// SPDX-License-Identifier: GPL-2.0
/*
* Cryptographic API.
*
* Support for ATMEL AES HW acceleration.
*
* Copyright (c) 2012 Eukréa Electromatique - ATMEL
* Author: Nicolas Royer <nicolas@eukrea.com>
*
* Some ideas are from omap-aes.c driver.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/gcm.h>
#include <crypto/xts.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include "atmel-aes-regs.h"
#include "atmel-authenc.h"
#define ATMEL_AES_PRIORITY 300
#define ATMEL_AES_BUFFER_ORDER 2
#define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
#define CFB8_BLOCK_SIZE 1
#define CFB16_BLOCK_SIZE 2
#define CFB32_BLOCK_SIZE 4
#define CFB64_BLOCK_SIZE 8
#define SIZE_IN_WORDS(x) ((x) >> 2)
/* AES flags */
/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
#define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
#define AES_FLAGS_GTAGEN AES_MR_GTAGEN
#define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
#define AES_FLAGS_ECB AES_MR_OPMOD_ECB
#define AES_FLAGS_CBC AES_MR_OPMOD_CBC
#define AES_FLAGS_OFB AES_MR_OPMOD_OFB
#define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
#define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
#define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
#define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
#define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
#define AES_FLAGS_CTR AES_MR_OPMOD_CTR
#define AES_FLAGS_GCM AES_MR_OPMOD_GCM
#define AES_FLAGS_XTS AES_MR_OPMOD_XTS
#define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
AES_FLAGS_ENCRYPT | \
AES_FLAGS_GTAGEN)
#define AES_FLAGS_BUSY BIT(3)
#define AES_FLAGS_DUMP_REG BIT(4)
#define AES_FLAGS_OWN_SHA BIT(5)
#define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
#define ATMEL_AES_QUEUE_LENGTH 50
#define ATMEL_AES_DMA_THRESHOLD 256
struct atmel_aes_caps {
bool has_dualbuff;
bool has_cfb64;
bool has_gcm;
bool has_xts;
bool has_authenc;
u32 max_burst_size;
};
struct atmel_aes_dev;
typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
struct atmel_aes_base_ctx {
struct atmel_aes_dev *dd;
atmel_aes_fn_t start;
int keylen;
u32 key[AES_KEYSIZE_256 / sizeof(u32)];
u16 block_size;
bool is_aead;
};
struct atmel_aes_ctx {
struct atmel_aes_base_ctx base;
};
struct atmel_aes_ctr_ctx {
struct atmel_aes_base_ctx base;
__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
size_t offset;
struct scatterlist src[2];
struct scatterlist dst[2];
u32 blocks;
};
struct atmel_aes_gcm_ctx {
struct atmel_aes_base_ctx base;
struct scatterlist src[2];
struct scatterlist dst[2];
__be32 j0[AES_BLOCK_SIZE / sizeof(u32)];
u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
__be32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
size_t textlen;
const __be32 *ghash_in;
__be32 *ghash_out;
atmel_aes_fn_t ghash_resume;
};
struct atmel_aes_xts_ctx {
struct atmel_aes_base_ctx base;
u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
struct crypto_skcipher *fallback_tfm;
};
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
struct atmel_aes_authenc_ctx {
struct atmel_aes_base_ctx base;
struct atmel_sha_authenc_ctx *auth;
};
#endif
struct atmel_aes_reqctx {
unsigned long mode;
u8 lastc[AES_BLOCK_SIZE];
struct skcipher_request fallback_req;
};
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
struct atmel_aes_authenc_reqctx {
struct atmel_aes_reqctx base;
struct scatterlist src[2];
struct scatterlist dst[2];
size_t textlen;
u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
/* auth_req MUST be place last. */
struct ahash_request auth_req;
};
#endif
struct atmel_aes_dma {
struct dma_chan *chan;
struct scatterlist *sg;
int nents;
unsigned int remainder;
unsigned int sg_len;
};
struct atmel_aes_dev {
struct list_head list;
unsigned long phys_base;
void __iomem *io_base;
struct crypto_async_request *areq;
struct atmel_aes_base_ctx *ctx;
bool is_async;
atmel_aes_fn_t resume;
atmel_aes_fn_t cpu_transfer_complete;
struct device *dev;
struct clk *iclk;
int irq;
unsigned long flags;
spinlock_t lock;
struct crypto_queue queue;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
size_t total;
size_t datalen;
u32 *data;
struct atmel_aes_dma src;
struct atmel_aes_dma dst;
size_t buflen;
void *buf;
struct scatterlist aligned_sg;
struct scatterlist *real_dst;
struct atmel_aes_caps caps;
u32 hw_version;
};
struct atmel_aes_drv {
struct list_head dev_list;
spinlock_t lock;
};
static struct atmel_aes_drv atmel_aes = {
.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
};
#ifdef VERBOSE_DEBUG
static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
{
switch (offset) {
case AES_CR:
return "CR";
case AES_MR:
return "MR";
case AES_ISR:
return "ISR";
case AES_IMR:
return "IMR";
case AES_IER:
return "IER";
case AES_IDR:
return "IDR";
case AES_KEYWR(0):
case AES_KEYWR(1):
case AES_KEYWR(2):
case AES_KEYWR(3):
case AES_KEYWR(4):
case AES_KEYWR(5):
case AES_KEYWR(6):
case AES_KEYWR(7):
snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
break;
case AES_IDATAR(0):
case AES_IDATAR(1):
case AES_IDATAR(2):
case AES_IDATAR(3):
snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
break;
case AES_ODATAR(0):
case AES_ODATAR(1):
case AES_ODATAR(2):
case AES_ODATAR(3):
snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
break;
case AES_IVR(0):
case AES_IVR(1):
case AES_IVR(2):
case AES_IVR(3):
snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
break;
case AES_AADLENR:
return "AADLENR";
case AES_CLENR:
return "CLENR";
case AES_GHASHR(0):
case AES_GHASHR(1):
case AES_GHASHR(2):
case AES_GHASHR(3):
snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
break;
case AES_TAGR(0):
case AES_TAGR(1):
case AES_TAGR(2):
case AES_TAGR(3):
snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
break;
case AES_CTRR:
return "CTRR";
case AES_GCMHR(0):
case AES_GCMHR(1):
case AES_GCMHR(2):
case AES_GCMHR(3):
snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
break;
case AES_EMR:
return "EMR";
case AES_TWR(0):
case AES_TWR(1):
case AES_TWR(2):
case AES_TWR(3):
snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
break;
case AES_ALPHAR(0):
case AES_ALPHAR(1):
case AES_ALPHAR(2):
case AES_ALPHAR(3):
snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
break;
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
/* Shared functions */
static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
{
u32 value = readl_relaxed(dd->io_base + offset);
#ifdef VERBOSE_DEBUG
if (dd->flags & AES_FLAGS_DUMP_REG) {
char tmp[16];
dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
}
#endif /* VERBOSE_DEBUG */
return value;
}
static inline void atmel_aes_write(struct atmel_aes_dev *dd,
u32 offset, u32 value)
{
#ifdef VERBOSE_DEBUG
if (dd->flags & AES_FLAGS_DUMP_REG) {
char tmp[16];
dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
}
#endif /* VERBOSE_DEBUG */
writel_relaxed(value, dd->io_base + offset);
}
static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
u32 *value, int count)
{
for (; count--; value++, offset += 4)
*value = atmel_aes_read(dd, offset);
}
static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
const u32 *value, int count)
{
for (; count--; value++, offset += 4)
atmel_aes_write(dd, offset, *value);
}
static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
void *value)
{
atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
}
static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
const void *value)
{
atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
}
static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
atmel_aes_fn_t resume)
{
u32 isr = atmel_aes_read(dd, AES_ISR);
if (unlikely(isr & AES_INT_DATARDY))
return resume(dd);
dd->resume = resume;
atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
return -EINPROGRESS;
}
static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
{
len &= block_size - 1;
return len ? block_size - len : 0;
}
static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
{
struct atmel_aes_dev *aes_dd;
spin_lock_bh(&atmel_aes.lock);
/* One AES IP per SoC. */
aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
struct atmel_aes_dev, list);
spin_unlock_bh(&atmel_aes.lock);
return aes_dd;
}
static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
{
int err;
err = clk_enable(dd->iclk);
if (err)
return err;
atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
return 0;
}
static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
{
return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
}
static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
{
int err;
err = atmel_aes_hw_init(dd);
if (err)
return err;
dd->hw_version = atmel_aes_get_version(dd);
dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
clk_disable(dd->iclk);
return 0;
}
static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
const struct atmel_aes_reqctx *rctx)
{
/* Clear all but persistent flags and set request flags. */
dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
}
static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
{
return (dd->flags & AES_FLAGS_ENCRYPT);
}
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
#endif
static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
{
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
if (req->cryptlen < ivsize)
return;
if (rctx->mode & AES_FLAGS_ENCRYPT) {
scatterwalk_map_and_copy(req->iv, req->dst,
req->cryptlen - ivsize, ivsize, 0);
} else {
if (req->src == req->dst)
memcpy(req->iv, rctx->lastc, ivsize);
else
scatterwalk_map_and_copy(req->iv, req->src,
req->cryptlen - ivsize,
ivsize, 0);
}
}
static inline struct atmel_aes_ctr_ctx *
atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
{
return container_of(ctx, struct atmel_aes_ctr_ctx, base);
}
static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
{
struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
int i;
/*
* The CTR transfer works in fragments of data of maximum 1 MByte
* because of the 16 bit CTR counter embedded in the IP. When reaching
* here, ctx->blocks contains the number of blocks of the last fragment
* processed, there is no need to explicit cast it to u16.
*/
for (i = 0; i < ctx->blocks; i++)
crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
memcpy(req->iv, ctx->iv, ivsize);
}
static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
{
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
if (dd->ctx->is_aead)
atmel_aes_authenc_complete(dd, err);
#endif
clk_disable(dd->iclk);
dd->flags &= ~AES_FLAGS_BUSY;
if (!err && !dd->ctx->is_aead &&
(rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
atmel_aes_set_iv_as_last_ciphertext_block(dd);
else
atmel_aes_ctr_update_req_iv(dd);
}
if (dd->is_async)
crypto_request_complete(dd->areq, err);
tasklet_schedule(&dd->queue_task);
return err;
}
static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
const __be32 *iv, const u32 *key, int keylen)
{
u32 valmr = 0;
/* MR register must be set before IV registers */
if (keylen == AES_KEYSIZE_128)
valmr |= AES_MR_KEYSIZE_128;
else if (keylen == AES_KEYSIZE_192)
valmr |= AES_MR_KEYSIZE_192;
else
valmr |= AES_MR_KEYSIZE_256;
valmr |= dd->flags & AES_FLAGS_MODE_MASK;
if (use_dma) {
valmr |= AES_MR_SMOD_IDATAR0;
if (dd->caps.has_dualbuff)
valmr |= AES_MR_DUALBUFF;
} else {
valmr |= AES_MR_SMOD_AUTO;
}
atmel_aes_write(dd, AES_MR, valmr);
atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
atmel_aes_write_block(dd, AES_IVR(0), iv);
}
static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
const __be32 *iv)
{
atmel_aes_write_ctrl_key(dd, use_dma, iv,
dd->ctx->key, dd->ctx->keylen);
}
/* CPU transfer */
static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
{
int err = 0;
u32 isr;
for (;;) {
atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
dd->data += 4;
dd->datalen -= AES_BLOCK_SIZE;
if (dd->datalen < AES_BLOCK_SIZE)
break;
atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
isr = atmel_aes_read(dd, AES_ISR);
if (!(isr & AES_INT_DATARDY)) {
dd->resume = atmel_aes_cpu_transfer;
atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
return -EINPROGRESS;
}
}
if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
dd->buf, dd->total))
err = -EINVAL;
if (err)
return atmel_aes_complete(dd, err);
return dd->cpu_transfer_complete(dd);
}
static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
struct scatterlist *src,
struct scatterlist *dst,
size_t len,
atmel_aes_fn_t resume)
{
size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
if (unlikely(len == 0))
return -EINVAL;
sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
dd->total = len;
dd->real_dst = dst;
dd->cpu_transfer_complete = resume;
dd->datalen = len + padlen;
dd->data = (u32 *)dd->buf;
atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
}
/* DMA transfer */
static void atmel_aes_dma_callback(void *data);
static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
struct scatterlist *sg,
size_t len,
struct atmel_aes_dma *dma)
{
int nents;
if (!IS_ALIGNED(len, dd->ctx->block_size))
return false;
for (nents = 0; sg; sg = sg_next(sg), ++nents) {
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
return false;
if (len <= sg->length) {
if (!IS_ALIGNED(len, dd->ctx->block_size))
return false;
dma->nents = nents+1;
dma->remainder = sg->length - len;
sg->length = len;
return true;
}
if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
return false;
len -= sg->length;
}
return false;
}
static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
{
struct scatterlist *sg = dma->sg;
int nents = dma->nents;
if (!dma->remainder)
return;
while (--nents > 0 && sg)
sg = sg_next(sg);
if (!sg)
return;
sg->length += dma->remainder;
}
static int atmel_aes_map(struct atmel_aes_dev *dd,
struct scatterlist *src,
struct scatterlist *dst,
size_t len)
{
bool src_aligned, dst_aligned;
size_t padlen;
dd->total = len;
dd->src.sg = src;
dd->dst.sg = dst;
dd->real_dst = dst;
src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
if (src == dst)
dst_aligned = src_aligned;
else
dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
if (!src_aligned || !dst_aligned) {
padlen = atmel_aes_padlen(len, dd->ctx->block_size);
if (dd->buflen < len + padlen)
return -ENOMEM;
if (!src_aligned) {
sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
dd->src.sg = &dd->aligned_sg;
dd->src.nents = 1;
dd->src.remainder = 0;
}
if (!dst_aligned) {
dd->dst.sg = &dd->aligned_sg;
dd->dst.nents = 1;
dd->dst.remainder = 0;
}
sg_init_table(&dd->aligned_sg, 1);
sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
}
if (dd->src.sg == dd->dst.sg) {
dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
DMA_BIDIRECTIONAL);
dd->dst.sg_len = dd->src.sg_len;
if (!dd->src.sg_len)
return -EFAULT;
} else {
dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
DMA_TO_DEVICE);
if (!dd->src.sg_len)
return -EFAULT;
dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
DMA_FROM_DEVICE);
if (!dd->dst.sg_len) {
dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
DMA_TO_DEVICE);
return -EFAULT;
}
}
return 0;
}
static void atmel_aes_unmap(struct atmel_aes_dev *dd)
{
if (dd->src.sg == dd->dst.sg) {
dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
DMA_BIDIRECTIONAL);
if (dd->src.sg != &dd->aligned_sg)
atmel_aes_restore_sg(&dd->src);
} else {
dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
DMA_FROM_DEVICE);
if (dd->dst.sg != &dd->aligned_sg)
atmel_aes_restore_sg(&dd->dst);
dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
DMA_TO_DEVICE);
if (dd->src.sg != &dd->aligned_sg)
atmel_aes_restore_sg(&dd->src);
}
if (dd->dst.sg == &dd->aligned_sg)
sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
dd->buf, dd->total);
}
static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
enum dma_slave_buswidth addr_width,
enum dma_transfer_direction dir,
u32 maxburst)
{
struct dma_async_tx_descriptor *desc;
struct dma_slave_config config;
dma_async_tx_callback callback;
struct atmel_aes_dma *dma;
int err;
memset(&config, 0, sizeof(config));
config.src_addr_width = addr_width;
config.dst_addr_width = addr_width;
config.src_maxburst = maxburst;
config.dst_maxburst = maxburst;
switch (dir) {
case DMA_MEM_TO_DEV:
dma = &dd->src;
callback = NULL;
config.dst_addr = dd->phys_base + AES_IDATAR(0);
break;
case DMA_DEV_TO_MEM:
dma = &dd->dst;
callback = atmel_aes_dma_callback;
config.src_addr = dd->phys_base + AES_ODATAR(0);
break;
default:
return -EINVAL;
}
err = dmaengine_slave_config(dma->chan, &config);
if (err)
return err;
desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc)
return -ENOMEM;
desc->callback = callback;
desc->callback_param = dd;
dmaengine_submit(desc);
dma_async_issue_pending(dma->chan);
return 0;
}
static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
struct scatterlist *src,
struct scatterlist *dst,
size_t len,
atmel_aes_fn_t resume)
{
enum dma_slave_buswidth addr_width;
u32 maxburst;
int err;
switch (dd->ctx->block_size) {
case CFB8_BLOCK_SIZE:
addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
maxburst = 1;
break;
case CFB16_BLOCK_SIZE:
addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
maxburst = 1;
break;
case CFB32_BLOCK_SIZE:
case CFB64_BLOCK_SIZE:
addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
maxburst = 1;
break;
case AES_BLOCK_SIZE:
addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
maxburst = dd->caps.max_burst_size;
break;
default:
err = -EINVAL;
goto exit;
}
err = atmel_aes_map(dd, src, dst, len);
if (err)
goto exit;
dd->resume = resume;
/* Set output DMA transfer first */
err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
maxburst);
if (err)
goto unmap;
/* Then set input DMA transfer */
err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
maxburst);
if (err)
goto output_transfer_stop;
return -EINPROGRESS;
output_transfer_stop:
dmaengine_terminate_sync(dd->dst.chan);
unmap:
atmel_aes_unmap(dd);
exit:
return atmel_aes_complete(dd, err);
}
static void atmel_aes_dma_callback(void *data)
{
struct atmel_aes_dev *dd = data;
atmel_aes_unmap(dd);
dd->is_async = true;
(void)dd->resume(dd);
}
static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
struct crypto_async_request *new_areq)
{
struct crypto_async_request *areq, *backlog;
struct atmel_aes_base_ctx *ctx;
unsigned long flags;
bool start_async;
int err, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (new_areq)
ret = crypto_enqueue_request(&dd->queue, new_areq);
if (dd->flags & AES_FLAGS_BUSY) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
areq = crypto_dequeue_request(&dd->queue);
if (areq)
dd->flags |= AES_FLAGS_BUSY;
spin_unlock_irqrestore(&dd->lock, flags);
if (!areq)
return ret;
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(areq->tfm);
dd->areq = areq;
dd->ctx = ctx;
start_async = (areq != new_areq);
dd->is_async = start_async;
/* WARNING: ctx->start() MAY change dd->is_async. */
err = ctx->start(dd);
return (start_async) ? ret : err;
}
/* AES async block ciphers */
static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
{
return atmel_aes_complete(dd, 0);
}
static int atmel_aes_start(struct atmel_aes_dev *dd)
{
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
dd->ctx->block_size != AES_BLOCK_SIZE);
int err;
atmel_aes_set_mode(dd, rctx);
err = atmel_aes_hw_init(dd);
if (err)
return atmel_aes_complete(dd, err);
atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
if (use_dma)
return atmel_aes_dma_start(dd, req->src, req->dst,
req->cryptlen,
atmel_aes_transfer_complete);
return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
atmel_aes_transfer_complete);
}
static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
{
struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct scatterlist *src, *dst;
size_t datalen;
u32 ctr;
u16 start, end;
bool use_dma, fragmented = false;
/* Check for transfer completion. */
ctx->offset += dd->total;
if (ctx->offset >= req->cryptlen)
return atmel_aes_transfer_complete(dd);
/* Compute data length. */
datalen = req->cryptlen - ctx->offset;
ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
ctr = be32_to_cpu(ctx->iv[3]);
/* Check 16bit counter overflow. */
start = ctr & 0xffff;
end = start + ctx->blocks - 1;
if (ctx->blocks >> 16 || end < start) {
ctr |= 0xffff;
datalen = AES_BLOCK_SIZE * (0x10000 - start);
fragmented = true;
}
use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
/* Jump to offset. */
src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
dst = ((req->src == req->dst) ? src :
scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
/* Configure hardware. */
atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
if (unlikely(fragmented)) {
/*
* Increment the counter manually to cope with the hardware
* counter overflow.
*/
ctx->iv[3] = cpu_to_be32(ctr);
crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
}
if (use_dma)
return atmel_aes_dma_start(dd, src, dst, datalen,
atmel_aes_ctr_transfer);
return atmel_aes_cpu_start(dd, src, dst, datalen,
atmel_aes_ctr_transfer);
}
static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
{
struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
int err;
atmel_aes_set_mode(dd, rctx);
err = atmel_aes_hw_init(dd);
if (err)
return atmel_aes_complete(dd, err);
memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
ctx->offset = 0;
dd->total = 0;
return atmel_aes_ctr_transfer(dd);
}
static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
{
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
req->base.complete, req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
req->cryptlen, req->iv);
return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
crypto_skcipher_decrypt(&rctx->fallback_req);
}
static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct atmel_aes_reqctx *rctx;
u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
if (opmode == AES_FLAGS_XTS) {
if (req->cryptlen < XTS_BLOCK_SIZE)
return -EINVAL;
if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
return atmel_aes_xts_fallback(req,
mode & AES_FLAGS_ENCRYPT);
}
/*
* ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
* to have a positve integer length.
*/
if (!req->cryptlen && opmode != AES_FLAGS_XTS)
return 0;
if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
!IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
return -EINVAL;
switch (mode & AES_FLAGS_OPMODE_MASK) {
case AES_FLAGS_CFB8:
ctx->block_size = CFB8_BLOCK_SIZE;
break;
case AES_FLAGS_CFB16:
ctx->block_size = CFB16_BLOCK_SIZE;
break;
case AES_FLAGS_CFB32:
ctx->block_size = CFB32_BLOCK_SIZE;
break;
case AES_FLAGS_CFB64:
ctx->block_size = CFB64_BLOCK_SIZE;
break;
default:
ctx->block_size = AES_BLOCK_SIZE;
break;
}
ctx->is_aead = false;
rctx = skcipher_request_ctx(req);
rctx->mode = mode;
if (opmode != AES_FLAGS_ECB &&
!(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
if (req->cryptlen >= ivsize)
scatterwalk_map_and_copy(rctx->lastc, req->src,
req->cryptlen - ivsize,
ivsize, 0);
}
return atmel_aes_handle_queue(ctx->dd, &req->base);
}
static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
if (keylen != AES_KEYSIZE_128 &&
keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_ECB);
}
static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CBC);
}
static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_OFB);
}
static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB128);
}
static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB64);
}
static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB32);
}
static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB16);
}
static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB8);
}
static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CTR);
}
static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
{
struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct atmel_aes_dev *dd;
dd = atmel_aes_dev_alloc(&ctx->base);
if (!dd)
return -ENODEV;
crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
ctx->base.dd = dd;
ctx->base.start = atmel_aes_start;
return 0;
}
static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
{
struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct atmel_aes_dev *dd;
dd = atmel_aes_dev_alloc(&ctx->base);
if (!dd)
return -ENODEV;
crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
ctx->base.dd = dd;
ctx->base.start = atmel_aes_ctr_start;
return 0;
}
static struct skcipher_alg aes_algs[] = {
{
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "atmel-ecb-aes",
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_ecb_encrypt,
.decrypt = atmel_aes_ecb_decrypt,
},
{
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "atmel-cbc-aes",
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cbc_encrypt,
.decrypt = atmel_aes_cbc_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "ofb(aes)",
.base.cra_driver_name = "atmel-ofb-aes",
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_ofb_encrypt,
.decrypt = atmel_aes_ofb_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "cfb(aes)",
.base.cra_driver_name = "atmel-cfb-aes",
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb_encrypt,
.decrypt = atmel_aes_cfb_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "cfb32(aes)",
.base.cra_driver_name = "atmel-cfb32-aes",
.base.cra_blocksize = CFB32_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb32_encrypt,
.decrypt = atmel_aes_cfb32_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "cfb16(aes)",
.base.cra_driver_name = "atmel-cfb16-aes",
.base.cra_blocksize = CFB16_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb16_encrypt,
.decrypt = atmel_aes_cfb16_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "cfb8(aes)",
.base.cra_driver_name = "atmel-cfb8-aes",
.base.cra_blocksize = CFB8_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb8_encrypt,
.decrypt = atmel_aes_cfb8_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "atmel-ctr-aes",
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
.init = atmel_aes_ctr_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_ctr_encrypt,
.decrypt = atmel_aes_ctr_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
};
static struct skcipher_alg aes_cfb64_alg = {
.base.cra_name = "cfb64(aes)",
.base.cra_driver_name = "atmel-cfb64-aes",
.base.cra_blocksize = CFB64_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb64_encrypt,
.decrypt = atmel_aes_cfb64_decrypt,
.ivsize = AES_BLOCK_SIZE,
};
/* gcm aead functions */
static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
const u32 *data, size_t datalen,
const __be32 *ghash_in, __be32 *ghash_out,
atmel_aes_fn_t resume);
static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
static inline struct atmel_aes_gcm_ctx *
atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
{
return container_of(ctx, struct atmel_aes_gcm_ctx, base);
}
static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
const u32 *data, size_t datalen,
const __be32 *ghash_in, __be32 *ghash_out,
atmel_aes_fn_t resume)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
dd->data = (u32 *)data;
dd->datalen = datalen;
ctx->ghash_in = ghash_in;
ctx->ghash_out = ghash_out;
ctx->ghash_resume = resume;
atmel_aes_write_ctrl(dd, false, NULL);
return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
}
static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
/* Set the data length. */
atmel_aes_write(dd, AES_AADLENR, dd->total);
atmel_aes_write(dd, AES_CLENR, 0);
/* If needed, overwrite the GCM Intermediate Hash Word Registers */
if (ctx->ghash_in)
atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
return atmel_aes_gcm_ghash_finalize(dd);
}
static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
u32 isr;
/* Write data into the Input Data Registers. */
while (dd->datalen > 0) {
atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
dd->data += 4;
dd->datalen -= AES_BLOCK_SIZE;
isr = atmel_aes_read(dd, AES_ISR);
if (!(isr & AES_INT_DATARDY)) {
dd->resume = atmel_aes_gcm_ghash_finalize;
atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
return -EINPROGRESS;
}
}
/* Read the computed hash from GHASHRx. */
atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
return ctx->ghash_resume(dd);
}
static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
size_t ivsize = crypto_aead_ivsize(tfm);
size_t datalen, padlen;
const void *iv = req->iv;
u8 *data = dd->buf;
int err;
atmel_aes_set_mode(dd, rctx);
err = atmel_aes_hw_init(dd);
if (err)
return atmel_aes_complete(dd, err);
if (likely(ivsize == GCM_AES_IV_SIZE)) {
memcpy(ctx->j0, iv, ivsize);
ctx->j0[3] = cpu_to_be32(1);
return atmel_aes_gcm_process(dd);
}
padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
datalen = ivsize + padlen + AES_BLOCK_SIZE;
if (datalen > dd->buflen)
return atmel_aes_complete(dd, -EINVAL);
memcpy(data, iv, ivsize);
memset(data + ivsize, 0, padlen + sizeof(u64));
((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
NULL, ctx->j0, atmel_aes_gcm_process);
}
static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
bool enc = atmel_aes_is_encrypt(dd);
u32 authsize;
/* Compute text length. */
authsize = crypto_aead_authsize(tfm);
ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
/*
* According to tcrypt test suite, the GCM Automatic Tag Generation
* fails when both the message and its associated data are empty.
*/
if (likely(req->assoclen != 0 || ctx->textlen != 0))
dd->flags |= AES_FLAGS_GTAGEN;
atmel_aes_write_ctrl(dd, false, NULL);
return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
}
static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
__be32 j0_lsw, *j0 = ctx->j0;
size_t padlen;
/* Write incr32(J0) into IV. */
j0_lsw = j0[3];
be32_add_cpu(&j0[3], 1);
atmel_aes_write_block(dd, AES_IVR(0), j0);
j0[3] = j0_lsw;
/* Set aad and text lengths. */
atmel_aes_write(dd, AES_AADLENR, req->assoclen);
atmel_aes_write(dd, AES_CLENR, ctx->textlen);
/* Check whether AAD are present. */
if (unlikely(req->assoclen == 0)) {
dd->datalen = 0;
return atmel_aes_gcm_data(dd);
}
/* Copy assoc data and add padding. */
padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
if (unlikely(req->assoclen + padlen > dd->buflen))
return atmel_aes_complete(dd, -EINVAL);
sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
/* Write assoc data into the Input Data register. */
dd->data = (u32 *)dd->buf;
dd->datalen = req->assoclen + padlen;
return atmel_aes_gcm_data(dd);
}
static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
struct scatterlist *src, *dst;
u32 isr, mr;
/* Write AAD first. */
while (dd->datalen > 0) {
atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
dd->data += 4;
dd->datalen -= AES_BLOCK_SIZE;
isr = atmel_aes_read(dd, AES_ISR);
if (!(isr & AES_INT_DATARDY)) {
dd->resume = atmel_aes_gcm_data;
atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
return -EINPROGRESS;
}
}
/* GMAC only. */
if (unlikely(ctx->textlen == 0))
return atmel_aes_gcm_tag_init(dd);
/* Prepare src and dst scatter lists to transfer cipher/plain texts */
src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
dst = ((req->src == req->dst) ? src :
scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
if (use_dma) {
/* Update the Mode Register for DMA transfers. */
mr = atmel_aes_read(dd, AES_MR);
mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
mr |= AES_MR_SMOD_IDATAR0;
if (dd->caps.has_dualbuff)
mr |= AES_MR_DUALBUFF;
atmel_aes_write(dd, AES_MR, mr);
return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
atmel_aes_gcm_tag_init);
}
return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
atmel_aes_gcm_tag_init);
}
static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
__be64 *data = dd->buf;
if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
dd->resume = atmel_aes_gcm_tag_init;
atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
return -EINPROGRESS;
}
return atmel_aes_gcm_finalize(dd);
}
/* Read the GCM Intermediate Hash Word Registers. */
atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
data[0] = cpu_to_be64(req->assoclen * 8);
data[1] = cpu_to_be64(ctx->textlen * 8);
return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
}
static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
unsigned long flags;
/*
* Change mode to CTR to complete the tag generation.
* Use J0 as Initialization Vector.
*/
flags = dd->flags;
dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
dd->flags |= AES_FLAGS_CTR;
atmel_aes_write_ctrl(dd, false, ctx->j0);
dd->flags = flags;
atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
}
static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
bool enc = atmel_aes_is_encrypt(dd);
u32 offset, authsize, itag[4], *otag = ctx->tag;
int err;
/* Read the computed tag. */
if (likely(dd->flags & AES_FLAGS_GTAGEN))
atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
else
atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
offset = req->assoclen + ctx->textlen;
authsize = crypto_aead_authsize(tfm);
if (enc) {
scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
err = 0;
} else {
scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
}
return atmel_aes_complete(dd, err);
}
static int atmel_aes_gcm_crypt(struct aead_request *req,
unsigned long mode)
{
struct atmel_aes_base_ctx *ctx;
struct atmel_aes_reqctx *rctx;
ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
ctx->block_size = AES_BLOCK_SIZE;
ctx->is_aead = true;
rctx = aead_request_ctx(req);
rctx->mode = AES_FLAGS_GCM | mode;
return atmel_aes_handle_queue(ctx->dd, &req->base);
}
static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
if (keylen != AES_KEYSIZE_256 &&
keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_128)
return -EINVAL;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
return crypto_gcm_check_authsize(authsize);
}
static int atmel_aes_gcm_encrypt(struct aead_request *req)
{
return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
}
static int atmel_aes_gcm_decrypt(struct aead_request *req)
{
return atmel_aes_gcm_crypt(req, 0);
}
static int atmel_aes_gcm_init(struct crypto_aead *tfm)
{
struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
struct atmel_aes_dev *dd;
dd = atmel_aes_dev_alloc(&ctx->base);
if (!dd)
return -ENODEV;
crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
ctx->base.dd = dd;
ctx->base.start = atmel_aes_gcm_start;
return 0;
}
static struct aead_alg aes_gcm_alg = {
.setkey = atmel_aes_gcm_setkey,
.setauthsize = atmel_aes_gcm_setauthsize,
.encrypt = atmel_aes_gcm_encrypt,
.decrypt = atmel_aes_gcm_decrypt,
.init = atmel_aes_gcm_init,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "atmel-gcm-aes",
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
},
};
/* xts functions */
static inline struct atmel_aes_xts_ctx *
atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
{
return container_of(ctx, struct atmel_aes_xts_ctx, base);
}
static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
{
struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
unsigned long flags;
int err;
atmel_aes_set_mode(dd, rctx);
err = atmel_aes_hw_init(dd);
if (err)
return atmel_aes_complete(dd, err);
/* Compute the tweak value from req->iv with ecb(aes). */
flags = dd->flags;
dd->flags &= ~AES_FLAGS_MODE_MASK;
dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
atmel_aes_write_ctrl_key(dd, false, NULL,
ctx->key2, ctx->base.keylen);
dd->flags = flags;
atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
}
static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
{
struct skcipher_request *req = skcipher_request_cast(dd->areq);
bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
u8 *tweak_bytes = (u8 *)tweak;
int i;
/* Read the computed ciphered tweak value. */
atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
/*
* Hardware quirk:
* the order of the ciphered tweak bytes need to be reversed before
* writing them into the ODATARx registers.
*/
for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
/* Process the data. */
atmel_aes_write_ctrl(dd, use_dma, NULL);
atmel_aes_write_block(dd, AES_TWR(0), tweak);
atmel_aes_write_block(dd, AES_ALPHAR(0), one);
if (use_dma)
return atmel_aes_dma_start(dd, req->src, req->dst,
req->cryptlen,
atmel_aes_transfer_complete);
return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
atmel_aes_transfer_complete);
}
static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int err;
err = xts_verify_key(tfm, key, keylen);
if (err)
return err;
crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
if (err)
return err;
memcpy(ctx->base.key, key, keylen/2);
memcpy(ctx->key2, key + keylen/2, keylen/2);
ctx->base.keylen = keylen/2;
return 0;
}
static int atmel_aes_xts_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_xts_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_XTS);
}
static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
{
struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
struct atmel_aes_dev *dd;
const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
dd = atmel_aes_dev_alloc(&ctx->base);
if (!dd)
return -ENODEV;
ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback_tfm))
return PTR_ERR(ctx->fallback_tfm);
crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
crypto_skcipher_reqsize(ctx->fallback_tfm));
ctx->base.dd = dd;
ctx->base.start = atmel_aes_xts_start;
return 0;
}
static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
{
struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_free_skcipher(ctx->fallback_tfm);
}
static struct skcipher_alg aes_xts_alg = {
.base.cra_name = "xts(aes)",
.base.cra_driver_name = "atmel-xts-aes",
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
.base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = atmel_aes_xts_setkey,
.encrypt = atmel_aes_xts_encrypt,
.decrypt = atmel_aes_xts_decrypt,
.init = atmel_aes_xts_init_tfm,
.exit = atmel_aes_xts_exit_tfm,
};
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
/* authenc aead functions */
static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
bool is_async);
static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
bool is_async);
static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
bool is_async);
static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
if (err && (dd->flags & AES_FLAGS_OWN_SHA))
atmel_sha_authenc_abort(&rctx->auth_req);
dd->flags &= ~AES_FLAGS_OWN_SHA;
}
static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
int err;
atmel_aes_set_mode(dd, &rctx->base);
err = atmel_aes_hw_init(dd);
if (err)
return atmel_aes_complete(dd, err);
return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
atmel_aes_authenc_init, dd);
}
static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
bool is_async)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
if (is_async)
dd->is_async = true;
if (err)
return atmel_aes_complete(dd, err);
/* If here, we've got the ownership of the SHA device. */
dd->flags |= AES_FLAGS_OWN_SHA;
/* Configure the SHA device. */
return atmel_sha_authenc_init(&rctx->auth_req,
req->src, req->assoclen,
rctx->textlen,
atmel_aes_authenc_transfer, dd);
}
static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
bool is_async)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
bool enc = atmel_aes_is_encrypt(dd);
struct scatterlist *src, *dst;
__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
u32 emr;
if (is_async)
dd->is_async = true;
if (err)
return atmel_aes_complete(dd, err);
/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
dst = src;
if (req->src != req->dst)
dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
/* Configure the AES device. */
memcpy(iv, req->iv, sizeof(iv));
/*
* Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
* 'true' even if the data transfer is actually performed by the CPU (so
* not by the DMA) because we must force the AES_MR_SMOD bitfield to the
* value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
* must be set to *_MR_SMOD_IDATAR0.
*/
atmel_aes_write_ctrl(dd, true, iv);
emr = AES_EMR_PLIPEN;
if (!enc)
emr |= AES_EMR_PLIPD;
atmel_aes_write(dd, AES_EMR, emr);
/* Transfer data. */
return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
atmel_aes_authenc_digest);
}
static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
/* atmel_sha_authenc_final() releases the SHA device. */
dd->flags &= ~AES_FLAGS_OWN_SHA;
return atmel_sha_authenc_final(&rctx->auth_req,
rctx->digest, sizeof(rctx->digest),
atmel_aes_authenc_final, dd);
}
static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
bool is_async)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
bool enc = atmel_aes_is_encrypt(dd);
u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
u32 offs, authsize;
if (is_async)
dd->is_async = true;
if (err)
goto complete;
offs = req->assoclen + rctx->textlen;
authsize = crypto_aead_authsize(tfm);
if (enc) {
scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
} else {
scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
if (crypto_memneq(idigest, odigest, authsize))
err = -EBADMSG;
}
complete:
return atmel_aes_complete(dd, err);
}
static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_authenc_keys keys;
int err;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
if (keys.enckeylen > sizeof(ctx->base.key))
goto badkey;
/* Save auth key. */
err = atmel_sha_authenc_setkey(ctx->auth,
keys.authkey, keys.authkeylen,
crypto_aead_get_flags(tfm));
if (err) {
memzero_explicit(&keys, sizeof(keys));
return err;
}
/* Save enc key. */
ctx->base.keylen = keys.enckeylen;
memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
memzero_explicit(&keys, sizeof(keys));
return 0;
badkey:
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
unsigned long auth_mode)
{
struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
struct atmel_aes_dev *dd;
dd = atmel_aes_dev_alloc(&ctx->base);
if (!dd)
return -ENODEV;
ctx->auth = atmel_sha_authenc_spawn(auth_mode);
if (IS_ERR(ctx->auth))
return PTR_ERR(ctx->auth);
crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
auth_reqsize));
ctx->base.dd = dd;
ctx->base.start = atmel_aes_authenc_start;
return 0;
}
static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
{
return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
}
static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
{
return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
}
static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
{
return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
}
static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
{
return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
}
static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
{
return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
}
static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
{
struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
atmel_sha_authenc_free(ctx->auth);
}
static int atmel_aes_authenc_crypt(struct aead_request *req,
unsigned long mode)
{
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
u32 authsize = crypto_aead_authsize(tfm);
bool enc = (mode & AES_FLAGS_ENCRYPT);
/* Compute text length. */
if (!enc && req->cryptlen < authsize)
return -EINVAL;
rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
/*
* Currently, empty messages are not supported yet:
* the SHA auto-padding can be used only on non-empty messages.
* Hence a special case needs to be implemented for empty message.
*/
if (!rctx->textlen && !req->assoclen)
return -EINVAL;
rctx->base.mode = mode;
ctx->block_size = AES_BLOCK_SIZE;
ctx->is_aead = true;
return atmel_aes_handle_queue(ctx->dd, &req->base);
}
static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
{
return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
{
return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
}
static struct aead_alg aes_authenc_algs[] = {
{
.setkey = atmel_aes_authenc_setkey,
.encrypt = atmel_aes_authenc_cbc_aes_encrypt,
.decrypt = atmel_aes_authenc_cbc_aes_decrypt,
.init = atmel_aes_authenc_hmac_sha1_init_tfm,
.exit = atmel_aes_authenc_exit_tfm,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
},
},
{
.setkey = atmel_aes_authenc_setkey,
.encrypt = atmel_aes_authenc_cbc_aes_encrypt,
.decrypt = atmel_aes_authenc_cbc_aes_decrypt,
.init = atmel_aes_authenc_hmac_sha224_init_tfm,
.exit = atmel_aes_authenc_exit_tfm,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
},
},
{
.setkey = atmel_aes_authenc_setkey,
.encrypt = atmel_aes_authenc_cbc_aes_encrypt,
.decrypt = atmel_aes_authenc_cbc_aes_decrypt,
.init = atmel_aes_authenc_hmac_sha256_init_tfm,
.exit = atmel_aes_authenc_exit_tfm,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
},
},
{
.setkey = atmel_aes_authenc_setkey,
.encrypt = atmel_aes_authenc_cbc_aes_encrypt,
.decrypt = atmel_aes_authenc_cbc_aes_decrypt,
.init = atmel_aes_authenc_hmac_sha384_init_tfm,
.exit = atmel_aes_authenc_exit_tfm,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
},
},
{
.setkey = atmel_aes_authenc_setkey,
.encrypt = atmel_aes_authenc_cbc_aes_encrypt,
.decrypt = atmel_aes_authenc_cbc_aes_decrypt,
.init = atmel_aes_authenc_hmac_sha512_init_tfm,
.exit = atmel_aes_authenc_exit_tfm,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
},
},
};
#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
/* Probe functions */
static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
{
dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
dd->buflen = ATMEL_AES_BUFFER_SIZE;
dd->buflen &= ~(AES_BLOCK_SIZE - 1);
if (!dd->buf) {
dev_err(dd->dev, "unable to alloc pages.\n");
return -ENOMEM;
}
return 0;
}
static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
{
free_page((unsigned long)dd->buf);
}
static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
{
int ret;
/* Try to grab 2 DMA channels */
dd->src.chan = dma_request_chan(dd->dev, "tx");
if (IS_ERR(dd->src.chan)) {
ret = PTR_ERR(dd->src.chan);
goto err_dma_in;
}
dd->dst.chan = dma_request_chan(dd->dev, "rx");
if (IS_ERR(dd->dst.chan)) {
ret = PTR_ERR(dd->dst.chan);
goto err_dma_out;
}
return 0;
err_dma_out:
dma_release_channel(dd->src.chan);
err_dma_in:
dev_err(dd->dev, "no DMA channel available\n");
return ret;
}
static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
{
dma_release_channel(dd->dst.chan);
dma_release_channel(dd->src.chan);
}
static void atmel_aes_queue_task(unsigned long data)
{
struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
atmel_aes_handle_queue(dd, NULL);
}
static void atmel_aes_done_task(unsigned long data)
{
struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
dd->is_async = true;
(void)dd->resume(dd);
}
static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
{
struct atmel_aes_dev *aes_dd = dev_id;
u32 reg;
reg = atmel_aes_read(aes_dd, AES_ISR);
if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
atmel_aes_write(aes_dd, AES_IDR, reg);
if (AES_FLAGS_BUSY & aes_dd->flags)
tasklet_schedule(&aes_dd->done_task);
else
dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
{
int i;
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
if (dd->caps.has_authenc)
for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
crypto_unregister_aead(&aes_authenc_algs[i]);
#endif
if (dd->caps.has_xts)
crypto_unregister_skcipher(&aes_xts_alg);
if (dd->caps.has_gcm)
crypto_unregister_aead(&aes_gcm_alg);
if (dd->caps.has_cfb64)
crypto_unregister_skcipher(&aes_cfb64_alg);
for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
crypto_unregister_skcipher(&aes_algs[i]);
}
static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
{
alg->cra_flags |= CRYPTO_ALG_ASYNC;
alg->cra_alignmask = 0xf;
alg->cra_priority = ATMEL_AES_PRIORITY;
alg->cra_module = THIS_MODULE;
}
static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
{
int err, i, j;
for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
atmel_aes_crypto_alg_init(&aes_algs[i].base);
err = crypto_register_skcipher(&aes_algs[i]);
if (err)
goto err_aes_algs;
}
if (dd->caps.has_cfb64) {
atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
err = crypto_register_skcipher(&aes_cfb64_alg);
if (err)
goto err_aes_cfb64_alg;
}
if (dd->caps.has_gcm) {
atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
err = crypto_register_aead(&aes_gcm_alg);
if (err)
goto err_aes_gcm_alg;
}
if (dd->caps.has_xts) {
atmel_aes_crypto_alg_init(&aes_xts_alg.base);
err = crypto_register_skcipher(&aes_xts_alg);
if (err)
goto err_aes_xts_alg;
}
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
if (dd->caps.has_authenc) {
for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
err = crypto_register_aead(&aes_authenc_algs[i]);
if (err)
goto err_aes_authenc_alg;
}
}
#endif
return 0;
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
/* i = ARRAY_SIZE(aes_authenc_algs); */
err_aes_authenc_alg:
for (j = 0; j < i; j++)
crypto_unregister_aead(&aes_authenc_algs[j]);
crypto_unregister_skcipher(&aes_xts_alg);
#endif
err_aes_xts_alg:
crypto_unregister_aead(&aes_gcm_alg);
err_aes_gcm_alg:
crypto_unregister_skcipher(&aes_cfb64_alg);
err_aes_cfb64_alg:
i = ARRAY_SIZE(aes_algs);
err_aes_algs:
for (j = 0; j < i; j++)
crypto_unregister_skcipher(&aes_algs[j]);
return err;
}
static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
{
dd->caps.has_dualbuff = 0;
dd->caps.has_cfb64 = 0;
dd->caps.has_gcm = 0;
dd->caps.has_xts = 0;
dd->caps.has_authenc = 0;
dd->caps.max_burst_size = 1;
/* keep only major version number */
switch (dd->hw_version & 0xff0) {
case 0x700:
case 0x600:
case 0x500:
dd->caps.has_dualbuff = 1;
dd->caps.has_cfb64 = 1;
dd->caps.has_gcm = 1;
dd->caps.has_xts = 1;
dd->caps.has_authenc = 1;
dd->caps.max_burst_size = 4;
break;
case 0x200:
dd->caps.has_dualbuff = 1;
dd->caps.has_cfb64 = 1;
dd->caps.has_gcm = 1;
dd->caps.max_burst_size = 4;
break;
case 0x130:
dd->caps.has_dualbuff = 1;
dd->caps.has_cfb64 = 1;
dd->caps.max_burst_size = 4;
break;
case 0x120:
break;
default:
dev_warn(dd->dev,
"Unmanaged aes version, set minimum capabilities\n");
break;
}
}
#if defined(CONFIG_OF)
static const struct of_device_id atmel_aes_dt_ids[] = {
{ .compatible = "atmel,at91sam9g46-aes" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
#endif
static int atmel_aes_probe(struct platform_device *pdev)
{
struct atmel_aes_dev *aes_dd;
struct device *dev = &pdev->dev;
struct resource *aes_res;
int err;
aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
if (!aes_dd)
return -ENOMEM;
aes_dd->dev = dev;
platform_set_drvdata(pdev, aes_dd);
INIT_LIST_HEAD(&aes_dd->list);
spin_lock_init(&aes_dd->lock);
tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
(unsigned long)aes_dd);
tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
(unsigned long)aes_dd);
crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
/* Get the base address */
aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!aes_res) {
dev_err(dev, "no MEM resource info\n");
err = -ENODEV;
goto err_tasklet_kill;
}
aes_dd->phys_base = aes_res->start;
/* Get the IRQ */
aes_dd->irq = platform_get_irq(pdev, 0);
if (aes_dd->irq < 0) {
err = aes_dd->irq;
goto err_tasklet_kill;
}
err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
IRQF_SHARED, "atmel-aes", aes_dd);
if (err) {
dev_err(dev, "unable to request aes irq.\n");
goto err_tasklet_kill;
}
/* Initializing the clock */
aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
if (IS_ERR(aes_dd->iclk)) {
dev_err(dev, "clock initialization failed.\n");
err = PTR_ERR(aes_dd->iclk);
goto err_tasklet_kill;
}
aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
if (IS_ERR(aes_dd->io_base)) {
dev_err(dev, "can't ioremap\n");
err = PTR_ERR(aes_dd->io_base);
goto err_tasklet_kill;
}
err = clk_prepare(aes_dd->iclk);
if (err)
goto err_tasklet_kill;
err = atmel_aes_hw_version_init(aes_dd);
if (err)
goto err_iclk_unprepare;
atmel_aes_get_cap(aes_dd);
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
err = -EPROBE_DEFER;
goto err_iclk_unprepare;
}
#endif
err = atmel_aes_buff_init(aes_dd);
if (err)
goto err_iclk_unprepare;
err = atmel_aes_dma_init(aes_dd);
if (err)
goto err_buff_cleanup;
spin_lock(&atmel_aes.lock);
list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
spin_unlock(&atmel_aes.lock);
err = atmel_aes_register_algs(aes_dd);
if (err)
goto err_algs;
dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
dma_chan_name(aes_dd->src.chan),
dma_chan_name(aes_dd->dst.chan));
return 0;
err_algs:
spin_lock(&atmel_aes.lock);
list_del(&aes_dd->list);
spin_unlock(&atmel_aes.lock);
atmel_aes_dma_cleanup(aes_dd);
err_buff_cleanup:
atmel_aes_buff_cleanup(aes_dd);
err_iclk_unprepare:
clk_unprepare(aes_dd->iclk);
err_tasklet_kill:
tasklet_kill(&aes_dd->done_task);
tasklet_kill(&aes_dd->queue_task);
return err;
}
static int atmel_aes_remove(struct platform_device *pdev)
{
struct atmel_aes_dev *aes_dd;
aes_dd = platform_get_drvdata(pdev);
spin_lock(&atmel_aes.lock);
list_del(&aes_dd->list);
spin_unlock(&atmel_aes.lock);
atmel_aes_unregister_algs(aes_dd);
tasklet_kill(&aes_dd->done_task);
tasklet_kill(&aes_dd->queue_task);
atmel_aes_dma_cleanup(aes_dd);
atmel_aes_buff_cleanup(aes_dd);
clk_unprepare(aes_dd->iclk);
return 0;
}
static struct platform_driver atmel_aes_driver = {
.probe = atmel_aes_probe,
.remove = atmel_aes_remove,
.driver = {
.name = "atmel_aes",
.of_match_table = of_match_ptr(atmel_aes_dt_ids),
},
};
module_platform_driver(atmel_aes_driver);
MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");