Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * KVM Xen emulation */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "x86.h" #include "xen.h" #include "hyperv.h" #include "lapic.h" #include <linux/eventfd.h> #include <linux/kvm_host.h> #include <linux/sched/stat.h> #include <trace/events/kvm.h> #include <xen/interface/xen.h> #include <xen/interface/vcpu.h> #include <xen/interface/version.h> #include <xen/interface/event_channel.h> #include <xen/interface/sched.h> #include <asm/xen/cpuid.h> #include "cpuid.h" #include "trace.h" static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm); static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data); static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r); DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) { struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; struct pvclock_wall_clock *wc; gpa_t gpa = gfn_to_gpa(gfn); u32 *wc_sec_hi; u32 wc_version; u64 wall_nsec; int ret = 0; int idx = srcu_read_lock(&kvm->srcu); if (gfn == KVM_XEN_INVALID_GFN) { kvm_gpc_deactivate(gpc); goto out; } do { ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE); if (ret) goto out; /* * This code mirrors kvm_write_wall_clock() except that it writes * directly through the pfn cache and doesn't mark the page dirty. */ wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); /* It could be invalid again already, so we need to check */ read_lock_irq(&gpc->lock); if (gpc->valid) break; read_unlock_irq(&gpc->lock); } while (1); /* Paranoia checks on the 32-bit struct layout */ BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); #ifdef CONFIG_X86_64 /* Paranoia checks on the 64-bit struct layout */ BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { struct shared_info *shinfo = gpc->khva; wc_sec_hi = &shinfo->wc_sec_hi; wc = &shinfo->wc; } else #endif { struct compat_shared_info *shinfo = gpc->khva; wc_sec_hi = &shinfo->arch.wc_sec_hi; wc = &shinfo->wc; } /* Increment and ensure an odd value */ wc_version = wc->version = (wc->version + 1) | 1; smp_wmb(); wc->nsec = do_div(wall_nsec, 1000000000); wc->sec = (u32)wall_nsec; *wc_sec_hi = wall_nsec >> 32; smp_wmb(); wc->version = wc_version + 1; read_unlock_irq(&gpc->lock); kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); out: srcu_read_unlock(&kvm->srcu, idx); return ret; } void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu) { if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) { struct kvm_xen_evtchn e; e.vcpu_id = vcpu->vcpu_id; e.vcpu_idx = vcpu->vcpu_idx; e.port = vcpu->arch.xen.timer_virq; e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; kvm_xen_set_evtchn(&e, vcpu->kvm); vcpu->arch.xen.timer_expires = 0; atomic_set(&vcpu->arch.xen.timer_pending, 0); } } static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) { struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu, arch.xen.timer); if (atomic_read(&vcpu->arch.xen.timer_pending)) return HRTIMER_NORESTART; atomic_inc(&vcpu->arch.xen.timer_pending); kvm_make_request(KVM_REQ_UNBLOCK, vcpu); kvm_vcpu_kick(vcpu); return HRTIMER_NORESTART; } static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns) { atomic_set(&vcpu->arch.xen.timer_pending, 0); vcpu->arch.xen.timer_expires = guest_abs; if (delta_ns <= 0) { xen_timer_callback(&vcpu->arch.xen.timer); } else { ktime_t ktime_now = ktime_get(); hrtimer_start(&vcpu->arch.xen.timer, ktime_add_ns(ktime_now, delta_ns), HRTIMER_MODE_ABS_HARD); } } static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu) { hrtimer_cancel(&vcpu->arch.xen.timer); vcpu->arch.xen.timer_expires = 0; atomic_set(&vcpu->arch.xen.timer_pending, 0); } static void kvm_xen_init_timer(struct kvm_vcpu *vcpu) { hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); vcpu->arch.xen.timer.function = xen_timer_callback; } static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic) { struct kvm_vcpu_xen *vx = &v->arch.xen; struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache; struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache; size_t user_len, user_len1, user_len2; struct vcpu_runstate_info rs; unsigned long flags; size_t times_ofs; uint8_t *update_bit = NULL; uint64_t entry_time; uint64_t *rs_times; int *rs_state; /* * The only difference between 32-bit and 64-bit versions of the * runstate struct is the alignment of uint64_t in 32-bit, which * means that the 64-bit version has an additional 4 bytes of * padding after the first field 'state'. Let's be really really * paranoid about that, and matching it with our internal data * structures that we memcpy into it... */ BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0); BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0); BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); #ifdef CONFIG_X86_64 /* * The 64-bit structure has 4 bytes of padding before 'state_entry_time' * so each subsequent field is shifted by 4, and it's 4 bytes longer. */ BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != offsetof(struct compat_vcpu_runstate_info, time) + 4); BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4); #endif /* * The state field is in the same place at the start of both structs, * and is the same size (int) as vx->current_runstate. */ BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != offsetof(struct compat_vcpu_runstate_info, state)); BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != sizeof(vx->current_runstate)); BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != sizeof(vx->current_runstate)); /* * The state_entry_time field is 64 bits in both versions, and the * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86 * is little-endian means that it's in the last *byte* of the word. * That detail is important later. */ BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != sizeof(uint64_t)); BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != sizeof(uint64_t)); BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80); /* * The time array is four 64-bit quantities in both versions, matching * the vx->runstate_times and immediately following state_entry_time. */ BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t)); BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t)); BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != sizeof_field(struct compat_vcpu_runstate_info, time)); BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != sizeof(vx->runstate_times)); if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { user_len = sizeof(struct vcpu_runstate_info); times_ofs = offsetof(struct vcpu_runstate_info, state_entry_time); } else { user_len = sizeof(struct compat_vcpu_runstate_info); times_ofs = offsetof(struct compat_vcpu_runstate_info, state_entry_time); } /* * There are basically no alignment constraints. The guest can set it * up so it crosses from one page to the next, and at arbitrary byte * alignment (and the 32-bit ABI doesn't align the 64-bit integers * anyway, even if the overall struct had been 64-bit aligned). */ if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) { user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK); user_len2 = user_len - user_len1; } else { user_len1 = user_len; user_len2 = 0; } BUG_ON(user_len1 + user_len2 != user_len); retry: /* * Attempt to obtain the GPC lock on *both* (if there are two) * gfn_to_pfn caches that cover the region. */ if (atomic) { local_irq_save(flags); if (!read_trylock(&gpc1->lock)) { local_irq_restore(flags); return; } } else { read_lock_irqsave(&gpc1->lock, flags); } while (!kvm_gpc_check(gpc1, user_len1)) { read_unlock_irqrestore(&gpc1->lock, flags); /* When invoked from kvm_sched_out() we cannot sleep */ if (atomic) return; if (kvm_gpc_refresh(gpc1, user_len1)) return; read_lock_irqsave(&gpc1->lock, flags); } if (likely(!user_len2)) { /* * Set up three pointers directly to the runstate_info * struct in the guest (via the GPC). * * • @rs_state → state field * • @rs_times → state_entry_time field. * • @update_bit → last byte of state_entry_time, which * contains the XEN_RUNSTATE_UPDATE bit. */ rs_state = gpc1->khva; rs_times = gpc1->khva + times_ofs; if (v->kvm->arch.xen.runstate_update_flag) update_bit = ((void *)(&rs_times[1])) - 1; } else { /* * The guest's runstate_info is split across two pages and we * need to hold and validate both GPCs simultaneously. We can * declare a lock ordering GPC1 > GPC2 because nothing else * takes them more than one at a time. Set a subclass on the * gpc1 lock to make lockdep shut up about it. */ lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_); if (atomic) { if (!read_trylock(&gpc2->lock)) { read_unlock_irqrestore(&gpc1->lock, flags); return; } } else { read_lock(&gpc2->lock); } if (!kvm_gpc_check(gpc2, user_len2)) { read_unlock(&gpc2->lock); read_unlock_irqrestore(&gpc1->lock, flags); /* When invoked from kvm_sched_out() we cannot sleep */ if (atomic) return; /* * Use kvm_gpc_activate() here because if the runstate * area was configured in 32-bit mode and only extends * to the second page now because the guest changed to * 64-bit mode, the second GPC won't have been set up. */ if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1, user_len2)) return; /* * We dropped the lock on GPC1 so we have to go all the * way back and revalidate that too. */ goto retry; } /* * In this case, the runstate_info struct will be assembled on * the kernel stack (compat or not as appropriate) and will * be copied to GPC1/GPC2 with a dual memcpy. Set up the three * rs pointers accordingly. */ rs_times = &rs.state_entry_time; /* * The rs_state pointer points to the start of what we'll * copy to the guest, which in the case of a compat guest * is the 32-bit field that the compiler thinks is padding. */ rs_state = ((void *)rs_times) - times_ofs; /* * The update_bit is still directly in the guest memory, * via one GPC or the other. */ if (v->kvm->arch.xen.runstate_update_flag) { if (user_len1 >= times_ofs + sizeof(uint64_t)) update_bit = gpc1->khva + times_ofs + sizeof(uint64_t) - 1; else update_bit = gpc2->khva + times_ofs + sizeof(uint64_t) - 1 - user_len1; } #ifdef CONFIG_X86_64 /* * Don't leak kernel memory through the padding in the 64-bit * version of the struct. */ memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time)); #endif } /* * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the * state_entry_time field, directly in the guest. We need to set * that (and write-barrier) before writing to the rest of the * structure, and clear it last. Just as Xen does, we address the * single *byte* in which it resides because it might be in a * different cache line to the rest of the 64-bit word, due to * the (lack of) alignment constraints. */ entry_time = vx->runstate_entry_time; if (update_bit) { entry_time |= XEN_RUNSTATE_UPDATE; *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56; smp_wmb(); } /* * Now assemble the actual structure, either on our kernel stack * or directly in the guest according to how the rs_state and * rs_times pointers were set up above. */ *rs_state = vx->current_runstate; rs_times[0] = entry_time; memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times)); /* For the split case, we have to then copy it to the guest. */ if (user_len2) { memcpy(gpc1->khva, rs_state, user_len1); memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2); } smp_wmb(); /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */ if (update_bit) { entry_time &= ~XEN_RUNSTATE_UPDATE; *update_bit = entry_time >> 56; smp_wmb(); } if (user_len2) read_unlock(&gpc2->lock); read_unlock_irqrestore(&gpc1->lock, flags); mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT); if (user_len2) mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT); } void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) { struct kvm_vcpu_xen *vx = &v->arch.xen; u64 now = get_kvmclock_ns(v->kvm); u64 delta_ns = now - vx->runstate_entry_time; u64 run_delay = current->sched_info.run_delay; if (unlikely(!vx->runstate_entry_time)) vx->current_runstate = RUNSTATE_offline; /* * Time waiting for the scheduler isn't "stolen" if the * vCPU wasn't running anyway. */ if (vx->current_runstate == RUNSTATE_running) { u64 steal_ns = run_delay - vx->last_steal; delta_ns -= steal_ns; vx->runstate_times[RUNSTATE_runnable] += steal_ns; } vx->last_steal = run_delay; vx->runstate_times[vx->current_runstate] += delta_ns; vx->current_runstate = state; vx->runstate_entry_time = now; if (vx->runstate_cache.active) kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable); } static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v) { struct kvm_lapic_irq irq = { }; int r; irq.dest_id = v->vcpu_id; irq.vector = v->arch.xen.upcall_vector; irq.dest_mode = APIC_DEST_PHYSICAL; irq.shorthand = APIC_DEST_NOSHORT; irq.delivery_mode = APIC_DM_FIXED; irq.level = 1; /* The fast version will always work for physical unicast */ WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL)); } /* * On event channel delivery, the vcpu_info may not have been accessible. * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which * need to be marked into the vcpu_info (and evtchn_upcall_pending set). * Do so now that we can sleep in the context of the vCPU to bring the * page in, and refresh the pfn cache for it. */ void kvm_xen_inject_pending_events(struct kvm_vcpu *v) { unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; unsigned long flags; if (!evtchn_pending_sel) return; /* * Yes, this is an open-coded loop. But that's just what put_user() * does anyway. Page it in and retry the instruction. We're just a * little more honest about it. */ read_lock_irqsave(&gpc->lock, flags); while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { read_unlock_irqrestore(&gpc->lock, flags); if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) return; read_lock_irqsave(&gpc->lock, flags); } /* Now gpc->khva is a valid kernel address for the vcpu_info */ if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { struct vcpu_info *vi = gpc->khva; asm volatile(LOCK_PREFIX "orq %0, %1\n" "notq %0\n" LOCK_PREFIX "andq %0, %2\n" : "=r" (evtchn_pending_sel), "+m" (vi->evtchn_pending_sel), "+m" (v->arch.xen.evtchn_pending_sel) : "0" (evtchn_pending_sel)); WRITE_ONCE(vi->evtchn_upcall_pending, 1); } else { u32 evtchn_pending_sel32 = evtchn_pending_sel; struct compat_vcpu_info *vi = gpc->khva; asm volatile(LOCK_PREFIX "orl %0, %1\n" "notl %0\n" LOCK_PREFIX "andl %0, %2\n" : "=r" (evtchn_pending_sel32), "+m" (vi->evtchn_pending_sel), "+m" (v->arch.xen.evtchn_pending_sel) : "0" (evtchn_pending_sel32)); WRITE_ONCE(vi->evtchn_upcall_pending, 1); } read_unlock_irqrestore(&gpc->lock, flags); /* For the per-vCPU lapic vector, deliver it as MSI. */ if (v->arch.xen.upcall_vector) kvm_xen_inject_vcpu_vector(v); mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); } int __kvm_xen_has_interrupt(struct kvm_vcpu *v) { struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; unsigned long flags; u8 rc = 0; /* * If the global upcall vector (HVMIRQ_callback_vector) is set and * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. */ /* No need for compat handling here */ BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); BUILD_BUG_ON(sizeof(rc) != sizeof_field(struct vcpu_info, evtchn_upcall_pending)); BUILD_BUG_ON(sizeof(rc) != sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); read_lock_irqsave(&gpc->lock, flags); while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { read_unlock_irqrestore(&gpc->lock, flags); /* * This function gets called from kvm_vcpu_block() after setting the * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately * from a HLT. So we really mustn't sleep. If the page ended up absent * at that point, just return 1 in order to trigger an immediate wake, * and we'll end up getting called again from a context where we *can* * fault in the page and wait for it. */ if (in_atomic() || !task_is_running(current)) return 1; if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) { /* * If this failed, userspace has screwed up the * vcpu_info mapping. No interrupts for you. */ return 0; } read_lock_irqsave(&gpc->lock, flags); } rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending; read_unlock_irqrestore(&gpc->lock, flags); return rc; } int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) { int r = -ENOENT; switch (data->type) { case KVM_XEN_ATTR_TYPE_LONG_MODE: if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { r = -EINVAL; } else { mutex_lock(&kvm->arch.xen.xen_lock); kvm->arch.xen.long_mode = !!data->u.long_mode; mutex_unlock(&kvm->arch.xen.xen_lock); r = 0; } break; case KVM_XEN_ATTR_TYPE_SHARED_INFO: mutex_lock(&kvm->arch.xen.xen_lock); r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn); mutex_unlock(&kvm->arch.xen.xen_lock); break; case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: if (data->u.vector && data->u.vector < 0x10) r = -EINVAL; else { mutex_lock(&kvm->arch.xen.xen_lock); kvm->arch.xen.upcall_vector = data->u.vector; mutex_unlock(&kvm->arch.xen.xen_lock); r = 0; } break; case KVM_XEN_ATTR_TYPE_EVTCHN: r = kvm_xen_setattr_evtchn(kvm, data); break; case KVM_XEN_ATTR_TYPE_XEN_VERSION: mutex_lock(&kvm->arch.xen.xen_lock); kvm->arch.xen.xen_version = data->u.xen_version; mutex_unlock(&kvm->arch.xen.xen_lock); r = 0; break; case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: if (!sched_info_on()) { r = -EOPNOTSUPP; break; } mutex_lock(&kvm->arch.xen.xen_lock); kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag; mutex_unlock(&kvm->arch.xen.xen_lock); r = 0; break; default: break; } return r; } int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) { int r = -ENOENT; mutex_lock(&kvm->arch.xen.xen_lock); switch (data->type) { case KVM_XEN_ATTR_TYPE_LONG_MODE: data->u.long_mode = kvm->arch.xen.long_mode; r = 0; break; case KVM_XEN_ATTR_TYPE_SHARED_INFO: if (kvm->arch.xen.shinfo_cache.active) data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); else data->u.shared_info.gfn = KVM_XEN_INVALID_GFN; r = 0; break; case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: data->u.vector = kvm->arch.xen.upcall_vector; r = 0; break; case KVM_XEN_ATTR_TYPE_XEN_VERSION: data->u.xen_version = kvm->arch.xen.xen_version; r = 0; break; case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: if (!sched_info_on()) { r = -EOPNOTSUPP; break; } data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag; r = 0; break; default: break; } mutex_unlock(&kvm->arch.xen.xen_lock); return r; } int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) { int idx, r = -ENOENT; mutex_lock(&vcpu->kvm->arch.xen.xen_lock); idx = srcu_read_lock(&vcpu->kvm->srcu); switch (data->type) { case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: /* No compat necessary here. */ BUILD_BUG_ON(sizeof(struct vcpu_info) != sizeof(struct compat_vcpu_info)); BUILD_BUG_ON(offsetof(struct vcpu_info, time) != offsetof(struct compat_vcpu_info, time)); if (data->u.gpa == KVM_XEN_INVALID_GPA) { kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); r = 0; break; } r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache, data->u.gpa, sizeof(struct vcpu_info)); if (!r) kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); break; case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: if (data->u.gpa == KVM_XEN_INVALID_GPA) { kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); r = 0; break; } r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache, data->u.gpa, sizeof(struct pvclock_vcpu_time_info)); if (!r) kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); break; case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: { size_t sz, sz1, sz2; if (!sched_info_on()) { r = -EOPNOTSUPP; break; } if (data->u.gpa == KVM_XEN_INVALID_GPA) { r = 0; deactivate_out: kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); break; } /* * If the guest switches to 64-bit mode after setting the runstate * address, that's actually OK. kvm_xen_update_runstate_guest() * will cope. */ if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode) sz = sizeof(struct vcpu_runstate_info); else sz = sizeof(struct compat_vcpu_runstate_info); /* How much fits in the (first) page? */ sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK); r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache, data->u.gpa, sz1); if (r) goto deactivate_out; /* Either map the second page, or deactivate the second GPC */ if (sz1 >= sz) { kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); } else { sz2 = sz - sz1; BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK); r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache, data->u.gpa + sz1, sz2); if (r) goto deactivate_out; } kvm_xen_update_runstate_guest(vcpu, false); break; } case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: if (!sched_info_on()) { r = -EOPNOTSUPP; break; } if (data->u.runstate.state > RUNSTATE_offline) { r = -EINVAL; break; } kvm_xen_update_runstate(vcpu, data->u.runstate.state); r = 0; break; case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: if (!sched_info_on()) { r = -EOPNOTSUPP; break; } if (data->u.runstate.state > RUNSTATE_offline) { r = -EINVAL; break; } if (data->u.runstate.state_entry_time != (data->u.runstate.time_running + data->u.runstate.time_runnable + data->u.runstate.time_blocked + data->u.runstate.time_offline)) { r = -EINVAL; break; } if (get_kvmclock_ns(vcpu->kvm) < data->u.runstate.state_entry_time) { r = -EINVAL; break; } vcpu->arch.xen.current_runstate = data->u.runstate.state; vcpu->arch.xen.runstate_entry_time = data->u.runstate.state_entry_time; vcpu->arch.xen.runstate_times[RUNSTATE_running] = data->u.runstate.time_running; vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = data->u.runstate.time_runnable; vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = data->u.runstate.time_blocked; vcpu->arch.xen.runstate_times[RUNSTATE_offline] = data->u.runstate.time_offline; vcpu->arch.xen.last_steal = current->sched_info.run_delay; r = 0; break; case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: if (!sched_info_on()) { r = -EOPNOTSUPP; break; } if (data->u.runstate.state > RUNSTATE_offline && data->u.runstate.state != (u64)-1) { r = -EINVAL; break; } /* The adjustment must add up */ if (data->u.runstate.state_entry_time != (data->u.runstate.time_running + data->u.runstate.time_runnable + data->u.runstate.time_blocked + data->u.runstate.time_offline)) { r = -EINVAL; break; } if (get_kvmclock_ns(vcpu->kvm) < (vcpu->arch.xen.runstate_entry_time + data->u.runstate.state_entry_time)) { r = -EINVAL; break; } vcpu->arch.xen.runstate_entry_time += data->u.runstate.state_entry_time; vcpu->arch.xen.runstate_times[RUNSTATE_running] += data->u.runstate.time_running; vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += data->u.runstate.time_runnable; vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += data->u.runstate.time_blocked; vcpu->arch.xen.runstate_times[RUNSTATE_offline] += data->u.runstate.time_offline; if (data->u.runstate.state <= RUNSTATE_offline) kvm_xen_update_runstate(vcpu, data->u.runstate.state); else if (vcpu->arch.xen.runstate_cache.active) kvm_xen_update_runstate_guest(vcpu, false); r = 0; break; case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: if (data->u.vcpu_id >= KVM_MAX_VCPUS) r = -EINVAL; else { vcpu->arch.xen.vcpu_id = data->u.vcpu_id; r = 0; } break; case KVM_XEN_VCPU_ATTR_TYPE_TIMER: if (data->u.timer.port && data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) { r = -EINVAL; break; } if (!vcpu->arch.xen.timer.function) kvm_xen_init_timer(vcpu); /* Stop the timer (if it's running) before changing the vector */ kvm_xen_stop_timer(vcpu); vcpu->arch.xen.timer_virq = data->u.timer.port; /* Start the timer if the new value has a valid vector+expiry. */ if (data->u.timer.port && data->u.timer.expires_ns) kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, data->u.timer.expires_ns - get_kvmclock_ns(vcpu->kvm)); r = 0; break; case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: if (data->u.vector && data->u.vector < 0x10) r = -EINVAL; else { vcpu->arch.xen.upcall_vector = data->u.vector; r = 0; } break; default: break; } srcu_read_unlock(&vcpu->kvm->srcu, idx); mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); return r; } int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) { int r = -ENOENT; mutex_lock(&vcpu->kvm->arch.xen.xen_lock); switch (data->type) { case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: if (vcpu->arch.xen.vcpu_info_cache.active) data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; else data->u.gpa = KVM_XEN_INVALID_GPA; r = 0; break; case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: if (vcpu->arch.xen.vcpu_time_info_cache.active) data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; else data->u.gpa = KVM_XEN_INVALID_GPA; r = 0; break; case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: if (!sched_info_on()) { r = -EOPNOTSUPP; break; } if (vcpu->arch.xen.runstate_cache.active) { data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; r = 0; } break; case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: if (!sched_info_on()) { r = -EOPNOTSUPP; break; } data->u.runstate.state = vcpu->arch.xen.current_runstate; r = 0; break; case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: if (!sched_info_on()) { r = -EOPNOTSUPP; break; } data->u.runstate.state = vcpu->arch.xen.current_runstate; data->u.runstate.state_entry_time = vcpu->arch.xen.runstate_entry_time; data->u.runstate.time_running = vcpu->arch.xen.runstate_times[RUNSTATE_running]; data->u.runstate.time_runnable = vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; data->u.runstate.time_blocked = vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; data->u.runstate.time_offline = vcpu->arch.xen.runstate_times[RUNSTATE_offline]; r = 0; break; case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: r = -EINVAL; break; case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: data->u.vcpu_id = vcpu->arch.xen.vcpu_id; r = 0; break; case KVM_XEN_VCPU_ATTR_TYPE_TIMER: data->u.timer.port = vcpu->arch.xen.timer_virq; data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; data->u.timer.expires_ns = vcpu->arch.xen.timer_expires; r = 0; break; case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: data->u.vector = vcpu->arch.xen.upcall_vector; r = 0; break; default: break; } mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); return r; } int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) { struct kvm *kvm = vcpu->kvm; u32 page_num = data & ~PAGE_MASK; u64 page_addr = data & PAGE_MASK; bool lm = is_long_mode(vcpu); /* Latch long_mode for shared_info pages etc. */ vcpu->kvm->arch.xen.long_mode = lm; /* * If Xen hypercall intercept is enabled, fill the hypercall * page with VMCALL/VMMCALL instructions since that's what * we catch. Else the VMM has provided the hypercall pages * with instructions of its own choosing, so use those. */ if (kvm_xen_hypercall_enabled(kvm)) { u8 instructions[32]; int i; if (page_num) return 1; /* mov imm32, %eax */ instructions[0] = 0xb8; /* vmcall / vmmcall */ static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5); /* ret */ instructions[8] = 0xc3; /* int3 to pad */ memset(instructions + 9, 0xcc, sizeof(instructions) - 9); for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { *(u32 *)&instructions[1] = i; if (kvm_vcpu_write_guest(vcpu, page_addr + (i * sizeof(instructions)), instructions, sizeof(instructions))) return 1; } } else { /* * Note, truncation is a non-issue as 'lm' is guaranteed to be * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. */ hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 : kvm->arch.xen_hvm_config.blob_addr_32; u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 : kvm->arch.xen_hvm_config.blob_size_32; u8 *page; int ret; if (page_num >= blob_size) return 1; blob_addr += page_num * PAGE_SIZE; page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); if (IS_ERR(page)) return PTR_ERR(page); ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE); kfree(page); if (ret) return 1; } return 0; } int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) { /* Only some feature flags need to be *enabled* by userspace */ u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | KVM_XEN_HVM_CONFIG_EVTCHN_SEND; if (xhc->flags & ~permitted_flags) return -EINVAL; /* * With hypercall interception the kernel generates its own * hypercall page so it must not be provided. */ if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && (xhc->blob_addr_32 || xhc->blob_addr_64 || xhc->blob_size_32 || xhc->blob_size_64)) return -EINVAL; mutex_lock(&kvm->arch.xen.xen_lock); if (xhc->msr && !kvm->arch.xen_hvm_config.msr) static_branch_inc(&kvm_xen_enabled.key); else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) static_branch_slow_dec_deferred(&kvm_xen_enabled); memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); mutex_unlock(&kvm->arch.xen.xen_lock); return 0; } static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) { kvm_rax_write(vcpu, result); return kvm_skip_emulated_instruction(vcpu); } static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) return 1; return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); } static inline int max_evtchn_port(struct kvm *kvm) { if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) return EVTCHN_2L_NR_CHANNELS; else return COMPAT_EVTCHN_2L_NR_CHANNELS; } static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports, evtchn_port_t *ports) { struct kvm *kvm = vcpu->kvm; struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; unsigned long *pending_bits; unsigned long flags; bool ret = true; int idx, i; idx = srcu_read_lock(&kvm->srcu); read_lock_irqsave(&gpc->lock, flags); if (!kvm_gpc_check(gpc, PAGE_SIZE)) goto out_rcu; ret = false; if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { struct shared_info *shinfo = gpc->khva; pending_bits = (unsigned long *)&shinfo->evtchn_pending; } else { struct compat_shared_info *shinfo = gpc->khva; pending_bits = (unsigned long *)&shinfo->evtchn_pending; } for (i = 0; i < nr_ports; i++) { if (test_bit(ports[i], pending_bits)) { ret = true; break; } } out_rcu: read_unlock_irqrestore(&gpc->lock, flags); srcu_read_unlock(&kvm->srcu, idx); return ret; } static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode, u64 param, u64 *r) { struct sched_poll sched_poll; evtchn_port_t port, *ports; struct x86_exception e; int i; if (!lapic_in_kernel(vcpu) || !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND)) return false; if (IS_ENABLED(CONFIG_64BIT) && !longmode) { struct compat_sched_poll sp32; /* Sanity check that the compat struct definition is correct */ BUILD_BUG_ON(sizeof(sp32) != 16); if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) { *r = -EFAULT; return true; } /* * This is a 32-bit pointer to an array of evtchn_port_t which * are uint32_t, so once it's converted no further compat * handling is needed. */ sched_poll.ports = (void *)(unsigned long)(sp32.ports); sched_poll.nr_ports = sp32.nr_ports; sched_poll.timeout = sp32.timeout; } else { if (kvm_read_guest_virt(vcpu, param, &sched_poll, sizeof(sched_poll), &e)) { *r = -EFAULT; return true; } } if (unlikely(sched_poll.nr_ports > 1)) { /* Xen (unofficially) limits number of pollers to 128 */ if (sched_poll.nr_ports > 128) { *r = -EINVAL; return true; } ports = kmalloc_array(sched_poll.nr_ports, sizeof(*ports), GFP_KERNEL); if (!ports) { *r = -ENOMEM; return true; } } else ports = &port; if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports, sched_poll.nr_ports * sizeof(*ports), &e)) { *r = -EFAULT; return true; } for (i = 0; i < sched_poll.nr_ports; i++) { if (ports[i] >= max_evtchn_port(vcpu->kvm)) { *r = -EINVAL; goto out; } } if (sched_poll.nr_ports == 1) vcpu->arch.xen.poll_evtchn = port; else vcpu->arch.xen.poll_evtchn = -1; set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) { vcpu->arch.mp_state = KVM_MP_STATE_HALTED; if (sched_poll.timeout) mod_timer(&vcpu->arch.xen.poll_timer, jiffies + nsecs_to_jiffies(sched_poll.timeout)); kvm_vcpu_halt(vcpu); if (sched_poll.timeout) del_timer(&vcpu->arch.xen.poll_timer); vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; } vcpu->arch.xen.poll_evtchn = 0; *r = 0; out: /* Really, this is only needed in case of timeout */ clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); if (unlikely(sched_poll.nr_ports > 1)) kfree(ports); return true; } static void cancel_evtchn_poll(struct timer_list *t) { struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer); kvm_make_request(KVM_REQ_UNBLOCK, vcpu); kvm_vcpu_kick(vcpu); } static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, u64 param, u64 *r) { switch (cmd) { case SCHEDOP_poll: if (kvm_xen_schedop_poll(vcpu, longmode, param, r)) return true; fallthrough; case SCHEDOP_yield: kvm_vcpu_on_spin(vcpu, true); *r = 0; return true; default: break; } return false; } struct compat_vcpu_set_singleshot_timer { uint64_t timeout_abs_ns; uint32_t flags; } __attribute__((packed)); static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, int vcpu_id, u64 param, u64 *r) { struct vcpu_set_singleshot_timer oneshot; struct x86_exception e; s64 delta; if (!kvm_xen_timer_enabled(vcpu)) return false; switch (cmd) { case VCPUOP_set_singleshot_timer: if (vcpu->arch.xen.vcpu_id != vcpu_id) { *r = -EINVAL; return true; } /* * The only difference for 32-bit compat is the 4 bytes of * padding after the interesting part of the structure. So * for a faithful emulation of Xen we have to *try* to copy * the padding and return -EFAULT if we can't. Otherwise we * might as well just have copied the 12-byte 32-bit struct. */ BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns)); BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns)); BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) != offsetof(struct vcpu_set_singleshot_timer, flags)); BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) != sizeof_field(struct vcpu_set_singleshot_timer, flags)); if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) : sizeof(struct compat_vcpu_set_singleshot_timer), &e)) { *r = -EFAULT; return true; } delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm); if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) { *r = -ETIME; return true; } kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta); *r = 0; return true; case VCPUOP_stop_singleshot_timer: if (vcpu->arch.xen.vcpu_id != vcpu_id) { *r = -EINVAL; return true; } kvm_xen_stop_timer(vcpu); *r = 0; return true; } return false; } static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout, u64 *r) { if (!kvm_xen_timer_enabled(vcpu)) return false; if (timeout) { uint64_t guest_now = get_kvmclock_ns(vcpu->kvm); int64_t delta = timeout - guest_now; /* Xen has a 'Linux workaround' in do_set_timer_op() which * checks for negative absolute timeout values (caused by * integer overflow), and for values about 13 days in the * future (2^50ns) which would be caused by jiffies * overflow. For those cases, it sets the timeout 100ms in * the future (not *too* soon, since if a guest really did * set a long timeout on purpose we don't want to keep * churning CPU time by waking it up). */ if (unlikely((int64_t)timeout < 0 || (delta > 0 && (uint32_t) (delta >> 50) != 0))) { delta = 100 * NSEC_PER_MSEC; timeout = guest_now + delta; } kvm_xen_start_timer(vcpu, timeout, delta); } else { kvm_xen_stop_timer(vcpu); } *r = 0; return true; } int kvm_xen_hypercall(struct kvm_vcpu *vcpu) { bool longmode; u64 input, params[6], r = -ENOSYS; bool handled = false; u8 cpl; input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); /* Hyper-V hypercalls get bit 31 set in EAX */ if ((input & 0x80000000) && kvm_hv_hypercall_enabled(vcpu)) return kvm_hv_hypercall(vcpu); longmode = is_64_bit_hypercall(vcpu); if (!longmode) { params[0] = (u32)kvm_rbx_read(vcpu); params[1] = (u32)kvm_rcx_read(vcpu); params[2] = (u32)kvm_rdx_read(vcpu); params[3] = (u32)kvm_rsi_read(vcpu); params[4] = (u32)kvm_rdi_read(vcpu); params[5] = (u32)kvm_rbp_read(vcpu); } #ifdef CONFIG_X86_64 else { params[0] = (u64)kvm_rdi_read(vcpu); params[1] = (u64)kvm_rsi_read(vcpu); params[2] = (u64)kvm_rdx_read(vcpu); params[3] = (u64)kvm_r10_read(vcpu); params[4] = (u64)kvm_r8_read(vcpu); params[5] = (u64)kvm_r9_read(vcpu); } #endif cpl = static_call(kvm_x86_get_cpl)(vcpu); trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2], params[3], params[4], params[5]); /* * Only allow hypercall acceleration for CPL0. The rare hypercalls that * are permitted in guest userspace can be handled by the VMM. */ if (unlikely(cpl > 0)) goto handle_in_userspace; switch (input) { case __HYPERVISOR_xen_version: if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) { r = vcpu->kvm->arch.xen.xen_version; handled = true; } break; case __HYPERVISOR_event_channel_op: if (params[0] == EVTCHNOP_send) handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r); break; case __HYPERVISOR_sched_op: handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0], params[1], &r); break; case __HYPERVISOR_vcpu_op: handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1], params[2], &r); break; case __HYPERVISOR_set_timer_op: { u64 timeout = params[0]; /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */ if (!longmode) timeout |= params[1] << 32; handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r); break; } default: break; } if (handled) return kvm_xen_hypercall_set_result(vcpu, r); handle_in_userspace: vcpu->run->exit_reason = KVM_EXIT_XEN; vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; vcpu->run->xen.u.hcall.longmode = longmode; vcpu->run->xen.u.hcall.cpl = cpl; vcpu->run->xen.u.hcall.input = input; vcpu->run->xen.u.hcall.params[0] = params[0]; vcpu->run->xen.u.hcall.params[1] = params[1]; vcpu->run->xen.u.hcall.params[2] = params[2]; vcpu->run->xen.u.hcall.params[3] = params[3]; vcpu->run->xen.u.hcall.params[4] = params[4]; vcpu->run->xen.u.hcall.params[5] = params[5]; vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); vcpu->arch.complete_userspace_io = kvm_xen_hypercall_complete_userspace; return 0; } static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port) { int poll_evtchn = vcpu->arch.xen.poll_evtchn; if ((poll_evtchn == port || poll_evtchn == -1) && test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) { kvm_make_request(KVM_REQ_UNBLOCK, vcpu); kvm_vcpu_kick(vcpu); } } /* * The return value from this function is propagated to kvm_set_irq() API, * so it returns: * < 0 Interrupt was ignored (masked or not delivered for other reasons) * = 0 Interrupt was coalesced (previous irq is still pending) * > 0 Number of CPUs interrupt was delivered to * * It is also called directly from kvm_arch_set_irq_inatomic(), where the * only check on its return value is a comparison with -EWOULDBLOCK'. */ int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm) { struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; struct kvm_vcpu *vcpu; unsigned long *pending_bits, *mask_bits; unsigned long flags; int port_word_bit; bool kick_vcpu = false; int vcpu_idx, idx, rc; vcpu_idx = READ_ONCE(xe->vcpu_idx); if (vcpu_idx >= 0) vcpu = kvm_get_vcpu(kvm, vcpu_idx); else { vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id); if (!vcpu) return -EINVAL; WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx); } if (!vcpu->arch.xen.vcpu_info_cache.active) return -EINVAL; if (xe->port >= max_evtchn_port(kvm)) return -EINVAL; rc = -EWOULDBLOCK; idx = srcu_read_lock(&kvm->srcu); read_lock_irqsave(&gpc->lock, flags); if (!kvm_gpc_check(gpc, PAGE_SIZE)) goto out_rcu; if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { struct shared_info *shinfo = gpc->khva; pending_bits = (unsigned long *)&shinfo->evtchn_pending; mask_bits = (unsigned long *)&shinfo->evtchn_mask; port_word_bit = xe->port / 64; } else { struct compat_shared_info *shinfo = gpc->khva; pending_bits = (unsigned long *)&shinfo->evtchn_pending; mask_bits = (unsigned long *)&shinfo->evtchn_mask; port_word_bit = xe->port / 32; } /* * If this port wasn't already set, and if it isn't masked, then * we try to set the corresponding bit in the in-kernel shadow of * evtchn_pending_sel for the target vCPU. And if *that* wasn't * already set, then we kick the vCPU in question to write to the * *real* evtchn_pending_sel in its own guest vcpu_info struct. */ if (test_and_set_bit(xe->port, pending_bits)) { rc = 0; /* It was already raised */ } else if (test_bit(xe->port, mask_bits)) { rc = -ENOTCONN; /* Masked */ kvm_xen_check_poller(vcpu, xe->port); } else { rc = 1; /* Delivered to the bitmap in shared_info. */ /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */ read_unlock_irqrestore(&gpc->lock, flags); gpc = &vcpu->arch.xen.vcpu_info_cache; read_lock_irqsave(&gpc->lock, flags); if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { /* * Could not access the vcpu_info. Set the bit in-kernel * and prod the vCPU to deliver it for itself. */ if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) kick_vcpu = true; goto out_rcu; } if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { struct vcpu_info *vcpu_info = gpc->khva; if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) { WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); kick_vcpu = true; } } else { struct compat_vcpu_info *vcpu_info = gpc->khva; if (!test_and_set_bit(port_word_bit, (unsigned long *)&vcpu_info->evtchn_pending_sel)) { WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); kick_vcpu = true; } } /* For the per-vCPU lapic vector, deliver it as MSI. */ if (kick_vcpu && vcpu->arch.xen.upcall_vector) { kvm_xen_inject_vcpu_vector(vcpu); kick_vcpu = false; } } out_rcu: read_unlock_irqrestore(&gpc->lock, flags); srcu_read_unlock(&kvm->srcu, idx); if (kick_vcpu) { kvm_make_request(KVM_REQ_UNBLOCK, vcpu); kvm_vcpu_kick(vcpu); } return rc; } static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm) { bool mm_borrowed = false; int rc; rc = kvm_xen_set_evtchn_fast(xe, kvm); if (rc != -EWOULDBLOCK) return rc; if (current->mm != kvm->mm) { /* * If not on a thread which already belongs to this KVM, * we'd better be in the irqfd workqueue. */ if (WARN_ON_ONCE(current->mm)) return -EINVAL; kthread_use_mm(kvm->mm); mm_borrowed = true; } mutex_lock(&kvm->arch.xen.xen_lock); /* * It is theoretically possible for the page to be unmapped * and the MMU notifier to invalidate the shared_info before * we even get to use it. In that case, this looks like an * infinite loop. It was tempting to do it via the userspace * HVA instead... but that just *hides* the fact that it's * an infinite loop, because if a fault occurs and it waits * for the page to come back, it can *still* immediately * fault and have to wait again, repeatedly. * * Conversely, the page could also have been reinstated by * another thread before we even obtain the mutex above, so * check again *first* before remapping it. */ do { struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; int idx; rc = kvm_xen_set_evtchn_fast(xe, kvm); if (rc != -EWOULDBLOCK) break; idx = srcu_read_lock(&kvm->srcu); rc = kvm_gpc_refresh(gpc, PAGE_SIZE); srcu_read_unlock(&kvm->srcu, idx); } while(!rc); mutex_unlock(&kvm->arch.xen.xen_lock); if (mm_borrowed) kthread_unuse_mm(kvm->mm); return rc; } /* This is the version called from kvm_set_irq() as the .set function */ static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status) { if (!level) return -EINVAL; return kvm_xen_set_evtchn(&e->xen_evtchn, kvm); } /* * Set up an event channel interrupt from the KVM IRQ routing table. * Used for e.g. PIRQ from passed through physical devices. */ int kvm_xen_setup_evtchn(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, const struct kvm_irq_routing_entry *ue) { struct kvm_vcpu *vcpu; if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) return -EINVAL; /* We only support 2 level event channels for now */ if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) return -EINVAL; /* * Xen gives us interesting mappings from vCPU index to APIC ID, * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs * to find it. Do that once at setup time, instead of every time. * But beware that on live update / live migration, the routing * table might be reinstated before the vCPU threads have finished * recreating their vCPUs. */ vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu); if (vcpu) e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx; else e->xen_evtchn.vcpu_idx = -1; e->xen_evtchn.port = ue->u.xen_evtchn.port; e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu; e->xen_evtchn.priority = ue->u.xen_evtchn.priority; e->set = evtchn_set_fn; return 0; } /* * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl. */ int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe) { struct kvm_xen_evtchn e; int ret; if (!uxe->port || uxe->port >= max_evtchn_port(kvm)) return -EINVAL; /* We only support 2 level event channels for now */ if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) return -EINVAL; e.port = uxe->port; e.vcpu_id = uxe->vcpu; e.vcpu_idx = -1; e.priority = uxe->priority; ret = kvm_xen_set_evtchn(&e, kvm); /* * None of that 'return 1 if it actually got delivered' nonsense. * We don't care if it was masked (-ENOTCONN) either. */ if (ret > 0 || ret == -ENOTCONN) ret = 0; return ret; } /* * Support for *outbound* event channel events via the EVTCHNOP_send hypercall. */ struct evtchnfd { u32 send_port; u32 type; union { struct kvm_xen_evtchn port; struct { u32 port; /* zero */ struct eventfd_ctx *ctx; } eventfd; } deliver; }; /* * Update target vCPU or priority for a registered sending channel. */ static int kvm_xen_eventfd_update(struct kvm *kvm, struct kvm_xen_hvm_attr *data) { u32 port = data->u.evtchn.send_port; struct evtchnfd *evtchnfd; int ret; /* Protect writes to evtchnfd as well as the idr lookup. */ mutex_lock(&kvm->arch.xen.xen_lock); evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port); ret = -ENOENT; if (!evtchnfd) goto out_unlock; /* For an UPDATE, nothing may change except the priority/vcpu */ ret = -EINVAL; if (evtchnfd->type != data->u.evtchn.type) goto out_unlock; /* * Port cannot change, and if it's zero that was an eventfd * which can't be changed either. */ if (!evtchnfd->deliver.port.port || evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port) goto out_unlock; /* We only support 2 level event channels for now */ if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) goto out_unlock; evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) { evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; evtchnfd->deliver.port.vcpu_idx = -1; } ret = 0; out_unlock: mutex_unlock(&kvm->arch.xen.xen_lock); return ret; } /* * Configure the target (eventfd or local port delivery) for sending on * a given event channel. */ static int kvm_xen_eventfd_assign(struct kvm *kvm, struct kvm_xen_hvm_attr *data) { u32 port = data->u.evtchn.send_port; struct eventfd_ctx *eventfd = NULL; struct evtchnfd *evtchnfd; int ret = -EINVAL; evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL); if (!evtchnfd) return -ENOMEM; switch(data->u.evtchn.type) { case EVTCHNSTAT_ipi: /* IPI must map back to the same port# */ if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port) goto out_noeventfd; /* -EINVAL */ break; case EVTCHNSTAT_interdomain: if (data->u.evtchn.deliver.port.port) { if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm)) goto out_noeventfd; /* -EINVAL */ } else { eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd); if (IS_ERR(eventfd)) { ret = PTR_ERR(eventfd); goto out_noeventfd; } } break; case EVTCHNSTAT_virq: case EVTCHNSTAT_closed: case EVTCHNSTAT_unbound: case EVTCHNSTAT_pirq: default: /* Unknown event channel type */ goto out; /* -EINVAL */ } evtchnfd->send_port = data->u.evtchn.send_port; evtchnfd->type = data->u.evtchn.type; if (eventfd) { evtchnfd->deliver.eventfd.ctx = eventfd; } else { /* We only support 2 level event channels for now */ if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) goto out; /* -EINVAL; */ evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port; evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; evtchnfd->deliver.port.vcpu_idx = -1; evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; } mutex_lock(&kvm->arch.xen.xen_lock); ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1, GFP_KERNEL); mutex_unlock(&kvm->arch.xen.xen_lock); if (ret >= 0) return 0; if (ret == -ENOSPC) ret = -EEXIST; out: if (eventfd) eventfd_ctx_put(eventfd); out_noeventfd: kfree(evtchnfd); return ret; } static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port) { struct evtchnfd *evtchnfd; mutex_lock(&kvm->arch.xen.xen_lock); evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port); mutex_unlock(&kvm->arch.xen.xen_lock); if (!evtchnfd) return -ENOENT; synchronize_srcu(&kvm->srcu); if (!evtchnfd->deliver.port.port) eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); kfree(evtchnfd); return 0; } static int kvm_xen_eventfd_reset(struct kvm *kvm) { struct evtchnfd *evtchnfd, **all_evtchnfds; int i; int n = 0; mutex_lock(&kvm->arch.xen.xen_lock); /* * Because synchronize_srcu() cannot be called inside the * critical section, first collect all the evtchnfd objects * in an array as they are removed from evtchn_ports. */ idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) n++; all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL); if (!all_evtchnfds) { mutex_unlock(&kvm->arch.xen.xen_lock); return -ENOMEM; } n = 0; idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { all_evtchnfds[n++] = evtchnfd; idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port); } mutex_unlock(&kvm->arch.xen.xen_lock); synchronize_srcu(&kvm->srcu); while (n--) { evtchnfd = all_evtchnfds[n]; if (!evtchnfd->deliver.port.port) eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); kfree(evtchnfd); } kfree(all_evtchnfds); return 0; } static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data) { u32 port = data->u.evtchn.send_port; if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET) return kvm_xen_eventfd_reset(kvm); if (!port || port >= max_evtchn_port(kvm)) return -EINVAL; if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN) return kvm_xen_eventfd_deassign(kvm, port); if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE) return kvm_xen_eventfd_update(kvm, data); if (data->u.evtchn.flags) return -EINVAL; return kvm_xen_eventfd_assign(kvm, data); } static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r) { struct evtchnfd *evtchnfd; struct evtchn_send send; struct x86_exception e; /* Sanity check: this structure is the same for 32-bit and 64-bit */ BUILD_BUG_ON(sizeof(send) != 4); if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) { *r = -EFAULT; return true; } /* * evtchnfd is protected by kvm->srcu; the idr lookup instead * is protected by RCU. */ rcu_read_lock(); evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port); rcu_read_unlock(); if (!evtchnfd) return false; if (evtchnfd->deliver.port.port) { int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm); if (ret < 0 && ret != -ENOTCONN) return false; } else { eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1); } *r = 0; return true; } void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu) { vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx; vcpu->arch.xen.poll_evtchn = 0; timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0); kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL, KVM_HOST_USES_PFN); kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL, KVM_HOST_USES_PFN); kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL, KVM_HOST_USES_PFN); kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL, KVM_HOST_USES_PFN); } void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu) { if (kvm_xen_timer_enabled(vcpu)) kvm_xen_stop_timer(vcpu); kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); del_timer_sync(&vcpu->arch.xen.poll_timer); } void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *entry; u32 function; if (!vcpu->arch.xen.cpuid.base) return; function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3); if (function > vcpu->arch.xen.cpuid.limit) return; entry = kvm_find_cpuid_entry_index(vcpu, function, 1); if (entry) { entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul; entry->edx = vcpu->arch.hv_clock.tsc_shift; } entry = kvm_find_cpuid_entry_index(vcpu, function, 2); if (entry) entry->eax = vcpu->arch.hw_tsc_khz; } void kvm_xen_init_vm(struct kvm *kvm) { mutex_init(&kvm->arch.xen.xen_lock); idr_init(&kvm->arch.xen.evtchn_ports); kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN); } void kvm_xen_destroy_vm(struct kvm *kvm) { struct evtchnfd *evtchnfd; int i; kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { if (!evtchnfd->deliver.port.port) eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); kfree(evtchnfd); } idr_destroy(&kvm->arch.xen.evtchn_ports); if (kvm->arch.xen_hvm_config.msr) static_branch_slow_dec_deferred(&kvm_xen_enabled); } |