Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | // SPDX-License-Identifier: GPL-2.0 /* * Common EFI memory map functions. */ #define pr_fmt(fmt) "efi: " fmt #include <linux/init.h> #include <linux/kernel.h> #include <linux/efi.h> #include <linux/io.h> #include <asm/early_ioremap.h> #include <asm/efi.h> #include <linux/memblock.h> #include <linux/slab.h> static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size) { return memblock_phys_alloc(size, SMP_CACHE_BYTES); } static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size) { unsigned int order = get_order(size); struct page *p = alloc_pages(GFP_KERNEL, order); if (!p) return 0; return PFN_PHYS(page_to_pfn(p)); } void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags) { if (flags & EFI_MEMMAP_MEMBLOCK) { if (slab_is_available()) memblock_free_late(phys, size); else memblock_phys_free(phys, size); } else if (flags & EFI_MEMMAP_SLAB) { struct page *p = pfn_to_page(PHYS_PFN(phys)); unsigned int order = get_order(size); free_pages((unsigned long) page_address(p), order); } } /** * efi_memmap_alloc - Allocate memory for the EFI memory map * @num_entries: Number of entries in the allocated map. * @data: efi memmap installation parameters * * Depending on whether mm_init() has already been invoked or not, * either memblock or "normal" page allocation is used. * * Returns zero on success, a negative error code on failure. */ int __init efi_memmap_alloc(unsigned int num_entries, struct efi_memory_map_data *data) { /* Expect allocation parameters are zero initialized */ WARN_ON(data->phys_map || data->size); data->size = num_entries * efi.memmap.desc_size; data->desc_version = efi.memmap.desc_version; data->desc_size = efi.memmap.desc_size; data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK); data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE; if (slab_is_available()) { data->flags |= EFI_MEMMAP_SLAB; data->phys_map = __efi_memmap_alloc_late(data->size); } else { data->flags |= EFI_MEMMAP_MEMBLOCK; data->phys_map = __efi_memmap_alloc_early(data->size); } if (!data->phys_map) return -ENOMEM; return 0; } /** * efi_memmap_install - Install a new EFI memory map in efi.memmap * @ctx: map allocation parameters (address, size, flags) * * Unlike efi_memmap_init_*(), this function does not allow the caller * to switch from early to late mappings. It simply uses the existing * mapping function and installs the new memmap. * * Returns zero on success, a negative error code on failure. */ int __init efi_memmap_install(struct efi_memory_map_data *data) { efi_memmap_unmap(); if (efi_enabled(EFI_PARAVIRT)) return 0; return __efi_memmap_init(data); } /** * efi_memmap_split_count - Count number of additional EFI memmap entries * @md: EFI memory descriptor to split * @range: Address range (start, end) to split around * * Returns the number of additional EFI memmap entries required to * accommodate @range. */ int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range) { u64 m_start, m_end; u64 start, end; int count = 0; start = md->phys_addr; end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1; /* modifying range */ m_start = range->start; m_end = range->end; if (m_start <= start) { /* split into 2 parts */ if (start < m_end && m_end < end) count++; } if (start < m_start && m_start < end) { /* split into 3 parts */ if (m_end < end) count += 2; /* split into 2 parts */ if (end <= m_end) count++; } return count; } /** * efi_memmap_insert - Insert a memory region in an EFI memmap * @old_memmap: The existing EFI memory map structure * @buf: Address of buffer to store new map * @mem: Memory map entry to insert * * It is suggested that you call efi_memmap_split_count() first * to see how large @buf needs to be. */ void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf, struct efi_mem_range *mem) { u64 m_start, m_end, m_attr; efi_memory_desc_t *md; u64 start, end; void *old, *new; /* modifying range */ m_start = mem->range.start; m_end = mem->range.end; m_attr = mem->attribute; /* * The EFI memory map deals with regions in EFI_PAGE_SIZE * units. Ensure that the region described by 'mem' is aligned * correctly. */ if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) || !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) { WARN_ON(1); return; } for (old = old_memmap->map, new = buf; old < old_memmap->map_end; old += old_memmap->desc_size, new += old_memmap->desc_size) { /* copy original EFI memory descriptor */ memcpy(new, old, old_memmap->desc_size); md = new; start = md->phys_addr; end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; if (m_start <= start && end <= m_end) md->attribute |= m_attr; if (m_start <= start && (start < m_end && m_end < end)) { /* first part */ md->attribute |= m_attr; md->num_pages = (m_end - md->phys_addr + 1) >> EFI_PAGE_SHIFT; /* latter part */ new += old_memmap->desc_size; memcpy(new, old, old_memmap->desc_size); md = new; md->phys_addr = m_end + 1; md->num_pages = (end - md->phys_addr + 1) >> EFI_PAGE_SHIFT; } if ((start < m_start && m_start < end) && m_end < end) { /* first part */ md->num_pages = (m_start - md->phys_addr) >> EFI_PAGE_SHIFT; /* middle part */ new += old_memmap->desc_size; memcpy(new, old, old_memmap->desc_size); md = new; md->attribute |= m_attr; md->phys_addr = m_start; md->num_pages = (m_end - m_start + 1) >> EFI_PAGE_SHIFT; /* last part */ new += old_memmap->desc_size; memcpy(new, old, old_memmap->desc_size); md = new; md->phys_addr = m_end + 1; md->num_pages = (end - m_end) >> EFI_PAGE_SHIFT; } if ((start < m_start && m_start < end) && (end <= m_end)) { /* first part */ md->num_pages = (m_start - md->phys_addr) >> EFI_PAGE_SHIFT; /* latter part */ new += old_memmap->desc_size; memcpy(new, old, old_memmap->desc_size); md = new; md->phys_addr = m_start; md->num_pages = (end - md->phys_addr + 1) >> EFI_PAGE_SHIFT; md->attribute |= m_attr; } } } |