Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 | /* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <asm/div64.h> #define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */ #define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */ #define SHIFTED_2 (2 << SHIFT_AMOUNT) #define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */ /* ------------------------------------------------------------------------------- * NEW TYPE - fINT * ------------------------------------------------------------------------------- * A variable of type fInt can be accessed in 3 ways using the dot (.) operator * fInt A; * A.full => The full number as it is. Generally not easy to read * A.partial.real => Only the integer portion * A.partial.decimal => Only the fractional portion */ typedef union _fInt { int full; struct _partial { unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/ int real: 32 - SHIFT_AMOUNT; } partial; } fInt; /* ------------------------------------------------------------------------------- * Function Declarations * ------------------------------------------------------------------------------- */ static fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */ static fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */ static fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */ static int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */ static fInt fNegate(fInt); /* Returns -1 * input fInt value */ static fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */ static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */ static fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */ static fInt fDivide (fInt A, fInt B); /* Returns A/B */ static fInt fGetSquare(fInt); /* Returns the square of a fInt number */ static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */ static int uAbs(int); /* Returns the Absolute value of the Int */ static int uPow(int base, int exponent); /* Returns base^exponent an INT */ static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */ static bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */ static bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */ static fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */ static fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */ /* Fuse decoding functions * ------------------------------------------------------------------------------------- */ static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength); static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength); static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength); /* Internal Support Functions - Use these ONLY for testing or adding to internal functions * ------------------------------------------------------------------------------------- * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons. */ static fInt Divide (int, int); /* Divide two INTs and return result as FINT */ static fInt fNegate(fInt); static int uGetScaledDecimal (fInt); /* Internal function */ static int GetReal (fInt A); /* Internal function */ /* ------------------------------------------------------------------------------------- * TROUBLESHOOTING INFORMATION * ------------------------------------------------------------------------------------- * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767) * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767) * 3) fMultiply - OutputOutOfRangeException: * 4) fGetSquare - OutputOutOfRangeException: * 5) fDivide - DivideByZeroException * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number */ /* ------------------------------------------------------------------------------------- * START OF CODE * ------------------------------------------------------------------------------------- */ static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ { uint32_t i; bool bNegated = false; fInt fPositiveOne = ConvertToFraction(1); fInt fZERO = ConvertToFraction(0); fInt lower_bound = Divide(78, 10000); fInt solution = fPositiveOne; /*Starting off with baseline of 1 */ fInt error_term; static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; if (GreaterThan(fZERO, exponent)) { exponent = fNegate(exponent); bNegated = true; } while (GreaterThan(exponent, lower_bound)) { for (i = 0; i < 11; i++) { if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) { exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000)); solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000)); } } } error_term = fAdd(fPositiveOne, exponent); solution = fMultiply(solution, error_term); if (bNegated) solution = fDivide(fPositiveOne, solution); return solution; } static fInt fNaturalLog(fInt value) { uint32_t i; fInt upper_bound = Divide(8, 1000); fInt fNegativeOne = ConvertToFraction(-1); fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */ fInt error_term; static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) { for (i = 0; i < 10; i++) { if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) { value = fDivide(value, GetScaledFraction(k_array[i], 10000)); solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000)); } } } error_term = fAdd(fNegativeOne, value); return (fAdd(solution, error_term)); } static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength) { fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); fInt f_decoded_value; f_decoded_value = fDivide(f_fuse_value, f_bit_max_value); f_decoded_value = fMultiply(f_decoded_value, f_range); f_decoded_value = fAdd(f_decoded_value, f_min); return f_decoded_value; } static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength) { fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); fInt f_CONSTANT_NEG13 = ConvertToFraction(-13); fInt f_CONSTANT1 = ConvertToFraction(1); fInt f_decoded_value; f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1); f_decoded_value = fNaturalLog(f_decoded_value); f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13)); f_decoded_value = fAdd(f_decoded_value, f_average); return f_decoded_value; } static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength) { fInt fLeakage; fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse)); fLeakage = fDivide(fLeakage, f_bit_max_value); fLeakage = fExponential(fLeakage); fLeakage = fMultiply(fLeakage, f_min); return fLeakage; } static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */ { fInt temp; if (X <= MAX) temp.full = (X << SHIFT_AMOUNT); else temp.full = 0; return temp; } static fInt fNegate(fInt X) { fInt CONSTANT_NEGONE = ConvertToFraction(-1); return (fMultiply(X, CONSTANT_NEGONE)); } static fInt Convert_ULONG_ToFraction(uint32_t X) { fInt temp; if (X <= MAX) temp.full = (X << SHIFT_AMOUNT); else temp.full = 0; return temp; } static fInt GetScaledFraction(int X, int factor) { int times_shifted, factor_shifted; bool bNEGATED; fInt fValue; times_shifted = 0; factor_shifted = 0; bNEGATED = false; if (X < 0) { X = -1*X; bNEGATED = true; } if (factor < 0) { factor = -1*factor; bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */ } if ((X > MAX) || factor > MAX) { if ((X/factor) <= MAX) { while (X > MAX) { X = X >> 1; times_shifted++; } while (factor > MAX) { factor = factor >> 1; factor_shifted++; } } else { fValue.full = 0; return fValue; } } if (factor == 1) return ConvertToFraction(X); fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor)); fValue.full = fValue.full << times_shifted; fValue.full = fValue.full >> factor_shifted; return fValue; } /* Addition using two fInts */ static fInt fAdd (fInt X, fInt Y) { fInt Sum; Sum.full = X.full + Y.full; return Sum; } /* Addition using two fInts */ static fInt fSubtract (fInt X, fInt Y) { fInt Difference; Difference.full = X.full - Y.full; return Difference; } static bool Equal(fInt A, fInt B) { if (A.full == B.full) return true; else return false; } static bool GreaterThan(fInt A, fInt B) { if (A.full > B.full) return true; else return false; } static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ { fInt Product; int64_t tempProduct; /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/ /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION bool X_LessThanOne, Y_LessThanOne; X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0); Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0); if (X_LessThanOne && Y_LessThanOne) { Product.full = X.full * Y.full; return Product }*/ tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */ tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */ Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */ return Product; } static fInt fDivide (fInt X, fInt Y) { fInt fZERO, fQuotient; int64_t longlongX, longlongY; fZERO = ConvertToFraction(0); if (Equal(Y, fZERO)) return fZERO; longlongX = (int64_t)X.full; longlongY = (int64_t)Y.full; longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */ div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */ fQuotient.full = (int)longlongX; return fQuotient; } static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/ { fInt fullNumber, scaledDecimal, scaledReal; scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */ scaledDecimal.full = uGetScaledDecimal(A); fullNumber = fAdd(scaledDecimal,scaledReal); return fullNumber.full; } static fInt fGetSquare(fInt A) { return fMultiply(A,A); } /* x_new = x_old - (x_old^2 - C) / (2 * x_old) */ static fInt fSqrt(fInt num) { fInt F_divide_Fprime, Fprime; fInt test; fInt twoShifted; int seed, counter, error; fInt x_new, x_old, C, y; fInt fZERO = ConvertToFraction(0); /* (0 > num) is the same as (num < 0), i.e., num is negative */ if (GreaterThan(fZERO, num) || Equal(fZERO, num)) return fZERO; C = num; if (num.partial.real > 3000) seed = 60; else if (num.partial.real > 1000) seed = 30; else if (num.partial.real > 100) seed = 10; else seed = 2; counter = 0; if (Equal(num, fZERO)) /*Square Root of Zero is zero */ return fZERO; twoShifted = ConvertToFraction(2); x_new = ConvertToFraction(seed); do { counter++; x_old.full = x_new.full; test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */ y = fSubtract(test, C); /*y = f(x) = x^2 - C; */ Fprime = fMultiply(twoShifted, x_old); F_divide_Fprime = fDivide(y, Fprime); x_new = fSubtract(x_old, F_divide_Fprime); error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old); if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/ return x_new; } while (uAbs(error) > 0); return (x_new); } static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) { fInt *pRoots = &Roots[0]; fInt temp, root_first, root_second; fInt f_CONSTANT10, f_CONSTANT100; f_CONSTANT100 = ConvertToFraction(100); f_CONSTANT10 = ConvertToFraction(10); while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) { A = fDivide(A, f_CONSTANT10); B = fDivide(B, f_CONSTANT10); C = fDivide(C, f_CONSTANT10); } temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */ temp = fMultiply(temp, C); /* root = 4*A*C */ temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */ temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */ root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */ root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */ root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ *(pRoots + 0) = root_first; *(pRoots + 1) = root_second; } /* ----------------------------------------------------------------------------- * SUPPORT FUNCTIONS * ----------------------------------------------------------------------------- */ /* Conversion Functions */ static int GetReal (fInt A) { return (A.full >> SHIFT_AMOUNT); } static fInt Divide (int X, int Y) { fInt A, B, Quotient; A.full = X << SHIFT_AMOUNT; B.full = Y << SHIFT_AMOUNT; Quotient = fDivide(A, B); return Quotient; } static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */ { int dec[PRECISION]; int i, scaledDecimal = 0, tmp = A.partial.decimal; for (i = 0; i < PRECISION; i++) { dec[i] = tmp / (1 << SHIFT_AMOUNT); tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]); tmp *= 10; scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i); } return scaledDecimal; } static int uPow(int base, int power) { if (power == 0) return 1; else return (base)*uPow(base, power - 1); } static int uAbs(int X) { if (X < 0) return (X * -1); else return X; } static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term) { fInt solution; solution = fDivide(A, fStepSize); solution.partial.decimal = 0; /*All fractional digits changes to 0 */ if (error_term) solution.partial.real += 1; /*Error term of 1 added */ solution = fMultiply(solution, fStepSize); solution = fAdd(solution, fStepSize); return solution; } |