Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Special handling for DW DMA core
 *
 * Copyright (c) 2009, 2014 Intel Corporation.
 */

#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/irqreturn.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#include <linux/spi/spi.h>
#include <linux/types.h>

#include "spi-dw.h"

#define DW_SPI_RX_BUSY		0
#define DW_SPI_RX_BURST_LEVEL	16
#define DW_SPI_TX_BUSY		1
#define DW_SPI_TX_BURST_LEVEL	16

static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{
	struct dw_dma_slave *s = param;

	if (s->dma_dev != chan->device->dev)
		return false;

	chan->private = s;
	return true;
}

static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
{
	struct dma_slave_caps caps;
	u32 max_burst, def_burst;
	int ret;

	def_burst = dws->fifo_len / 2;

	ret = dma_get_slave_caps(dws->rxchan, &caps);
	if (!ret && caps.max_burst)
		max_burst = caps.max_burst;
	else
		max_burst = DW_SPI_RX_BURST_LEVEL;

	dws->rxburst = min(max_burst, def_burst);
	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);

	ret = dma_get_slave_caps(dws->txchan, &caps);
	if (!ret && caps.max_burst)
		max_burst = caps.max_burst;
	else
		max_burst = DW_SPI_TX_BURST_LEVEL;

	/*
	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
	 * channel might not be enough to provide a well balanced DMA-based
	 * SPI transfer interface. There might still be moments when the Tx DMA
	 * channel is occasionally handled faster than the Rx DMA channel.
	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
	 * DMA activity is intentionally slowed down by limiting the SPI Tx
	 * FIFO depth with a value twice bigger than the Tx burst length.
	 */
	dws->txburst = min(max_burst, def_burst);
	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
}

static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
{
	struct dma_slave_caps tx = {0}, rx = {0};

	dma_get_slave_caps(dws->txchan, &tx);
	dma_get_slave_caps(dws->rxchan, &rx);

	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
	else if (tx.max_sg_burst > 0)
		dws->dma_sg_burst = tx.max_sg_burst;
	else if (rx.max_sg_burst > 0)
		dws->dma_sg_burst = rx.max_sg_burst;
	else
		dws->dma_sg_burst = 0;
}

static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
{
	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
	struct pci_dev *dma_dev;
	dma_cap_mask_t mask;

	/*
	 * Get pci device for DMA controller, currently it could only
	 * be the DMA controller of Medfield
	 */
	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
	if (!dma_dev)
		return -ENODEV;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	/* 1. Init rx channel */
	rx->dma_dev = &dma_dev->dev;
	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
	if (!dws->rxchan)
		goto err_exit;

	/* 2. Init tx channel */
	tx->dma_dev = &dma_dev->dev;
	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
	if (!dws->txchan)
		goto free_rxchan;

	dws->master->dma_rx = dws->rxchan;
	dws->master->dma_tx = dws->txchan;

	init_completion(&dws->dma_completion);

	dw_spi_dma_maxburst_init(dws);

	dw_spi_dma_sg_burst_init(dws);

	pci_dev_put(dma_dev);

	return 0;

free_rxchan:
	dma_release_channel(dws->rxchan);
	dws->rxchan = NULL;
err_exit:
	pci_dev_put(dma_dev);
	return -EBUSY;
}

static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
{
	int ret;

	dws->rxchan = dma_request_chan(dev, "rx");
	if (IS_ERR(dws->rxchan)) {
		ret = PTR_ERR(dws->rxchan);
		dws->rxchan = NULL;
		goto err_exit;
	}

	dws->txchan = dma_request_chan(dev, "tx");
	if (IS_ERR(dws->txchan)) {
		ret = PTR_ERR(dws->txchan);
		dws->txchan = NULL;
		goto free_rxchan;
	}

	dws->master->dma_rx = dws->rxchan;
	dws->master->dma_tx = dws->txchan;

	init_completion(&dws->dma_completion);

	dw_spi_dma_maxburst_init(dws);

	dw_spi_dma_sg_burst_init(dws);

	return 0;

free_rxchan:
	dma_release_channel(dws->rxchan);
	dws->rxchan = NULL;
err_exit:
	return ret;
}

static void dw_spi_dma_exit(struct dw_spi *dws)
{
	if (dws->txchan) {
		dmaengine_terminate_sync(dws->txchan);
		dma_release_channel(dws->txchan);
	}

	if (dws->rxchan) {
		dmaengine_terminate_sync(dws->rxchan);
		dma_release_channel(dws->rxchan);
	}
}

static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
{
	dw_spi_check_status(dws, false);

	complete(&dws->dma_completion);

	return IRQ_HANDLED;
}

static bool dw_spi_can_dma(struct spi_controller *master,
			   struct spi_device *spi, struct spi_transfer *xfer)
{
	struct dw_spi *dws = spi_controller_get_devdata(master);

	return xfer->len > dws->fifo_len;
}

static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
{
	if (n_bytes == 1)
		return DMA_SLAVE_BUSWIDTH_1_BYTE;
	else if (n_bytes == 2)
		return DMA_SLAVE_BUSWIDTH_2_BYTES;

	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}

static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
{
	unsigned long long ms;

	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
	do_div(ms, speed);
	ms += ms + 200;

	if (ms > UINT_MAX)
		ms = UINT_MAX;

	ms = wait_for_completion_timeout(&dws->dma_completion,
					 msecs_to_jiffies(ms));

	if (ms == 0) {
		dev_err(&dws->master->cur_msg->spi->dev,
			"DMA transaction timed out\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
{
	return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
}

static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
				   struct spi_transfer *xfer)
{
	int retry = DW_SPI_WAIT_RETRIES;
	struct spi_delay delay;
	u32 nents;

	nents = dw_readl(dws, DW_SPI_TXFLR);
	delay.unit = SPI_DELAY_UNIT_SCK;
	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;

	while (dw_spi_dma_tx_busy(dws) && retry--)
		spi_delay_exec(&delay, xfer);

	if (retry < 0) {
		dev_err(&dws->master->dev, "Tx hanged up\n");
		return -EIO;
	}

	return 0;
}

/*
 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
 * channel will clear a corresponding bit.
 */
static void dw_spi_dma_tx_done(void *arg)
{
	struct dw_spi *dws = arg;

	clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
		return;

	complete(&dws->dma_completion);
}

static int dw_spi_dma_config_tx(struct dw_spi *dws)
{
	struct dma_slave_config txconf;

	memset(&txconf, 0, sizeof(txconf));
	txconf.direction = DMA_MEM_TO_DEV;
	txconf.dst_addr = dws->dma_addr;
	txconf.dst_maxburst = dws->txburst;
	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
	txconf.device_fc = false;

	return dmaengine_slave_config(dws->txchan, &txconf);
}

static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
				unsigned int nents)
{
	struct dma_async_tx_descriptor *txdesc;
	dma_cookie_t cookie;
	int ret;

	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
					 DMA_MEM_TO_DEV,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!txdesc)
		return -ENOMEM;

	txdesc->callback = dw_spi_dma_tx_done;
	txdesc->callback_param = dws;

	cookie = dmaengine_submit(txdesc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dmaengine_terminate_sync(dws->txchan);
		return ret;
	}

	set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);

	return 0;
}

static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
{
	return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
}

static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
{
	int retry = DW_SPI_WAIT_RETRIES;
	struct spi_delay delay;
	unsigned long ns, us;
	u32 nents;

	/*
	 * It's unlikely that DMA engine is still doing the data fetching, but
	 * if it's let's give it some reasonable time. The timeout calculation
	 * is based on the synchronous APB/SSI reference clock rate, on a
	 * number of data entries left in the Rx FIFO, times a number of clock
	 * periods normally needed for a single APB read/write transaction
	 * without PREADY signal utilized (which is true for the DW APB SSI
	 * controller).
	 */
	nents = dw_readl(dws, DW_SPI_RXFLR);
	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
	if (ns <= NSEC_PER_USEC) {
		delay.unit = SPI_DELAY_UNIT_NSECS;
		delay.value = ns;
	} else {
		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
		delay.unit = SPI_DELAY_UNIT_USECS;
		delay.value = clamp_val(us, 0, USHRT_MAX);
	}

	while (dw_spi_dma_rx_busy(dws) && retry--)
		spi_delay_exec(&delay, NULL);

	if (retry < 0) {
		dev_err(&dws->master->dev, "Rx hanged up\n");
		return -EIO;
	}

	return 0;
}

/*
 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
 * channel will clear a corresponding bit.
 */
static void dw_spi_dma_rx_done(void *arg)
{
	struct dw_spi *dws = arg;

	clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
		return;

	complete(&dws->dma_completion);
}

static int dw_spi_dma_config_rx(struct dw_spi *dws)
{
	struct dma_slave_config rxconf;

	memset(&rxconf, 0, sizeof(rxconf));
	rxconf.direction = DMA_DEV_TO_MEM;
	rxconf.src_addr = dws->dma_addr;
	rxconf.src_maxburst = dws->rxburst;
	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
	rxconf.device_fc = false;

	return dmaengine_slave_config(dws->rxchan, &rxconf);
}

static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
				unsigned int nents)
{
	struct dma_async_tx_descriptor *rxdesc;
	dma_cookie_t cookie;
	int ret;

	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
					 DMA_DEV_TO_MEM,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!rxdesc)
		return -ENOMEM;

	rxdesc->callback = dw_spi_dma_rx_done;
	rxdesc->callback_param = dws;

	cookie = dmaengine_submit(rxdesc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dmaengine_terminate_sync(dws->rxchan);
		return ret;
	}

	set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);

	return 0;
}

static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{
	u16 imr, dma_ctrl;
	int ret;

	if (!xfer->tx_buf)
		return -EINVAL;

	/* Setup DMA channels */
	ret = dw_spi_dma_config_tx(dws);
	if (ret)
		return ret;

	if (xfer->rx_buf) {
		ret = dw_spi_dma_config_rx(dws);
		if (ret)
			return ret;
	}

	/* Set the DMA handshaking interface */
	dma_ctrl = DW_SPI_DMACR_TDMAE;
	if (xfer->rx_buf)
		dma_ctrl |= DW_SPI_DMACR_RDMAE;
	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);

	/* Set the interrupt mask */
	imr = DW_SPI_INT_TXOI;
	if (xfer->rx_buf)
		imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
	dw_spi_umask_intr(dws, imr);

	reinit_completion(&dws->dma_completion);

	dws->transfer_handler = dw_spi_dma_transfer_handler;

	return 0;
}

static int dw_spi_dma_transfer_all(struct dw_spi *dws,
				   struct spi_transfer *xfer)
{
	int ret;

	/* Submit the DMA Tx transfer */
	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
	if (ret)
		goto err_clear_dmac;

	/* Submit the DMA Rx transfer if required */
	if (xfer->rx_buf) {
		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
					   xfer->rx_sg.nents);
		if (ret)
			goto err_clear_dmac;

		/* rx must be started before tx due to spi instinct */
		dma_async_issue_pending(dws->rxchan);
	}

	dma_async_issue_pending(dws->txchan);

	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);

err_clear_dmac:
	dw_writel(dws, DW_SPI_DMACR, 0);

	return ret;
}

/*
 * In case if at least one of the requested DMA channels doesn't support the
 * hardware accelerated SG list entries traverse, the DMA driver will most
 * likely work that around by performing the IRQ-based SG list entries
 * resubmission. That might and will cause a problem if the DMA Tx channel is
 * recharged and re-executed before the Rx DMA channel. Due to
 * non-deterministic IRQ-handler execution latency the DMA Tx channel will
 * start pushing data to the SPI bus before the Rx DMA channel is even
 * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
 * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
 * the DMA Rx channel being recharged and re-executed will eventually be
 * overflown.
 *
 * In order to solve the problem we have to feed the DMA engine with SG list
 * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
 * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
 * and rx_sg lists may have different number of entries of different lengths
 * (though total length should match) let's virtually split the SG-lists to the
 * set of DMA transfers, which length is a minimum of the ordered SG-entries
 * lengths. An ASCII-sketch of the implemented algo is following:
 *                  xfer->len
 *                |___________|
 * tx_sg list:    |___|____|__|
 * rx_sg list:    |_|____|____|
 * DMA transfers: |_|_|__|_|__|
 *
 * Note in order to have this workaround solving the denoted problem the DMA
 * engine driver should properly initialize the max_sg_burst capability and set
 * the DMA device max segment size parameter with maximum data block size the
 * DMA engine supports.
 */

static int dw_spi_dma_transfer_one(struct dw_spi *dws,
				   struct spi_transfer *xfer)
{
	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
	unsigned int tx_len = 0, rx_len = 0;
	unsigned int base, len;
	int ret;

	sg_init_table(&tx_tmp, 1);
	sg_init_table(&rx_tmp, 1);

	for (base = 0, len = 0; base < xfer->len; base += len) {
		/* Fetch next Tx DMA data chunk */
		if (!tx_len) {
			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
			tx_len = sg_dma_len(tx_sg);
		}

		/* Fetch next Rx DMA data chunk */
		if (!rx_len) {
			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
			rx_len = sg_dma_len(rx_sg);
		}

		len = min(tx_len, rx_len);

		sg_dma_len(&tx_tmp) = len;
		sg_dma_len(&rx_tmp) = len;

		/* Submit DMA Tx transfer */
		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
		if (ret)
			break;

		/* Submit DMA Rx transfer */
		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
		if (ret)
			break;

		/* Rx must be started before Tx due to SPI instinct */
		dma_async_issue_pending(dws->rxchan);

		dma_async_issue_pending(dws->txchan);

		/*
		 * Here we only need to wait for the DMA transfer to be
		 * finished since SPI controller is kept enabled during the
		 * procedure this loop implements and there is no risk to lose
		 * data left in the Tx/Rx FIFOs.
		 */
		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
		if (ret)
			break;

		reinit_completion(&dws->dma_completion);

		sg_dma_address(&tx_tmp) += len;
		sg_dma_address(&rx_tmp) += len;
		tx_len -= len;
		rx_len -= len;
	}

	dw_writel(dws, DW_SPI_DMACR, 0);

	return ret;
}

static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{
	unsigned int nents;
	int ret;

	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);

	/*
	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
	 * lists directly to the DMA engine at once) if either full hardware
	 * accelerated SG list traverse is supported by both channels, or the
	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
	 * handle both SG lists on hardware accelerated basis.
	 */
	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
		ret = dw_spi_dma_transfer_all(dws, xfer);
	else
		ret = dw_spi_dma_transfer_one(dws, xfer);
	if (ret)
		return ret;

	if (dws->master->cur_msg->status == -EINPROGRESS) {
		ret = dw_spi_dma_wait_tx_done(dws, xfer);
		if (ret)
			return ret;
	}

	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
		ret = dw_spi_dma_wait_rx_done(dws);

	return ret;
}

static void dw_spi_dma_stop(struct dw_spi *dws)
{
	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
		dmaengine_terminate_sync(dws->txchan);
		clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
	}
	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
		dmaengine_terminate_sync(dws->rxchan);
		clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
	}
}

static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
	.dma_init	= dw_spi_dma_init_mfld,
	.dma_exit	= dw_spi_dma_exit,
	.dma_setup	= dw_spi_dma_setup,
	.can_dma	= dw_spi_can_dma,
	.dma_transfer	= dw_spi_dma_transfer,
	.dma_stop	= dw_spi_dma_stop,
};

void dw_spi_dma_setup_mfld(struct dw_spi *dws)
{
	dws->dma_ops = &dw_spi_dma_mfld_ops;
}
EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);

static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
	.dma_init	= dw_spi_dma_init_generic,
	.dma_exit	= dw_spi_dma_exit,
	.dma_setup	= dw_spi_dma_setup,
	.can_dma	= dw_spi_can_dma,
	.dma_transfer	= dw_spi_dma_transfer,
	.dma_stop	= dw_spi_dma_stop,
};

void dw_spi_dma_setup_generic(struct dw_spi *dws)
{
	dws->dma_ops = &dw_spi_dma_generic_ops;
}
EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);