Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | // SPDX-License-Identifier: GPL-2.0-only /* * Routines for doing kexec-based kdump. * * Copyright (C) 2005, IBM Corp. * * Created by: Michael Ellerman */ #undef DEBUG #include <linux/crash_dump.h> #include <linux/io.h> #include <linux/memblock.h> #include <linux/of.h> #include <asm/code-patching.h> #include <asm/kdump.h> #include <asm/firmware.h> #include <linux/uio.h> #include <asm/rtas.h> #include <asm/inst.h> #ifdef DEBUG #include <asm/udbg.h> #define DBG(fmt...) udbg_printf(fmt) #else #define DBG(fmt...) #endif #ifndef CONFIG_NONSTATIC_KERNEL void __init reserve_kdump_trampoline(void) { memblock_reserve(0, KDUMP_RESERVE_LIMIT); } static void __init create_trampoline(unsigned long addr) { u32 *p = (u32 *)addr; /* The maximum range of a single instruction branch, is the current * instruction's address + (32 MB - 4) bytes. For the trampoline we * need to branch to current address + 32 MB. So we insert a nop at * the trampoline address, then the next instruction (+ 4 bytes) * does a branch to (32 MB - 4). The net effect is that when we * branch to "addr" we jump to ("addr" + 32 MB). Although it requires * two instructions it doesn't require any registers. */ patch_instruction(p, ppc_inst(PPC_RAW_NOP())); patch_branch(p + 1, addr + PHYSICAL_START, 0); } void __init setup_kdump_trampoline(void) { unsigned long i; DBG(" -> setup_kdump_trampoline()\n"); for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) { create_trampoline(i); } #ifdef CONFIG_PPC_PSERIES create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START); create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START); #endif /* CONFIG_PPC_PSERIES */ DBG(" <- setup_kdump_trampoline()\n"); } #endif /* CONFIG_NONSTATIC_KERNEL */ ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize, unsigned long offset) { void *vaddr; phys_addr_t paddr; if (!csize) return 0; csize = min_t(size_t, csize, PAGE_SIZE); paddr = pfn << PAGE_SHIFT; if (memblock_is_region_memory(paddr, csize)) { vaddr = __va(paddr); csize = copy_to_iter(vaddr + offset, csize, iter); } else { vaddr = ioremap_cache(paddr, PAGE_SIZE); csize = copy_to_iter(vaddr + offset, csize, iter); iounmap(vaddr); } return csize; } #ifdef CONFIG_PPC_RTAS /* * The crashkernel region will almost always overlap the RTAS region, so * we have to be careful when shrinking the crashkernel region. */ void crash_free_reserved_phys_range(unsigned long begin, unsigned long end) { unsigned long addr; const __be32 *basep, *sizep; unsigned int rtas_start = 0, rtas_end = 0; basep = of_get_property(rtas.dev, "linux,rtas-base", NULL); sizep = of_get_property(rtas.dev, "rtas-size", NULL); if (basep && sizep) { rtas_start = be32_to_cpup(basep); rtas_end = rtas_start + be32_to_cpup(sizep); } for (addr = begin; addr < end; addr += PAGE_SIZE) { /* Does this page overlap with the RTAS region? */ if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start)) continue; free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); } } #endif |