
	enum bp_type_idx type;
	int weight;

	arch_release_bp_slot(bp);

	type = find_slot_idx(bp_type);
	weight = hw_breakpoint_weight(bp);
	WARN_ON(toggle_bp_slot(bp, false, type, weight));
}

void release_bp_slot(struct perf_event *bp)
{
	struct mutex *mtx = bp_constraints_lock(bp);

	arch_unregister_hw_breakpoint(bp);
	__release_bp_slot(bp, bp->attr.bp_type);
	bp_constraints_unlock(mtx);
}

static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
{
	int err;

	__release_bp_slot(bp, old_type);

	err = __reserve_bp_slot(bp, new_type);
	if (err) {
		/*
		 * Reserve the old_type slot back in case
		 * there's no space for the new type.
		 *
		 * This must succeed, because we just released
		 * the old_type slot in the __release_bp_slot
		 * call above. If not, something is broken.
		 */
		WARN_ON(__reserve_bp_slot(bp, old_type));
	}

	return err;
}

static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
{
	struct mutex *mtx = bp_constraints_lock(bp);
	int ret = __modify_bp_slot(bp, old_type, new_type);

	bp_constraints_unlock(mtx);
	return ret;
}

/*
 * Allow the kernel debugger to reserve breakpoint slots without
 * taking a lock using the dbg_* variant of for the reserve and
 * release breakpoint slots.
 */
int dbg_reserve_bp_slot(struct perf_event *bp)
{
	int ret;

	if (bp_constraints_is_locked(bp))
		return -1;

	/* Locks aren't held; disable lockdep assert checking. */
	lockdep_off();
	ret = __reserve_bp_slot(bp, bp->attr.bp_type);
	lockdep_on();

	return ret;
}

int dbg_release_bp_slot(struct perf_event *bp)
{
	if (bp_constraints_is_locked(bp))
		return -1;

	/* Locks aren't held; disable lockdep assert checking. */
	lockdep_off();
	__release_bp_slot(bp, bp->attr.bp_type);
	lockdep_on();

	return 0;
}

static int hw_breakpoint_parse(struct perf_event *bp,
			       const struct perf_event_attr *attr,
			       struct arch_hw_breakpoint *hw)
{
	int err;

	err = hw_breakpoint_arch_parse(bp, attr, hw);
	if (err)
		return err;

	if (arch_check_bp_in_kernelspace(hw)) {
		if (attr->exclude_kernel)
			return -EINVAL;
		/*
		 * Don't let unprivileged users set a breakpoint in the trap
		 * path to avoid trap recursion attacks.
		 */
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
	}

	return 0;
}

int register_perf_hw_breakpoint(struct perf_event *bp)
{
	struct arch_hw_breakpoint hw = { };
	int err;

	err = reserve_bp_slot(bp);
	if (err)
		return err;

	err = hw_breakpoint_parse(bp, &bp->attr, &hw);
	if (err) {
		release_bp_slot(bp);
		return err;
	}

	bp->hw.info = hw;

	return 0;
}

/**
 * register_user_hw_breakpoint - register a hardware breakpoint for user space
 * @attr: breakpoint attributes
 * @triggered: callback to trigger when we hit the breakpoint
 * @context: context data could be used in the triggered callback
 * @tsk: pointer to 'task_struct' of the process to which the address belongs
 */
struct perf_event *
register_user_hw_breakpoint(struct perf_event_attr *attr,
			    perf_overflow_handler_t triggered,
			    void *context,
			    struct task_struct *tsk)
{
	return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
						context);
}
EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);

static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
				    struct perf_event_attr *from)
{
	to->bp_addr = from->bp_addr;
	to->bp_type = from->bp_type;
	to->bp_len  = from->bp_len;
	to->disabled = from->disabled;
}

int
modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
			        bool check)
{
	struct arch_hw_breakpoint hw = { };
	int err;

	err = hw_breakpoint_parse(bp, attr, &hw);
	if (err)
		return err;

	if (check) {
		struct perf_event_attr old_attr;

		old_attr = bp->attr;
		hw_breakpoint_copy_attr(&old_attr, attr);
		if (memcmp(&old_attr, attr, sizeof(*attr)))
			return -EINVAL;
	}

	if (bp->attr.bp_type != attr->bp_type) {
		err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
		if (err)
			return err;
	}

	hw_breakpoint_copy_attr(&bp->attr, attr);
	bp->hw.info = hw;

	return 0;
}

/**
 * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
 * @bp: the breakpoint structure to modify
 * @attr: new breakpoint attributes
 */
int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
{
	int err;

	/*
	 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
	 * will not be possible to raise IPIs that invoke __perf_event_disable.
	 * So call the function directly after making sure we are targeting the
	 * current task.
	 */
	if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
		perf_event_disable_local(bp);
	else
		perf_event_disable(bp);

	err = modify_user_hw_breakpoint_check(bp, attr, false);

	if (!bp->attr.disabled)
		perf_event_enable(bp);

	return err;
}
EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);

/**
 * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
 * @bp: the breakpoint structure to unregister
 */
void unregister_hw_breakpoint(struct perf_event *bp)
{
	if (!bp)
		return;
	perf_event_release_kernel(bp);
}
EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);

/**
 * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
 * @attr: breakpoint attributes
 * @triggered: callback to trigger when we hit the breakpoint
 * @context: context data could be used in the triggered callback
 *
 * @return a set of per_cpu pointers to perf events
 */
struct perf_event * __percpu *
register_wide_hw_breakpoint(struct perf_event_attr *attr,
			    perf_overflow_handler_t triggered,
			    void *context)
{
	struct perf_event * __percpu *cpu_events, *bp;
	long err = 0;
	int cpu;

	cpu_events = alloc_percpu(typeof(*cpu_events));
	if (!cpu_events)
		return (void __percpu __force *)ERR_PTR(-ENOMEM);

	cpus_read_lock();
	for_each_online_cpu(cpu) {
		bp = perf_event_create_kernel_counter(attr, cpu, NULL,
						      triggered, context);
		if (IS_ERR(bp)) {
			err = PTR_ERR(bp);
			break;
		}

		per_cpu(*cpu_events, cpu) = bp;
	}
	cpus_read_unlock();

	if (likely(!err))
		return cpu_events;

	unregister_wide_hw_breakpoint(cpu_events);
	return (void __percpu __force *)ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);

/**
 * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
 * @cpu_events: the per cpu set of events to unregister
 */
void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
{
	int cpu;

	for_each_possible_cpu(cpu)
		unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));

	free_percpu(cpu_events);
}
EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);

/**
 * hw_breakpoint_is_used - check if breakpoints are currently used
 *
 * Returns: true if breakpoints are used, false otherwise.
 */
bool hw_breakpoint_is_used(void)
{
	int cpu;

	if (!constraints_initialized)
		return false;

	for_each_possible_cpu(cpu) {
		for (int type = 0; type < TYPE_MAX; ++type) {
			struct bp_cpuinfo *info = get_bp_info(cpu, type);

			if (info->cpu_pinned)
				return true;

			for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
				if (atomic_read(&info->tsk_pinned.count[slot]))
					return true;
			}
		}
	}

	for (int type = 0; type < TYPE_MAX; ++type) {
		for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
			/*
			 * Warn, because if there are CPU pinned counters,
			 * should never get here; bp_cpuinfo::cpu_pinned should
			 * be consistent with the global cpu_pinned histogram.
			 */
			if (WARN_ON(atomic_read(&cpu_pinned[type].count[slot])))
				return true;

			if (atomic_read(&tsk_pinned_all[type].count[slot]))
				return true;
		}
	}

	return false;
}

static struct notifier_block hw_breakpoint_exceptions_nb = {
	.notifier_call = hw_breakpoint_exceptions_notify,
	/* we need to be notified first */
	.priority = 0x7fffffff
};

static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static int hw_breakpoint_event_init(struct perf_event *bp)
{
	int err;

	if (bp->attr.type != PERF_TYPE_BREAKPOINT)
		return -ENOENT;

	/*
	 * no branch sampling for breakpoint events
	 */
	if (has_branch_stack(bp))
		return -EOPNOTSUPP;

	err = register_perf_hw_breakpoint(bp);
	if (err)
		return err;

	bp->destroy = bp_perf_event_destroy;

	return 0;
}

static int hw_breakpoint_add(struct perf_event *bp, int flags)
{
	if (!(flags & PERF_EF_START))
		bp->hw.state = PERF_HES_STOPPED;

	if (is_sampling_event(bp)) {
		bp->hw.last_period = bp->hw.sample_period;
		perf_swevent_set_period(bp);
	}

	return arch_install_hw_breakpoint(bp);
}

static void hw_breakpoint_del(struct perf_event *bp, int flags)
{
	arch_uninstall_hw_breakpoint(bp);
}

static void hw_breakpoint_start(struct perf_event *bp, int flags)
{
	bp->hw.state = 0;
}

static void hw_breakpoint_stop(struct perf_event *bp, int flags)
{
	bp->hw.state = PERF_HES_STOPPED;
}

static struct pmu perf_breakpoint = {
	.task_ctx_nr	= perf_sw_context, /* could eventually get its own */

	.event_init	= hw_breakpoint_event_init,
	.add		= hw_breakpoint_add,
	.del		= hw_breakpoint_del,
	.start		= hw_breakpoint_start,
	.stop		= hw_breakpoint_stop,
	.read		= hw_breakpoint_pmu_read,
};

int __init init_hw_breakpoint(void)
{
	int ret;

	ret = rhltable_init(&task_bps_ht, &task_bps_ht_params);
	if (ret)
		return ret;

	ret = init_breakpoint_slots();
	if (ret)
		return ret;

	constraints_initialized = true;

	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);

	return register_die_notifier(&hw_breakpoint_exceptions_nb);
}