Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
 *
 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
 * Copyright (C) 2006 David Brownell (convert to new framework)
 */

/*
 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
 * That defined the register interface now provided by all PCs, some
 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
 * integrate an MC146818 clone in their southbridge, and boards use
 * that instead of discrete clones like the DS12887 or M48T86.  There
 * are also clones that connect using the LPC bus.
 *
 * That register API is also used directly by various other drivers
 * (notably for integrated NVRAM), infrastructure (x86 has code to
 * bypass the RTC framework, directly reading the RTC during boot
 * and updating minutes/seconds for systems using NTP synch) and
 * utilities (like userspace 'hwclock', if no /dev node exists).
 *
 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
 * interrupts disabled, holding the global rtc_lock, to exclude those
 * other drivers and utilities on correctly configured systems.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/log2.h>
#include <linux/pm.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#ifdef CONFIG_X86
#include <asm/i8259.h>
#include <asm/processor.h>
#include <linux/dmi.h>
#endif

/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
#include <linux/mc146818rtc.h>

#ifdef CONFIG_ACPI
/*
 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
 *
 * If cleared, ACPI SCI is only used to wake up the system from suspend
 *
 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
 */

static bool use_acpi_alarm;
module_param(use_acpi_alarm, bool, 0444);

static inline int cmos_use_acpi_alarm(void)
{
	return use_acpi_alarm;
}
#else /* !CONFIG_ACPI */

static inline int cmos_use_acpi_alarm(void)
{
	return 0;
}
#endif

struct cmos_rtc {
	struct rtc_device	*rtc;
	struct device		*dev;
	int			irq;
	struct resource		*iomem;
	time64_t		alarm_expires;

	void			(*wake_on)(struct device *);
	void			(*wake_off)(struct device *);

	u8			enabled_wake;
	u8			suspend_ctrl;

	/* newer hardware extends the original register set */
	u8			day_alrm;
	u8			mon_alrm;
	u8			century;

	struct rtc_wkalrm	saved_wkalrm;
};

/* both platform and pnp busses use negative numbers for invalid irqs */
#define is_valid_irq(n)		((n) > 0)

static const char driver_name[] = "rtc_cmos";

/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
 */
#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)

static inline int is_intr(u8 rtc_intr)
{
	if (!(rtc_intr & RTC_IRQF))
		return 0;
	return rtc_intr & RTC_IRQMASK;
}

/*----------------------------------------------------------------*/

/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
 * used in a broken "legacy replacement" mode.  The breakage includes
 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
 * other (better) use.
 *
 * When that broken mode is in use, platform glue provides a partial
 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 * want to use HPET for anything except those IRQs though...
 */
#ifdef CONFIG_HPET_EMULATE_RTC
#include <asm/hpet.h>
#else

static inline int is_hpet_enabled(void)
{
	return 0;
}

static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
{
	return 0;
}

static inline int hpet_set_rtc_irq_bit(unsigned long mask)
{
	return 0;
}

static inline int
hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
{
	return 0;
}

static inline int hpet_set_periodic_freq(unsigned long freq)
{
	return 0;
}

static inline int hpet_rtc_dropped_irq(void)
{
	return 0;
}

static inline int hpet_rtc_timer_init(void)
{
	return 0;
}

extern irq_handler_t hpet_rtc_interrupt;

static inline int hpet_register_irq_handler(irq_handler_t handler)
{
	return 0;
}

static inline int hpet_unregister_irq_handler(irq_handler_t handler)
{
	return 0;
}

#endif

/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
static inline int use_hpet_alarm(void)
{
	return is_hpet_enabled() && !cmos_use_acpi_alarm();
}

/*----------------------------------------------------------------*/

#ifdef RTC_PORT

/* Most newer x86 systems have two register banks, the first used
 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 * own rtc_lock ... and we won't worry about access during NMI.
 */
#define can_bank2	true

static inline unsigned char cmos_read_bank2(unsigned char addr)
{
	outb(addr, RTC_PORT(2));
	return inb(RTC_PORT(3));
}

static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
{
	outb(addr, RTC_PORT(2));
	outb(val, RTC_PORT(3));
}

#else

#define can_bank2	false

static inline unsigned char cmos_read_bank2(unsigned char addr)
{
	return 0;
}

static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
{
}

#endif

/*----------------------------------------------------------------*/

static int cmos_read_time(struct device *dev, struct rtc_time *t)
{
	int ret;

	/*
	 * If pm_trace abused the RTC for storage, set the timespec to 0,
	 * which tells the caller that this RTC value is unusable.
	 */
	if (!pm_trace_rtc_valid())
		return -EIO;

	ret = mc146818_get_time(t);
	if (ret < 0) {
		dev_err_ratelimited(dev, "unable to read current time\n");
		return ret;
	}

	return 0;
}

static int cmos_set_time(struct device *dev, struct rtc_time *t)
{
	/* NOTE: this ignores the issue whereby updating the seconds
	 * takes effect exactly 500ms after we write the register.
	 * (Also queueing and other delays before we get this far.)
	 */
	return mc146818_set_time(t);
}

struct cmos_read_alarm_callback_param {
	struct cmos_rtc *cmos;
	struct rtc_time *time;
	unsigned char	rtc_control;
};

static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
				     void *param_in)
{
	struct cmos_read_alarm_callback_param *p =
		(struct cmos_read_alarm_callback_param *)param_in;
	struct rtc_time *time = p->time;

	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);

	if (p->cmos->day_alrm) {
		/* ignore upper bits on readback per ACPI spec */
		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
		if (!time->tm_mday)
			time->tm_mday = -1;

		if (p->cmos->mon_alrm) {
			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
			if (!time->tm_mon)
				time->tm_mon = -1;
		}
	}

	p->rtc_control = CMOS_READ(RTC_CONTROL);
}

static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	struct cmos_read_alarm_callback_param p = {
		.cmos = cmos,
		.time = &t->time,
	};

	/* This not only a rtc_op, but also called directly */
	if (!is_valid_irq(cmos->irq))
		return -EIO;

	/* Basic alarms only support hour, minute, and seconds fields.
	 * Some also support day and month, for alarms up to a year in
	 * the future.
	 */

	/* Some Intel chipsets disconnect the alarm registers when the clock
	 * update is in progress - during this time reads return bogus values
	 * and writes may fail silently. See for example "7th Generation Intel®
	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
	 * 27.7.1
	 *
	 * Use the mc146818_avoid_UIP() function to avoid this.
	 */
	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p))
		return -EIO;

	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
		if (((unsigned)t->time.tm_sec) < 0x60)
			t->time.tm_sec = bcd2bin(t->time.tm_sec);
		else
			t->time.tm_sec = -1;
		if (((unsigned)t->time.tm_min) < 0x60)
			t->time.tm_min = bcd2bin(t->time.tm_min);
		else
			t->time.tm_min = -1;
		if (((unsigned)t->time.tm_hour) < 0x24)
			t->time.tm_hour = bcd2bin(t->time.tm_hour);
		else
			t->time.tm_hour = -1;

		if (cmos->day_alrm) {
			if (((unsigned)t->time.tm_mday) <= 0x31)
				t->time.tm_mday = bcd2bin(t->time.tm_mday);
			else
				t->time.tm_mday = -1;

			if (cmos->mon_alrm) {
				if (((unsigned)t->time.tm_mon) <= 0x12)
					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
				else
					t->time.tm_mon = -1;
			}
		}
	}

	t->enabled = !!(p.rtc_control & RTC_AIE);
	t->pending = 0;

	return 0;
}

static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
{
	unsigned char	rtc_intr;

	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
	 * allegedly some older rtcs need that to handle irqs properly
	 */
	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);

	if (use_hpet_alarm())
		return;

	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
	if (is_intr(rtc_intr))
		rtc_update_irq(cmos->rtc, 1, rtc_intr);
}

static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
{
	unsigned char	rtc_control;

	/* flush any pending IRQ status, notably for update irqs,
	 * before we enable new IRQs
	 */
	rtc_control = CMOS_READ(RTC_CONTROL);
	cmos_checkintr(cmos, rtc_control);

	rtc_control |= mask;
	CMOS_WRITE(rtc_control, RTC_CONTROL);
	if (use_hpet_alarm())
		hpet_set_rtc_irq_bit(mask);

	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
		if (cmos->wake_on)
			cmos->wake_on(cmos->dev);
	}

	cmos_checkintr(cmos, rtc_control);
}

static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
{
	unsigned char	rtc_control;

	rtc_control = CMOS_READ(RTC_CONTROL);
	rtc_control &= ~mask;
	CMOS_WRITE(rtc_control, RTC_CONTROL);
	if (use_hpet_alarm())
		hpet_mask_rtc_irq_bit(mask);

	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
		if (cmos->wake_off)
			cmos->wake_off(cmos->dev);
	}

	cmos_checkintr(cmos, rtc_control);
}

static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
{
	struct cmos_rtc *cmos = dev_get_drvdata(dev);
	struct rtc_time now;

	cmos_read_time(dev, &now);

	if (!cmos->day_alrm) {
		time64_t t_max_date;
		time64_t t_alrm;

		t_max_date = rtc_tm_to_time64(&now);
		t_max_date += 24 * 60 * 60 - 1;
		t_alrm = rtc_tm_to_time64(&t->time);
		if (t_alrm > t_max_date) {
			dev_err(dev,
				"Alarms can be up to one day in the future\n");
			return -EINVAL;
		}
	} else if (!cmos->mon_alrm) {
		struct rtc_time max_date = now;
		time64_t t_max_date;
		time64_t t_alrm;
		int max_mday;

		if (max_date.tm_mon == 11) {
			max_date.tm_mon = 0;
			max_date.tm_year += 1;
		} else {
			max_date.tm_mon += 1;
		}
		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
		if (max_date.tm_mday > max_mday)
			max_date.tm_mday = max_mday;

		t_max_date = rtc_tm_to_time64(&max_date);
		t_max_date -= 1;
		t_alrm = rtc_tm_to_time64(&t->time);
		if (t_alrm > t_max_date) {
			dev_err(dev,
				"Alarms can be up to one month in the future\n");
			return -EINVAL;
		}
	} else {
		struct rtc_time max_date = now;
		time64_t t_max_date;
		time64_t t_alrm;
		int max_mday;

		max_date.tm_year += 1;
		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
		if (max_date.tm_mday > max_mday)
			max_date.tm_mday = max_mday;

		t_max_date = rtc_tm_to_time64(&max_date);
		t_max_date -= 1;
		t_alrm = rtc_tm_to_time64(&t->time);
		if (t_alrm > t_max_date) {
			dev_err(dev,
				"Alarms can be up to one year in the future\n");
			return -EINVAL;
		}
	}

	return 0;
}

struct cmos_set_alarm_callback_param {
	struct cmos_rtc *cmos;
	unsigned char mon, mday, hrs, min, sec;
	struct rtc_wkalrm *t;
};

/* Note: this function may be executed by mc146818_avoid_UIP() more then
 *	 once
 */
static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
				    void *param_in)
{
	struct cmos_set_alarm_callback_param *p =
		(struct cmos_set_alarm_callback_param *)param_in;

	/* next rtc irq must not be from previous alarm setting */
	cmos_irq_disable(p->cmos, RTC_AIE);

	/* update alarm */
	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);

	/* the system may support an "enhanced" alarm */
	if (p->cmos->day_alrm) {
		CMOS_WRITE(p->mday, p->cmos->day_alrm);
		if (p->cmos->mon_alrm)
			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
	}

	if (use_hpet_alarm()) {
		/*
		 * FIXME the HPET alarm glue currently ignores day_alrm
		 * and mon_alrm ...
		 */
		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
				    p->t->time.tm_sec);
	}

	if (p->t->enabled)
		cmos_irq_enable(p->cmos, RTC_AIE);
}

static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	struct cmos_set_alarm_callback_param p = {
		.cmos = cmos,
		.t = t
	};
	unsigned char rtc_control;
	int ret;

	/* This not only a rtc_op, but also called directly */
	if (!is_valid_irq(cmos->irq))
		return -EIO;

	ret = cmos_validate_alarm(dev, t);
	if (ret < 0)
		return ret;

	p.mon = t->time.tm_mon + 1;
	p.mday = t->time.tm_mday;
	p.hrs = t->time.tm_hour;
	p.min = t->time.tm_min;
	p.sec = t->time.tm_sec;

	spin_lock_irq(&rtc_lock);
	rtc_control = CMOS_READ(RTC_CONTROL);
	spin_unlock_irq(&rtc_lock);

	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
		/* Writing 0xff means "don't care" or "match all".  */
		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
	}

	/*
	 * Some Intel chipsets disconnect the alarm registers when the clock
	 * update is in progress - during this time writes fail silently.
	 *
	 * Use mc146818_avoid_UIP() to avoid this.
	 */
	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p))
		return -EIO;

	cmos->alarm_expires = rtc_tm_to_time64(&t->time);

	return 0;
}

static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned long	flags;

	spin_lock_irqsave(&rtc_lock, flags);

	if (enabled)
		cmos_irq_enable(cmos, RTC_AIE);
	else
		cmos_irq_disable(cmos, RTC_AIE);

	spin_unlock_irqrestore(&rtc_lock, flags);
	return 0;
}

#if IS_ENABLED(CONFIG_RTC_INTF_PROC)

static int cmos_procfs(struct device *dev, struct seq_file *seq)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned char	rtc_control, valid;

	spin_lock_irq(&rtc_lock);
	rtc_control = CMOS_READ(RTC_CONTROL);
	valid = CMOS_READ(RTC_VALID);
	spin_unlock_irq(&rtc_lock);

	/* NOTE:  at least ICH6 reports battery status using a different
	 * (non-RTC) bit; and SQWE is ignored on many current systems.
	 */
	seq_printf(seq,
		   "periodic_IRQ\t: %s\n"
		   "update_IRQ\t: %s\n"
		   "HPET_emulated\t: %s\n"
		   // "square_wave\t: %s\n"
		   "BCD\t\t: %s\n"
		   "DST_enable\t: %s\n"
		   "periodic_freq\t: %d\n"
		   "batt_status\t: %s\n",
		   (rtc_control & RTC_PIE) ? "yes" : "no",
		   (rtc_control & RTC_UIE) ? "yes" : "no",
		   use_hpet_alarm() ? "yes" : "no",
		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
		   cmos->rtc->irq_freq,
		   (valid & RTC_VRT) ? "okay" : "dead");

	return 0;
}

#else
#define	cmos_procfs	NULL
#endif

static const struct rtc_class_ops cmos_rtc_ops = {
	.read_time		= cmos_read_time,
	.set_time		= cmos_set_time,
	.read_alarm		= cmos_read_alarm,
	.set_alarm		= cmos_set_alarm,
	.proc			= cmos_procfs,
	.alarm_irq_enable	= cmos_alarm_irq_enable,
};

/*----------------------------------------------------------------*/

/*
 * All these chips have at least 64 bytes of address space, shared by
 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 * by boot firmware.  Modern chips have 128 or 256 bytes.
 */

#define NVRAM_OFFSET	(RTC_REG_D + 1)

static int cmos_nvram_read(void *priv, unsigned int off, void *val,
			   size_t count)
{
	unsigned char *buf = val;
	int	retval;

	off += NVRAM_OFFSET;
	spin_lock_irq(&rtc_lock);
	for (retval = 0; count; count--, off++, retval++) {
		if (off < 128)
			*buf++ = CMOS_READ(off);
		else if (can_bank2)
			*buf++ = cmos_read_bank2(off);
		else
			break;
	}
	spin_unlock_irq(&rtc_lock);

	return retval;
}

static int cmos_nvram_write(void *priv, unsigned int off, void *val,
			    size_t count)
{
	struct cmos_rtc	*cmos = priv;
	unsigned char	*buf = val;
	int		retval;

	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
	 * checksum on part of the NVRAM data.  That's currently ignored
	 * here.  If userspace is smart enough to know what fields of
	 * NVRAM to update, updating checksums is also part of its job.
	 */
	off += NVRAM_OFFSET;
	spin_lock_irq(&rtc_lock);
	for (retval = 0; count; count--, off++, retval++) {
		/* don't trash RTC registers */
		if (off == cmos->day_alrm
				|| off == cmos->mon_alrm
				|| off == cmos->century)
			buf++;
		else if (off < 128)
			CMOS_WRITE(*buf++, off);
		else if (can_bank2)
			cmos_write_bank2(*buf++, off);
		else
			break;
	}
	spin_unlock_irq(&rtc_lock);

	return retval;
}

/*----------------------------------------------------------------*/

static struct cmos_rtc	cmos_rtc;

static irqreturn_t cmos_interrupt(int irq, void *p)
{
	u8		irqstat;
	u8		rtc_control;

	spin_lock(&rtc_lock);

	/* When the HPET interrupt handler calls us, the interrupt
	 * status is passed as arg1 instead of the irq number.  But
	 * always clear irq status, even when HPET is in the way.
	 *
	 * Note that HPET and RTC are almost certainly out of phase,
	 * giving different IRQ status ...
	 */
	irqstat = CMOS_READ(RTC_INTR_FLAGS);
	rtc_control = CMOS_READ(RTC_CONTROL);
	if (use_hpet_alarm())
		irqstat = (unsigned long)irq & 0xF0;

	/* If we were suspended, RTC_CONTROL may not be accurate since the
	 * bios may have cleared it.
	 */
	if (!cmos_rtc.suspend_ctrl)
		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
	else
		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;

	/* All Linux RTC alarms should be treated as if they were oneshot.
	 * Similar code may be needed in system wakeup paths, in case the
	 * alarm woke the system.
	 */
	if (irqstat & RTC_AIE) {
		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
		rtc_control &= ~RTC_AIE;
		CMOS_WRITE(rtc_control, RTC_CONTROL);
		if (use_hpet_alarm())
			hpet_mask_rtc_irq_bit(RTC_AIE);
		CMOS_READ(RTC_INTR_FLAGS);
	}
	spin_unlock(&rtc_lock);

	if (is_intr(irqstat)) {
		rtc_update_irq(p, 1, irqstat);
		return IRQ_HANDLED;
	} else
		return IRQ_NONE;
}

#ifdef	CONFIG_ACPI

#include <linux/acpi.h>

static u32 rtc_handler(void *context)
{
	struct device *dev = context;
	struct cmos_rtc *cmos = dev_get_drvdata(dev);
	unsigned char rtc_control = 0;
	unsigned char rtc_intr;
	unsigned long flags;


	/*
	 * Always update rtc irq when ACPI is used as RTC Alarm.
	 * Or else, ACPI SCI is enabled during suspend/resume only,
	 * update rtc irq in that case.
	 */
	if (cmos_use_acpi_alarm())
		cmos_interrupt(0, (void *)cmos->rtc);
	else {
		/* Fix me: can we use cmos_interrupt() here as well? */
		spin_lock_irqsave(&rtc_lock, flags);
		if (cmos_rtc.suspend_ctrl)
			rtc_control = CMOS_READ(RTC_CONTROL);
		if (rtc_control & RTC_AIE) {
			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
			CMOS_WRITE(rtc_control, RTC_CONTROL);
			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
			rtc_update_irq(cmos->rtc, 1, rtc_intr);
		}
		spin_unlock_irqrestore(&rtc_lock, flags);
	}

	pm_wakeup_hard_event(dev);
	acpi_clear_event(ACPI_EVENT_RTC);
	acpi_disable_event(ACPI_EVENT_RTC, 0);
	return ACPI_INTERRUPT_HANDLED;
}

static void acpi_rtc_event_setup(struct device *dev)
{
	if (acpi_disabled)
		return;

	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
	/*
	 * After the RTC handler is installed, the Fixed_RTC event should
	 * be disabled. Only when the RTC alarm is set will it be enabled.
	 */
	acpi_clear_event(ACPI_EVENT_RTC);
	acpi_disable_event(ACPI_EVENT_RTC, 0);
}

static void acpi_rtc_event_cleanup(void)
{
	if (acpi_disabled)
		return;

	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
}

static void rtc_wake_on(struct device *dev)
{
	acpi_clear_event(ACPI_EVENT_RTC);
	acpi_enable_event(ACPI_EVENT_RTC, 0);
}

static void rtc_wake_off(struct device *dev)
{
	acpi_disable_event(ACPI_EVENT_RTC, 0);
}

#ifdef CONFIG_X86
/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
static void use_acpi_alarm_quirks(void)
{
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return;

	if (!is_hpet_enabled())
		return;

	if (dmi_get_bios_year() < 2015)
		return;

	use_acpi_alarm = true;
}
#else
static inline void use_acpi_alarm_quirks(void) { }
#endif

static void acpi_cmos_wake_setup(struct device *dev)
{
	if (acpi_disabled)
		return;

	use_acpi_alarm_quirks();

	cmos_rtc.wake_on = rtc_wake_on;
	cmos_rtc.wake_off = rtc_wake_off;

	/* ACPI tables bug workaround. */
	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
			acpi_gbl_FADT.month_alarm);
		acpi_gbl_FADT.month_alarm = 0;
	}

	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
	cmos_rtc.century = acpi_gbl_FADT.century;

	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
		dev_info(dev, "RTC can wake from S4\n");

	/* RTC always wakes from S1/S2/S3, and often S4/STD */
	device_init_wakeup(dev, 1);
}

static void cmos_check_acpi_rtc_status(struct device *dev,
					      unsigned char *rtc_control)
{
	struct cmos_rtc *cmos = dev_get_drvdata(dev);
	acpi_event_status rtc_status;
	acpi_status status;

	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
		return;

	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
	if (ACPI_FAILURE(status)) {
		dev_err(dev, "Could not get RTC status\n");
	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
		unsigned char mask;
		*rtc_control &= ~RTC_AIE;
		CMOS_WRITE(*rtc_control, RTC_CONTROL);
		mask = CMOS_READ(RTC_INTR_FLAGS);
		rtc_update_irq(cmos->rtc, 1, mask);
	}
}

#else /* !CONFIG_ACPI */

static inline void acpi_rtc_event_setup(struct device *dev)
{
}

static inline void acpi_rtc_event_cleanup(void)
{
}

static inline void acpi_cmos_wake_setup(struct device *dev)
{
}

static inline void cmos_check_acpi_rtc_status(struct device *dev,
					      unsigned char *rtc_control)
{
}
#endif /* CONFIG_ACPI */

#ifdef	CONFIG_PNP
#define	INITSECTION

#else
#define	INITSECTION	__init
#endif

static int INITSECTION
cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
{
	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
	int				retval = 0;
	unsigned char			rtc_control;
	unsigned			address_space;
	u32				flags = 0;
	struct nvmem_config nvmem_cfg = {
		.name = "cmos_nvram",
		.word_size = 1,
		.stride = 1,
		.reg_read = cmos_nvram_read,
		.reg_write = cmos_nvram_write,
		.priv = &cmos_rtc,
	};

	/* there can be only one ... */
	if (cmos_rtc.dev)
		return -EBUSY;

	if (!ports)
		return -ENODEV;

	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
	 *
	 * REVISIT non-x86 systems may instead use memory space resources
	 * (needing ioremap etc), not i/o space resources like this ...
	 */
	if (RTC_IOMAPPED)
		ports = request_region(ports->start, resource_size(ports),
				       driver_name);
	else
		ports = request_mem_region(ports->start, resource_size(ports),
					   driver_name);
	if (!ports) {
		dev_dbg(dev, "i/o registers already in use\n");
		return -EBUSY;
	}

	cmos_rtc.irq = rtc_irq;
	cmos_rtc.iomem = ports;

	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
	 * driver did, but don't reject unknown configs.   Old hardware
	 * won't address 128 bytes.  Newer chips have multiple banks,
	 * though they may not be listed in one I/O resource.
	 */
#if	defined(CONFIG_ATARI)
	address_space = 64;
#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
			|| defined(__sparc__) || defined(__mips__) \
			|| defined(__powerpc__)
	address_space = 128;
#else
#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
	address_space = 128;
#endif
	if (can_bank2 && ports->end > (ports->start + 1))
		address_space = 256;

	/* For ACPI systems extension info comes from the FADT.  On others,
	 * board specific setup provides it as appropriate.  Systems where
	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
	 * some almost-clones) can provide hooks to make that behave.
	 *
	 * Note that ACPI doesn't preclude putting these registers into
	 * "extended" areas of the chip, including some that we won't yet
	 * expect CMOS_READ and friends to handle.
	 */
	if (info) {
		if (info->flags)
			flags = info->flags;
		if (info->address_space)
			address_space = info->address_space;

		cmos_rtc.day_alrm = info->rtc_day_alarm;
		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
		cmos_rtc.century = info->rtc_century;

		if (info->wake_on && info->wake_off) {
			cmos_rtc.wake_on = info->wake_on;
			cmos_rtc.wake_off = info->wake_off;
		}
	} else {
		acpi_cmos_wake_setup(dev);
	}

	if (cmos_rtc.day_alrm >= 128)
		cmos_rtc.day_alrm = 0;

	if (cmos_rtc.mon_alrm >= 128)
		cmos_rtc.mon_alrm = 0;

	if (cmos_rtc.century >= 128)
		cmos_rtc.century = 0;

	cmos_rtc.dev = dev;
	dev_set_drvdata(dev, &cmos_rtc);

	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
	if (IS_ERR(cmos_rtc.rtc)) {
		retval = PTR_ERR(cmos_rtc.rtc);
		goto cleanup0;
	}

	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));

	if (!mc146818_does_rtc_work()) {
		dev_warn(dev, "broken or not accessible\n");
		retval = -ENXIO;
		goto cleanup1;
	}

	spin_lock_irq(&rtc_lock);

	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
		/* force periodic irq to CMOS reset default of 1024Hz;
		 *
		 * REVISIT it's been reported that at least one x86_64 ALI
		 * mobo doesn't use 32KHz here ... for portability we might
		 * need to do something about other clock frequencies.
		 */
		cmos_rtc.rtc->irq_freq = 1024;
		if (use_hpet_alarm())
			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
	}

	/* disable irqs */
	if (is_valid_irq(rtc_irq))
		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);

	rtc_control = CMOS_READ(RTC_CONTROL);

	spin_unlock_irq(&rtc_lock);

	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
		dev_warn(dev, "only 24-hr supported\n");
		retval = -ENXIO;
		goto cleanup1;
	}

	if (use_hpet_alarm())
		hpet_rtc_timer_init();

	if (is_valid_irq(rtc_irq)) {
		irq_handler_t rtc_cmos_int_handler;

		if (use_hpet_alarm()) {
			rtc_cmos_int_handler = hpet_rtc_interrupt;
			retval = hpet_register_irq_handler(cmos_interrupt);
			if (retval) {
				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
				dev_warn(dev, "hpet_register_irq_handler "
						" failed in rtc_init().");
				goto cleanup1;
			}
		} else
			rtc_cmos_int_handler = cmos_interrupt;

		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
				0, dev_name(&cmos_rtc.rtc->dev),
				cmos_rtc.rtc);
		if (retval < 0) {
			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
			goto cleanup1;
		}
	} else {
		clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
	}

	cmos_rtc.rtc->ops = &cmos_rtc_ops;

	retval = devm_rtc_register_device(cmos_rtc.rtc);
	if (retval)
		goto cleanup2;

	/* Set the sync offset for the periodic 11min update correct */
	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;

	/* export at least the first block of NVRAM */
	nvmem_cfg.size = address_space - NVRAM_OFFSET;
	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);

	/*
	 * Everything has gone well so far, so by default register a handler for
	 * the ACPI RTC fixed event.
	 */
	if (!info)
		acpi_rtc_event_setup(dev);

	dev_info(dev, "%s%s, %d bytes nvram%s\n",
		 !is_valid_irq(rtc_irq) ? "no alarms" :
		 cmos_rtc.mon_alrm ? "alarms up to one year" :
		 cmos_rtc.day_alrm ? "alarms up to one month" :
		 "alarms up to one day",
		 cmos_rtc.century ? ", y3k" : "",
		 nvmem_cfg.size,
		 use_hpet_alarm() ? ", hpet irqs" : "");

	return 0;

cleanup2:
	if (is_valid_irq(rtc_irq))
		free_irq(rtc_irq, cmos_rtc.rtc);
cleanup1:
	cmos_rtc.dev = NULL;
cleanup0:
	if (RTC_IOMAPPED)
		release_region(ports->start, resource_size(ports));
	else
		release_mem_region(ports->start, resource_size(ports));
	return retval;
}

static void cmos_do_shutdown(int rtc_irq)
{
	spin_lock_irq(&rtc_lock);
	if (is_valid_irq(rtc_irq))
		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
	spin_unlock_irq(&rtc_lock);
}

static void cmos_do_remove(struct device *dev)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	struct resource *ports;

	cmos_do_shutdown(cmos->irq);

	if (is_valid_irq(cmos->irq)) {
		free_irq(cmos->irq, cmos->rtc);
		if (use_hpet_alarm())
			hpet_unregister_irq_handler(cmos_interrupt);
	}

	if (!dev_get_platdata(dev))
		acpi_rtc_event_cleanup();

	cmos->rtc = NULL;

	ports = cmos->iomem;
	if (RTC_IOMAPPED)
		release_region(ports->start, resource_size(ports));
	else
		release_mem_region(ports->start, resource_size(ports));
	cmos->iomem = NULL;

	cmos->dev = NULL;
}

static int cmos_aie_poweroff(struct device *dev)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	struct rtc_time now;
	time64_t t_now;
	int retval = 0;
	unsigned char rtc_control;

	if (!cmos->alarm_expires)
		return -EINVAL;

	spin_lock_irq(&rtc_lock);
	rtc_control = CMOS_READ(RTC_CONTROL);
	spin_unlock_irq(&rtc_lock);

	/* We only care about the situation where AIE is disabled. */
	if (rtc_control & RTC_AIE)
		return -EBUSY;

	cmos_read_time(dev, &now);
	t_now = rtc_tm_to_time64(&now);

	/*
	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
	 * automatically right after shutdown on some buggy boxes.
	 * This automatic rebooting issue won't happen when the alarm
	 * time is larger than now+1 seconds.
	 *
	 * If the alarm time is equal to now+1 seconds, the issue can be
	 * prevented by cancelling the alarm.
	 */
	if (cmos->alarm_expires == t_now + 1) {
		struct rtc_wkalrm alarm;

		/* Cancel the AIE timer by configuring the past time. */
		rtc_time64_to_tm(t_now - 1, &alarm.time);
		alarm.enabled = 0;
		retval = cmos_set_alarm(dev, &alarm);
	} else if (cmos->alarm_expires > t_now + 1) {
		retval = -EBUSY;
	}

	return retval;
}

static int cmos_suspend(struct device *dev)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned char	tmp;

	/* only the alarm might be a wakeup event source */
	spin_lock_irq(&rtc_lock);
	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
		unsigned char	mask;

		if (device_may_wakeup(dev))
			mask = RTC_IRQMASK & ~RTC_AIE;
		else
			mask = RTC_IRQMASK;
		tmp &= ~mask;
		CMOS_WRITE(tmp, RTC_CONTROL);
		if (use_hpet_alarm())
			hpet_mask_rtc_irq_bit(mask);
		cmos_checkintr(cmos, tmp);
	}
	spin_unlock_irq(&rtc_lock);

	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
		cmos->enabled_wake = 1;
		if (cmos->wake_on)
			cmos->wake_on(dev);
		else
			enable_irq_wake(cmos->irq);
	}

	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
	cmos_read_alarm(dev, &cmos->saved_wkalrm);

	dev_dbg(dev, "suspend%s, ctrl %02x\n",
			(tmp & RTC_AIE) ? ", alarm may wake" : "",
			tmp);

	return 0;
}

/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 * after a detour through G3 "mechanical off", although the ACPI spec
 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 * distinctions between S4 and S5 are pointless.  So when the hardware
 * allows, don't draw that distinction.
 */
static inline int cmos_poweroff(struct device *dev)
{
	if (!IS_ENABLED(CONFIG_PM))
		return -ENOSYS;

	return cmos_suspend(dev);
}

static void cmos_check_wkalrm(struct device *dev)
{
	struct cmos_rtc *cmos = dev_get_drvdata(dev);
	struct rtc_wkalrm current_alarm;
	time64_t t_now;
	time64_t t_current_expires;
	time64_t t_saved_expires;
	struct rtc_time now;

	/* Check if we have RTC Alarm armed */
	if (!(cmos->suspend_ctrl & RTC_AIE))
		return;

	cmos_read_time(dev, &now);
	t_now = rtc_tm_to_time64(&now);

	/*
	 * ACPI RTC wake event is cleared after resume from STR,
	 * ACK the rtc irq here
	 */
	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
		local_irq_disable();
		cmos_interrupt(0, (void *)cmos->rtc);
		local_irq_enable();
		return;
	}

	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
	cmos_read_alarm(dev, &current_alarm);
	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
	if (t_current_expires != t_saved_expires ||
	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
		cmos_set_alarm(dev, &cmos->saved_wkalrm);
	}
}

static int __maybe_unused cmos_resume(struct device *dev)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned char tmp;

	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
		if (cmos->wake_off)
			cmos->wake_off(dev);
		else
			disable_irq_wake(cmos->irq);
		cmos->enabled_wake = 0;
	}

	/* The BIOS might have changed the alarm, restore it */
	cmos_check_wkalrm(dev);

	spin_lock_irq(&rtc_lock);
	tmp = cmos->suspend_ctrl;
	cmos->suspend_ctrl = 0;
	/* re-enable any irqs previously active */
	if (tmp & RTC_IRQMASK) {
		unsigned char	mask;

		if (device_may_wakeup(dev) && use_hpet_alarm())
			hpet_rtc_timer_init();

		do {
			CMOS_WRITE(tmp, RTC_CONTROL);
			if (use_hpet_alarm())
				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);

			mask = CMOS_READ(RTC_INTR_FLAGS);
			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
			if (!use_hpet_alarm() || !is_intr(mask))
				break;

			/* force one-shot behavior if HPET blocked
			 * the wake alarm's irq
			 */
			rtc_update_irq(cmos->rtc, 1, mask);
			tmp &= ~RTC_AIE;
			hpet_mask_rtc_irq_bit(RTC_AIE);
		} while (mask & RTC_AIE);

		if (tmp & RTC_AIE)
			cmos_check_acpi_rtc_status(dev, &tmp);
	}
	spin_unlock_irq(&rtc_lock);

	dev_dbg(dev, "resume, ctrl %02x\n", tmp);

	return 0;
}

static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);

/*----------------------------------------------------------------*/

/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
 * probably list them in similar PNPBIOS tables; so PNP is more common.
 *
 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
 * predate even PNPBIOS should set up platform_bus devices.
 */

#ifdef	CONFIG_PNP

#include <linux/pnp.h>

static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
{
	int irq;

	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
		irq = 0;
#ifdef CONFIG_X86
		/* Some machines contain a PNP entry for the RTC, but
		 * don't define the IRQ. It should always be safe to
		 * hardcode it on systems with a legacy PIC.
		 */
		if (nr_legacy_irqs())
			irq = RTC_IRQ;
#endif
	} else {
		irq = pnp_irq(pnp, 0);
	}

	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
}

static void cmos_pnp_remove(struct pnp_dev *pnp)
{
	cmos_do_remove(&pnp->dev);
}

static void cmos_pnp_shutdown(struct pnp_dev *pnp)
{
	struct device *dev = &pnp->dev;
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);

	if (system_state == SYSTEM_POWER_OFF) {
		int retval = cmos_poweroff(dev);

		if (cmos_aie_poweroff(dev) < 0 && !retval)
			return;
	}

	cmos_do_shutdown(cmos->irq);
}

static const struct pnp_device_id rtc_ids[] = {
	{ .id = "PNP0b00", },
	{ .id = "PNP0b01", },
	{ .id = "PNP0b02", },
	{ },
};
MODULE_DEVICE_TABLE(pnp, rtc_ids);

static struct pnp_driver cmos_pnp_driver = {
	.name		= driver_name,
	.id_table	= rtc_ids,
	.probe		= cmos_pnp_probe,
	.remove		= cmos_pnp_remove,
	.shutdown	= cmos_pnp_shutdown,

	/* flag ensures resume() gets called, and stops syslog spam */
	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
	.driver		= {
			.pm = &cmos_pm_ops,
	},
};

#endif	/* CONFIG_PNP */

#ifdef CONFIG_OF
static const struct of_device_id of_cmos_match[] = {
	{
		.compatible = "motorola,mc146818",
	},
	{ },
};
MODULE_DEVICE_TABLE(of, of_cmos_match);

static __init void cmos_of_init(struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	const __be32 *val;

	if (!node)
		return;

	val = of_get_property(node, "ctrl-reg", NULL);
	if (val)
		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);

	val = of_get_property(node, "freq-reg", NULL);
	if (val)
		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
}
#else
static inline void cmos_of_init(struct platform_device *pdev) {}
#endif
/*----------------------------------------------------------------*/

/* Platform setup should have set up an RTC device, when PNP is
 * unavailable ... this could happen even on (older) PCs.
 */

static int __init cmos_platform_probe(struct platform_device *pdev)
{
	struct resource *resource;
	int irq;

	cmos_of_init(pdev);

	if (RTC_IOMAPPED)
		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
	else
		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		irq = -1;

	return cmos_do_probe(&pdev->dev, resource, irq);
}

static int cmos_platform_remove(struct platform_device *pdev)
{
	cmos_do_remove(&pdev->dev);
	return 0;
}

static void cmos_platform_shutdown(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);

	if (system_state == SYSTEM_POWER_OFF) {
		int retval = cmos_poweroff(dev);

		if (cmos_aie_poweroff(dev) < 0 && !retval)
			return;
	}

	cmos_do_shutdown(cmos->irq);
}

/* work with hotplug and coldplug */
MODULE_ALIAS("platform:rtc_cmos");

static struct platform_driver cmos_platform_driver = {
	.remove		= cmos_platform_remove,
	.shutdown	= cmos_platform_shutdown,
	.driver = {
		.name		= driver_name,
		.pm		= &cmos_pm_ops,
		.of_match_table = of_match_ptr(of_cmos_match),
	}
};

#ifdef CONFIG_PNP
static bool pnp_driver_registered;
#endif
static bool platform_driver_registered;

static int __init cmos_init(void)
{
	int retval = 0;

#ifdef	CONFIG_PNP
	retval = pnp_register_driver(&cmos_pnp_driver);
	if (retval == 0)
		pnp_driver_registered = true;
#endif

	if (!cmos_rtc.dev) {
		retval = platform_driver_probe(&cmos_platform_driver,
					       cmos_platform_probe);
		if (retval == 0)
			platform_driver_registered = true;
	}

	if (retval == 0)
		return 0;

#ifdef	CONFIG_PNP
	if (pnp_driver_registered)
		pnp_unregister_driver(&cmos_pnp_driver);
#endif
	return retval;
}
module_init(cmos_init);

static void __exit cmos_exit(void)
{
#ifdef	CONFIG_PNP
	if (pnp_driver_registered)
		pnp_unregister_driver(&cmos_pnp_driver);
#endif
	if (platform_driver_registered)
		platform_driver_unregister(&cmos_platform_driver);
}
module_exit(cmos_exit);


MODULE_AUTHOR("David Brownell");
MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
MODULE_LICENSE("GPL");