Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | // SPDX-License-Identifier: MIT #include <linux/aperture.h> #include <linux/platform_device.h> #include <drm/drm_aperture.h> #include <drm/drm_drv.h> #include <drm/drm_print.h> /** * DOC: overview * * A graphics device might be supported by different drivers, but only one * driver can be active at any given time. Many systems load a generic * graphics drivers, such as EFI-GOP or VESA, early during the boot process. * During later boot stages, they replace the generic driver with a dedicated, * hardware-specific driver. To take over the device the dedicated driver * first has to remove the generic driver. DRM aperture functions manage * ownership of DRM framebuffer memory and hand-over between drivers. * * DRM drivers should call drm_aperture_remove_conflicting_framebuffers() * at the top of their probe function. The function removes any generic * driver that is currently associated with the given framebuffer memory. * If the framebuffer is located at PCI BAR 0, the rsp code looks as in the * example given below. * * .. code-block:: c * * static const struct drm_driver example_driver = { * ... * }; * * static int remove_conflicting_framebuffers(struct pci_dev *pdev) * { * bool primary = false; * resource_size_t base, size; * int ret; * * base = pci_resource_start(pdev, 0); * size = pci_resource_len(pdev, 0); * #ifdef CONFIG_X86 * primary = pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW; * #endif * * return drm_aperture_remove_conflicting_framebuffers(base, size, primary, * &example_driver); * } * * static int probe(struct pci_dev *pdev) * { * int ret; * * // Remove any generic drivers... * ret = remove_conflicting_framebuffers(pdev); * if (ret) * return ret; * * // ... and initialize the hardware. * ... * * drm_dev_register(); * * return 0; * } * * PCI device drivers should call * drm_aperture_remove_conflicting_pci_framebuffers() and let it detect the * framebuffer apertures automatically. Device drivers without knowledge of * the framebuffer's location shall call drm_aperture_remove_framebuffers(), * which removes all drivers for known framebuffer. * * Drivers that are susceptible to being removed by other drivers, such as * generic EFI or VESA drivers, have to register themselves as owners of their * given framebuffer memory. Ownership of the framebuffer memory is achieved * by calling devm_aperture_acquire_from_firmware(). On success, the driver * is the owner of the framebuffer range. The function fails if the * framebuffer is already owned by another driver. See below for an example. * * .. code-block:: c * * static int acquire_framebuffers(struct drm_device *dev, struct platform_device *pdev) * { * resource_size_t base, size; * * mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); * if (!mem) * return -EINVAL; * base = mem->start; * size = resource_size(mem); * * return devm_acquire_aperture_from_firmware(dev, base, size); * } * * static int probe(struct platform_device *pdev) * { * struct drm_device *dev; * int ret; * * // ... Initialize the device... * dev = devm_drm_dev_alloc(); * ... * * // ... and acquire ownership of the framebuffer. * ret = acquire_framebuffers(dev, pdev); * if (ret) * return ret; * * drm_dev_register(dev, 0); * * return 0; * } * * The generic driver is now subject to forced removal by other drivers. This * only works for platform drivers that support hot unplug. * When a driver calls drm_aperture_remove_conflicting_framebuffers() et al. * for the registered framebuffer range, the aperture helpers call * platform_device_unregister() and the generic driver unloads itself. It * may not access the device's registers, framebuffer memory, ROM, etc * afterwards. */ /** * devm_aperture_acquire_from_firmware - Acquires ownership of a firmware framebuffer * on behalf of a DRM driver. * @dev: the DRM device to own the framebuffer memory * @base: the framebuffer's byte offset in physical memory * @size: the framebuffer size in bytes * * Installs the given device as the new owner of the framebuffer. The function * expects the framebuffer to be provided by a platform device that has been * set up by firmware. Firmware can be any generic interface, such as EFI, * VESA, VGA, etc. If the native hardware driver takes over ownership of the * framebuffer range, the firmware state gets lost. Aperture helpers will then * unregister the platform device automatically. Acquired apertures are * released automatically if the underlying device goes away. * * The function fails if the framebuffer range, or parts of it, is currently * owned by another driver. To evict current owners, callers should use * drm_aperture_remove_conflicting_framebuffers() et al. before calling this * function. The function also fails if the given device is not a platform * device. * * Returns: * 0 on success, or a negative errno value otherwise. */ int devm_aperture_acquire_from_firmware(struct drm_device *dev, resource_size_t base, resource_size_t size) { struct platform_device *pdev; if (drm_WARN_ON(dev, !dev_is_platform(dev->dev))) return -EINVAL; pdev = to_platform_device(dev->dev); return devm_aperture_acquire_for_platform_device(pdev, base, size); } EXPORT_SYMBOL(devm_aperture_acquire_from_firmware); /** * drm_aperture_remove_conflicting_framebuffers - remove existing framebuffers in the given range * @base: the aperture's base address in physical memory * @size: aperture size in bytes * @primary: also kick vga16fb if present * @req_driver: requesting DRM driver * * This function removes graphics device drivers which use the memory range described by * @base and @size. * * Returns: * 0 on success, or a negative errno code otherwise */ int drm_aperture_remove_conflicting_framebuffers(resource_size_t base, resource_size_t size, bool primary, const struct drm_driver *req_driver) { return aperture_remove_conflicting_devices(base, size, primary, req_driver->name); } EXPORT_SYMBOL(drm_aperture_remove_conflicting_framebuffers); /** * drm_aperture_remove_conflicting_pci_framebuffers - remove existing framebuffers for PCI devices * @pdev: PCI device * @req_driver: requesting DRM driver * * This function removes graphics device drivers using the memory range configured * for any of @pdev's memory bars. The function assumes that a PCI device with * shadowed ROM drives a primary display and so kicks out vga16fb. * * Returns: * 0 on success, or a negative errno code otherwise */ int drm_aperture_remove_conflicting_pci_framebuffers(struct pci_dev *pdev, const struct drm_driver *req_driver) { return aperture_remove_conflicting_pci_devices(pdev, req_driver->name); } EXPORT_SYMBOL(drm_aperture_remove_conflicting_pci_framebuffers); |