Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | /* * Architecture specific parts of the Floppy driver * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1995 */ #ifndef _ASM_X86_FLOPPY_H #define _ASM_X86_FLOPPY_H #include <linux/vmalloc.h> /* * The DMA channel used by the floppy controller cannot access data at * addresses >= 16MB * * Went back to the 1MB limit, as some people had problems with the floppy * driver otherwise. It doesn't matter much for performance anyway, as most * floppy accesses go through the track buffer. */ #define _CROSS_64KB(a, s, vdma) \ (!(vdma) && \ ((unsigned long)(a)/K_64 != ((unsigned long)(a) + (s) - 1) / K_64)) #define CROSS_64KB(a, s) _CROSS_64KB(a, s, use_virtual_dma & 1) #define SW fd_routine[use_virtual_dma & 1] #define CSW fd_routine[can_use_virtual_dma & 1] #define fd_inb(base, reg) inb_p((base) + (reg)) #define fd_outb(value, base, reg) outb_p(value, (base) + (reg)) #define fd_request_dma() CSW._request_dma(FLOPPY_DMA, "floppy") #define fd_free_dma() CSW._free_dma(FLOPPY_DMA) #define fd_enable_irq() enable_irq(FLOPPY_IRQ) #define fd_disable_irq() disable_irq(FLOPPY_IRQ) #define fd_free_irq() free_irq(FLOPPY_IRQ, NULL) #define fd_get_dma_residue() SW._get_dma_residue(FLOPPY_DMA) #define fd_dma_mem_alloc(size) SW._dma_mem_alloc(size) #define fd_dma_setup(addr, size, mode, io) SW._dma_setup(addr, size, mode, io) #define FLOPPY_CAN_FALLBACK_ON_NODMA static int virtual_dma_count; static int virtual_dma_residue; static char *virtual_dma_addr; static int virtual_dma_mode; static int doing_pdma; static irqreturn_t floppy_hardint(int irq, void *dev_id) { unsigned char st; #undef TRACE_FLPY_INT #ifdef TRACE_FLPY_INT static int calls; static int bytes; static int dma_wait; #endif if (!doing_pdma) return floppy_interrupt(irq, dev_id); #ifdef TRACE_FLPY_INT if (!calls) bytes = virtual_dma_count; #endif { int lcount; char *lptr; for (lcount = virtual_dma_count, lptr = virtual_dma_addr; lcount; lcount--, lptr++) { st = inb(virtual_dma_port + FD_STATUS); st &= STATUS_DMA | STATUS_READY; if (st != (STATUS_DMA | STATUS_READY)) break; if (virtual_dma_mode) outb_p(*lptr, virtual_dma_port + FD_DATA); else *lptr = inb_p(virtual_dma_port + FD_DATA); } virtual_dma_count = lcount; virtual_dma_addr = lptr; st = inb(virtual_dma_port + FD_STATUS); } #ifdef TRACE_FLPY_INT calls++; #endif if (st == STATUS_DMA) return IRQ_HANDLED; if (!(st & STATUS_DMA)) { virtual_dma_residue += virtual_dma_count; virtual_dma_count = 0; #ifdef TRACE_FLPY_INT printk(KERN_DEBUG "count=%x, residue=%x calls=%d bytes=%d dma_wait=%d\n", virtual_dma_count, virtual_dma_residue, calls, bytes, dma_wait); calls = 0; dma_wait = 0; #endif doing_pdma = 0; floppy_interrupt(irq, dev_id); return IRQ_HANDLED; } #ifdef TRACE_FLPY_INT if (!virtual_dma_count) dma_wait++; #endif return IRQ_HANDLED; } static void fd_disable_dma(void) { if (!(can_use_virtual_dma & 1)) disable_dma(FLOPPY_DMA); doing_pdma = 0; virtual_dma_residue += virtual_dma_count; virtual_dma_count = 0; } static int vdma_request_dma(unsigned int dmanr, const char *device_id) { return 0; } static void vdma_nop(unsigned int dummy) { } static int vdma_get_dma_residue(unsigned int dummy) { return virtual_dma_count + virtual_dma_residue; } static int fd_request_irq(void) { if (can_use_virtual_dma) return request_irq(FLOPPY_IRQ, floppy_hardint, 0, "floppy", NULL); else return request_irq(FLOPPY_IRQ, floppy_interrupt, 0, "floppy", NULL); } static unsigned long dma_mem_alloc(unsigned long size) { return __get_dma_pages(GFP_KERNEL|__GFP_NORETRY, get_order(size)); } static unsigned long vdma_mem_alloc(unsigned long size) { return (unsigned long)vmalloc(size); } #define nodma_mem_alloc(size) vdma_mem_alloc(size) static void _fd_dma_mem_free(unsigned long addr, unsigned long size) { if ((unsigned long)addr >= (unsigned long)high_memory) vfree((void *)addr); else free_pages(addr, get_order(size)); } #define fd_dma_mem_free(addr, size) _fd_dma_mem_free(addr, size) static void _fd_chose_dma_mode(char *addr, unsigned long size) { if (can_use_virtual_dma == 2) { if ((unsigned long)addr >= (unsigned long)high_memory || isa_virt_to_bus(addr) >= 0x1000000 || _CROSS_64KB(addr, size, 0)) use_virtual_dma = 1; else use_virtual_dma = 0; } else { use_virtual_dma = can_use_virtual_dma & 1; } } #define fd_chose_dma_mode(addr, size) _fd_chose_dma_mode(addr, size) static int vdma_dma_setup(char *addr, unsigned long size, int mode, int io) { doing_pdma = 1; virtual_dma_port = io; virtual_dma_mode = (mode == DMA_MODE_WRITE); virtual_dma_addr = addr; virtual_dma_count = size; virtual_dma_residue = 0; return 0; } static int hard_dma_setup(char *addr, unsigned long size, int mode, int io) { #ifdef FLOPPY_SANITY_CHECK if (CROSS_64KB(addr, size)) { printk("DMA crossing 64-K boundary %p-%p\n", addr, addr+size); return -1; } #endif /* actual, physical DMA */ doing_pdma = 0; clear_dma_ff(FLOPPY_DMA); set_dma_mode(FLOPPY_DMA, mode); set_dma_addr(FLOPPY_DMA, isa_virt_to_bus(addr)); set_dma_count(FLOPPY_DMA, size); enable_dma(FLOPPY_DMA); return 0; } static struct fd_routine_l { int (*_request_dma)(unsigned int dmanr, const char *device_id); void (*_free_dma)(unsigned int dmanr); int (*_get_dma_residue)(unsigned int dummy); unsigned long (*_dma_mem_alloc)(unsigned long size); int (*_dma_setup)(char *addr, unsigned long size, int mode, int io); } fd_routine[] = { { ._request_dma = request_dma, ._free_dma = free_dma, ._get_dma_residue = get_dma_residue, ._dma_mem_alloc = dma_mem_alloc, ._dma_setup = hard_dma_setup }, { ._request_dma = vdma_request_dma, ._free_dma = vdma_nop, ._get_dma_residue = vdma_get_dma_residue, ._dma_mem_alloc = vdma_mem_alloc, ._dma_setup = vdma_dma_setup } }; static int FDC1 = 0x3f0; static int FDC2 = -1; /* * Floppy types are stored in the rtc's CMOS RAM and so rtc_lock * is needed to prevent corrupted CMOS RAM in case "insmod floppy" * coincides with another rtc CMOS user. Paul G. */ #define FLOPPY0_TYPE \ ({ \ unsigned long flags; \ unsigned char val; \ spin_lock_irqsave(&rtc_lock, flags); \ val = (CMOS_READ(0x10) >> 4) & 15; \ spin_unlock_irqrestore(&rtc_lock, flags); \ val; \ }) #define FLOPPY1_TYPE \ ({ \ unsigned long flags; \ unsigned char val; \ spin_lock_irqsave(&rtc_lock, flags); \ val = CMOS_READ(0x10) & 15; \ spin_unlock_irqrestore(&rtc_lock, flags); \ val; \ }) #define N_FDC 2 #define N_DRIVE 8 #define EXTRA_FLOPPY_PARAMS #endif /* _ASM_X86_FLOPPY_H */ |