Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright 2021 Google LLC */ /* * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI * instructions. It works on 8 blocks at a time, by precomputing the first 8 * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation * allows us to split finite field multiplication into two steps. * * In the first step, we consider h^i, m_i as normal polynomials of degree less * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication * is simply polynomial multiplication. * * In the second step, we compute the reduction of p(x) modulo the finite field * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1. * * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where * multiplication is finite field multiplication. The advantage is that the * two-step process only requires 1 finite field reduction for every 8 * polynomial multiplications. Further parallelism is gained by interleaving the * multiplications and polynomial reductions. */ #include <linux/linkage.h> #include <asm/frame.h> #define STRIDE_BLOCKS 8 #define GSTAR %xmm7 #define PL %xmm8 #define PH %xmm9 #define TMP_XMM %xmm11 #define LO %xmm12 #define HI %xmm13 #define MI %xmm14 #define SUM %xmm15 #define KEY_POWERS %rdi #define MSG %rsi #define BLOCKS_LEFT %rdx #define ACCUMULATOR %rcx #define TMP %rax .section .rodata.cst16.gstar, "aM", @progbits, 16 .align 16 .Lgstar: .quad 0xc200000000000000, 0xc200000000000000 .text /* * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length * count pointed to by MSG and KEY_POWERS. */ .macro schoolbook1 count .set i, 0 .rept (\count) schoolbook1_iteration i 0 .set i, (i +1) .endr .endm /* * Computes the product of two 128-bit polynomials at the memory locations * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of * the 256-bit product into LO, MI, HI. * * Given: * X = [X_1 : X_0] * Y = [Y_1 : Y_0] * * We compute: * LO += X_0 * Y_0 * MI += X_0 * Y_1 + X_1 * Y_0 * HI += X_1 * Y_1 * * Later, the 256-bit result can be extracted as: * [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] * This step is done when computing the polynomial reduction for efficiency * reasons. * * If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an * extra multiplication of SUM and h^8. */ .macro schoolbook1_iteration i xor_sum movups (16*\i)(MSG), %xmm0 .if (\i == 0 && \xor_sum == 1) pxor SUM, %xmm0 .endif vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2 vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1 vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3 vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4 vpxor %xmm2, MI, MI vpxor %xmm1, LO, LO vpxor %xmm4, HI, HI vpxor %xmm3, MI, MI .endm /* * Performs the same computation as schoolbook1_iteration, except we expect the * arguments to already be loaded into xmm0 and xmm1 and we set the result * registers LO, MI, and HI directly rather than XOR'ing into them. */ .macro schoolbook1_noload vpclmulqdq $0x01, %xmm0, %xmm1, MI vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2 vpclmulqdq $0x00, %xmm0, %xmm1, LO vpclmulqdq $0x11, %xmm0, %xmm1, HI vpxor %xmm2, MI, MI .endm /* * Computes the 256-bit polynomial represented by LO, HI, MI. Stores * the result in PL, PH. * [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] */ .macro schoolbook2 vpslldq $8, MI, PL vpsrldq $8, MI, PH pxor LO, PL pxor HI, PH .endm /* * Computes the 128-bit reduction of PH : PL. Stores the result in dest. * * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) = * x^128 + x^127 + x^126 + x^121 + 1. * * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the * product of two 128-bit polynomials in Montgomery form. We need to reduce it * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor * of x^128, this product has two extra factors of x^128. To get it back into * Montgomery form, we need to remove one of these factors by dividing by x^128. * * To accomplish both of these goals, we add multiples of g(x) that cancel out * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low * bits are zero, the polynomial division by x^128 can be done by right shifting. * * Since the only nonzero term in the low 64 bits of g(x) is the constant term, * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 + * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191. * * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1 * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) * * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 : * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0). * * So our final computation is: * T = T_1 : T_0 = g*(x) * P_0 * V = V_1 : V_0 = g*(x) * (P_1 + T_0) * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0 * * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0 * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 : * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V. */ .macro montgomery_reduction dest vpclmulqdq $0x00, PL, GSTAR, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x) pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1 pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1 pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1 pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)] vpxor TMP_XMM, PH, \dest .endm /* * Compute schoolbook multiplication for 8 blocks * m_0h^8 + ... + m_7h^1 * * If reduce is set, also computes the montgomery reduction of the * previous full_stride call and XORs with the first message block. * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1. * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0. */ .macro full_stride reduce pxor LO, LO pxor HI, HI pxor MI, MI schoolbook1_iteration 7 0 .if \reduce vpclmulqdq $0x00, PL, GSTAR, TMP_XMM .endif schoolbook1_iteration 6 0 .if \reduce pshufd $0b01001110, TMP_XMM, TMP_XMM .endif schoolbook1_iteration 5 0 .if \reduce pxor PL, TMP_XMM .endif schoolbook1_iteration 4 0 .if \reduce pxor TMP_XMM, PH .endif schoolbook1_iteration 3 0 .if \reduce pclmulqdq $0x11, GSTAR, TMP_XMM .endif schoolbook1_iteration 2 0 .if \reduce vpxor TMP_XMM, PH, SUM .endif schoolbook1_iteration 1 0 schoolbook1_iteration 0 1 addq $(8*16), MSG schoolbook2 .endm /* * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS */ .macro partial_stride mov BLOCKS_LEFT, TMP shlq $4, TMP addq $(16*STRIDE_BLOCKS), KEY_POWERS subq TMP, KEY_POWERS movups (MSG), %xmm0 pxor SUM, %xmm0 movaps (KEY_POWERS), %xmm1 schoolbook1_noload dec BLOCKS_LEFT addq $16, MSG addq $16, KEY_POWERS test $4, BLOCKS_LEFT jz .Lpartial4BlocksDone schoolbook1 4 addq $(4*16), MSG addq $(4*16), KEY_POWERS .Lpartial4BlocksDone: test $2, BLOCKS_LEFT jz .Lpartial2BlocksDone schoolbook1 2 addq $(2*16), MSG addq $(2*16), KEY_POWERS .Lpartial2BlocksDone: test $1, BLOCKS_LEFT jz .LpartialDone schoolbook1 1 .LpartialDone: schoolbook2 montgomery_reduction SUM .endm /* * Perform montgomery multiplication in GF(2^128) and store result in op1. * * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1 * If op1, op2 are in montgomery form, this computes the montgomery * form of op1*op2. * * void clmul_polyval_mul(u8 *op1, const u8 *op2); */ SYM_FUNC_START(clmul_polyval_mul) FRAME_BEGIN vmovdqa .Lgstar(%rip), GSTAR movups (%rdi), %xmm0 movups (%rsi), %xmm1 schoolbook1_noload schoolbook2 montgomery_reduction SUM movups SUM, (%rdi) FRAME_END RET SYM_FUNC_END(clmul_polyval_mul) /* * Perform polynomial evaluation as specified by POLYVAL. This computes: * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1} * where n=nblocks, h is the hash key, and m_i are the message blocks. * * rdi - pointer to precomputed key powers h^8 ... h^1 * rsi - pointer to message blocks * rdx - number of blocks to hash * rcx - pointer to the accumulator * * void clmul_polyval_update(const struct polyval_tfm_ctx *keys, * const u8 *in, size_t nblocks, u8 *accumulator); */ SYM_FUNC_START(clmul_polyval_update) FRAME_BEGIN vmovdqa .Lgstar(%rip), GSTAR movups (ACCUMULATOR), SUM subq $STRIDE_BLOCKS, BLOCKS_LEFT js .LstrideLoopExit full_stride 0 subq $STRIDE_BLOCKS, BLOCKS_LEFT js .LstrideLoopExitReduce .LstrideLoop: full_stride 1 subq $STRIDE_BLOCKS, BLOCKS_LEFT jns .LstrideLoop .LstrideLoopExitReduce: montgomery_reduction SUM .LstrideLoopExit: add $STRIDE_BLOCKS, BLOCKS_LEFT jz .LskipPartial partial_stride .LskipPartial: movups SUM, (ACCUMULATOR) FRAME_END RET SYM_FUNC_END(clmul_polyval_update) |