Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | // SPDX-License-Identifier: GPL-2.0-only /* * IEEE754 floating point arithmetic * single precision: MADDF.f (Fused Multiply Add) * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <markos.chandras@imgtec.com> */ #include "ieee754sp.h" static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x, union ieee754sp y, enum maddf_flags flags) { int re; int rs; unsigned int rm; u64 rm64; u64 zm64; int s; COMPXSP; COMPYSP; COMPZSP; EXPLODEXSP; EXPLODEYSP; EXPLODEZSP; FLUSHXSP; FLUSHYSP; FLUSHZSP; ieee754_clearcx(); rs = xs ^ ys; if (flags & MADDF_NEGATE_PRODUCT) rs ^= 1; if (flags & MADDF_NEGATE_ADDITION) zs ^= 1; /* * Handle the cases when at least one of x, y or z is a NaN. * Order of precedence is sNaN, qNaN and z, x, y. */ if (zc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(z); if (xc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(x); if (yc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(y); if (zc == IEEE754_CLASS_QNAN) return z; if (xc == IEEE754_CLASS_QNAN) return x; if (yc == IEEE754_CLASS_QNAN) return y; if (zc == IEEE754_CLASS_DNORM) SPDNORMZ; /* ZERO z cases are handled separately below */ switch (CLPAIR(xc, yc)) { /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): if ((zc == IEEE754_CLASS_INF) && (zs != rs)) { /* * Cases of addition of infinities with opposite signs * or subtraction of infinities with same signs. */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); } /* * z is here either not an infinity, or an infinity having the * same sign as product (x*y). The result must be an infinity, * and its sign is determined only by the sign of product (x*y). */ return ieee754sp_inf(rs); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); if (zc == IEEE754_CLASS_ZERO) { /* Handle cases +0 + (-0) and similar ones. */ if (zs == rs) /* * Cases of addition of zeros of equal signs * or subtraction of zeroes of opposite signs. * The sign of the resulting zero is in any * such case determined only by the sign of z. */ return z; return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); } /* x*y is here 0, and z is not 0, so just return z */ return z; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); SPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); /* continue to real computations */ } /* Finally get to do some computation */ /* * Do the multiplication bit first * * rm = xm * ym, re = xe + ye basically * * At this point xm and ym should have been normalized. */ /* rm = xm * ym, re = xe+ye basically */ assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); re = xe + ye; /* Multiple 24 bit xm and ym to give 48 bit results */ rm64 = (uint64_t)xm * ym; /* Shunt to top of word */ rm64 = rm64 << 16; /* Put explicit bit at bit 62 if necessary */ if ((int64_t) rm64 < 0) { rm64 = rm64 >> 1; re++; } assert(rm64 & (1 << 62)); if (zc == IEEE754_CLASS_ZERO) { /* * Move explicit bit from bit 62 to bit 26 since the * ieee754sp_format code expects the mantissa to be * 27 bits wide (24 + 3 rounding bits). */ rm = XSPSRS64(rm64, (62 - 26)); return ieee754sp_format(rs, re, rm); } /* Move explicit bit from bit 23 to bit 62 */ zm64 = (uint64_t)zm << (62 - 23); assert(zm64 & (1 << 62)); /* Make the exponents the same */ if (ze > re) { /* * Have to shift r fraction right to align. */ s = ze - re; rm64 = XSPSRS64(rm64, s); re += s; } else if (re > ze) { /* * Have to shift z fraction right to align. */ s = re - ze; zm64 = XSPSRS64(zm64, s); ze += s; } assert(ze == re); assert(ze <= SP_EMAX); /* Do the addition */ if (zs == rs) { /* * Generate 64 bit result by adding two 63 bit numbers * leaving result in zm64, zs and ze. */ zm64 = zm64 + rm64; if ((int64_t)zm64 < 0) { /* carry out */ zm64 = XSPSRS1(zm64); ze++; } } else { if (zm64 >= rm64) { zm64 = zm64 - rm64; } else { zm64 = rm64 - zm64; zs = rs; } if (zm64 == 0) return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); /* * Put explicit bit at bit 62 if necessary. */ while ((zm64 >> 62) == 0) { zm64 <<= 1; ze--; } } /* * Move explicit bit from bit 62 to bit 26 since the * ieee754sp_format code expects the mantissa to be * 27 bits wide (24 + 3 rounding bits). */ zm = XSPSRS64(zm64, (62 - 26)); return ieee754sp_format(zs, ze, zm); } union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, 0); } union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); } union ieee754sp ieee754sp_madd(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, 0); } union ieee754sp ieee754sp_msub(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_ADDITION); } union ieee754sp ieee754sp_nmadd(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION); } union ieee754sp ieee754sp_nmsub(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); } |