Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 | // SPDX-License-Identifier: GPL-2.0-only /* * tools/testing/selftests/kvm/lib/kvm_util.c * * Copyright (C) 2018, Google LLC. */ #define _GNU_SOURCE /* for program_invocation_name */ #include "test_util.h" #include "kvm_util.h" #include "processor.h" #include <assert.h> #include <sched.h> #include <sys/mman.h> #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include <linux/kernel.h> #define KVM_UTIL_MIN_PFN 2 static int vcpu_mmap_sz(void); int open_path_or_exit(const char *path, int flags) { int fd; fd = open(path, flags); __TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno); return fd; } /* * Open KVM_DEV_PATH if available, otherwise exit the entire program. * * Input Args: * flags - The flags to pass when opening KVM_DEV_PATH. * * Return: * The opened file descriptor of /dev/kvm. */ static int _open_kvm_dev_path_or_exit(int flags) { return open_path_or_exit(KVM_DEV_PATH, flags); } int open_kvm_dev_path_or_exit(void) { return _open_kvm_dev_path_or_exit(O_RDONLY); } static bool get_module_param_bool(const char *module_name, const char *param) { const int path_size = 128; char path[path_size]; char value; ssize_t r; int fd; r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", module_name, param); TEST_ASSERT(r < path_size, "Failed to construct sysfs path in %d bytes.", path_size); fd = open_path_or_exit(path, O_RDONLY); r = read(fd, &value, 1); TEST_ASSERT(r == 1, "read(%s) failed", path); r = close(fd); TEST_ASSERT(!r, "close(%s) failed", path); if (value == 'Y') return true; else if (value == 'N') return false; TEST_FAIL("Unrecognized value '%c' for boolean module param", value); } bool get_kvm_intel_param_bool(const char *param) { return get_module_param_bool("kvm_intel", param); } bool get_kvm_amd_param_bool(const char *param) { return get_module_param_bool("kvm_amd", param); } /* * Capability * * Input Args: * cap - Capability * * Output Args: None * * Return: * On success, the Value corresponding to the capability (KVM_CAP_*) * specified by the value of cap. On failure a TEST_ASSERT failure * is produced. * * Looks up and returns the value corresponding to the capability * (KVM_CAP_*) given by cap. */ unsigned int kvm_check_cap(long cap) { int ret; int kvm_fd; kvm_fd = open_kvm_dev_path_or_exit(); ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); close(kvm_fd); return (unsigned int)ret; } void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) { if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); else vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); vm->dirty_ring_size = ring_size; } static void vm_open(struct kvm_vm *vm) { vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); } const char *vm_guest_mode_string(uint32_t i) { static const char * const strings[] = { [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", }; _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, "Missing new mode strings?"); TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); return strings[i]; } const struct vm_guest_mode_params vm_guest_mode_params[] = { [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, }; _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, "Missing new mode params?"); /* * Initializes vm->vpages_valid to match the canonical VA space of the * architecture. * * The default implementation is valid for architectures which split the * range addressed by a single page table into a low and high region * based on the MSB of the VA. On architectures with this behavior * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. */ __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) { sparsebit_set_num(vm->vpages_valid, 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); sparsebit_set_num(vm->vpages_valid, (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); } struct kvm_vm *____vm_create(enum vm_guest_mode mode) { struct kvm_vm *vm; vm = calloc(1, sizeof(*vm)); TEST_ASSERT(vm != NULL, "Insufficient Memory"); INIT_LIST_HEAD(&vm->vcpus); vm->regions.gpa_tree = RB_ROOT; vm->regions.hva_tree = RB_ROOT; hash_init(vm->regions.slot_hash); vm->mode = mode; vm->type = 0; vm->pa_bits = vm_guest_mode_params[mode].pa_bits; vm->va_bits = vm_guest_mode_params[mode].va_bits; vm->page_size = vm_guest_mode_params[mode].page_size; vm->page_shift = vm_guest_mode_params[mode].page_shift; /* Setup mode specific traits. */ switch (vm->mode) { case VM_MODE_P52V48_4K: vm->pgtable_levels = 4; break; case VM_MODE_P52V48_64K: vm->pgtable_levels = 3; break; case VM_MODE_P48V48_4K: vm->pgtable_levels = 4; break; case VM_MODE_P48V48_64K: vm->pgtable_levels = 3; break; case VM_MODE_P40V48_4K: case VM_MODE_P36V48_4K: vm->pgtable_levels = 4; break; case VM_MODE_P40V48_64K: case VM_MODE_P36V48_64K: vm->pgtable_levels = 3; break; case VM_MODE_P48V48_16K: case VM_MODE_P40V48_16K: case VM_MODE_P36V48_16K: vm->pgtable_levels = 4; break; case VM_MODE_P36V47_16K: vm->pgtable_levels = 3; break; case VM_MODE_PXXV48_4K: #ifdef __x86_64__ kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); /* * Ignore KVM support for 5-level paging (vm->va_bits == 57), * it doesn't take effect unless a CR4.LA57 is set, which it * isn't for this VM_MODE. */ TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, "Linear address width (%d bits) not supported", vm->va_bits); pr_debug("Guest physical address width detected: %d\n", vm->pa_bits); vm->pgtable_levels = 4; vm->va_bits = 48; #else TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); #endif break; case VM_MODE_P47V64_4K: vm->pgtable_levels = 5; break; case VM_MODE_P44V64_4K: vm->pgtable_levels = 5; break; default: TEST_FAIL("Unknown guest mode, mode: 0x%x", mode); } #ifdef __aarch64__ if (vm->pa_bits != 40) vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); #endif vm_open(vm); /* Limit to VA-bit canonical virtual addresses. */ vm->vpages_valid = sparsebit_alloc(); vm_vaddr_populate_bitmap(vm); /* Limit physical addresses to PA-bits. */ vm->max_gfn = vm_compute_max_gfn(vm); /* Allocate and setup memory for guest. */ vm->vpages_mapped = sparsebit_alloc(); return vm; } static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus, uint64_t extra_mem_pages) { uint64_t nr_pages; TEST_ASSERT(nr_runnable_vcpus, "Use vm_create_barebones() for VMs that _never_ have vCPUs\n"); TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), "nr_vcpus = %d too large for host, max-vcpus = %d", nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); /* * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the * test code and other per-VM assets that will be loaded into memslot0. */ nr_pages = 512; /* Account for the per-vCPU stacks on behalf of the test. */ nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; /* * Account for the number of pages needed for the page tables. The * maximum page table size for a memory region will be when the * smallest page size is used. Considering each page contains x page * table descriptors, the total extra size for page tables (for extra * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller * than N/x*2. */ nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; return vm_adjust_num_guest_pages(mode, nr_pages); } struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus, uint64_t nr_extra_pages) { uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus, nr_extra_pages); struct userspace_mem_region *slot0; struct kvm_vm *vm; int i; pr_debug("%s: mode='%s' pages='%ld'\n", __func__, vm_guest_mode_string(mode), nr_pages); vm = ____vm_create(mode); vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0); for (i = 0; i < NR_MEM_REGIONS; i++) vm->memslots[i] = 0; kvm_vm_elf_load(vm, program_invocation_name); /* * TODO: Add proper defines to protect the library's memslots, and then * carve out memslot1 for the ucall MMIO address. KVM treats writes to * read-only memslots as MMIO, and creating a read-only memslot for the * MMIO region would prevent silently clobbering the MMIO region. */ slot0 = memslot2region(vm, 0); ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); kvm_arch_vm_post_create(vm); return vm; } /* * VM Create with customized parameters * * Input Args: * mode - VM Mode (e.g. VM_MODE_P52V48_4K) * nr_vcpus - VCPU count * extra_mem_pages - Non-slot0 physical memory total size * guest_code - Guest entry point * vcpuids - VCPU IDs * * Output Args: None * * Return: * Pointer to opaque structure that describes the created VM. * * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). * extra_mem_pages is only used to calculate the maximum page table size, * no real memory allocation for non-slot0 memory in this function. */ struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus, uint64_t extra_mem_pages, void *guest_code, struct kvm_vcpu *vcpus[]) { struct kvm_vm *vm; int i; TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); vm = __vm_create(mode, nr_vcpus, extra_mem_pages); for (i = 0; i < nr_vcpus; ++i) vcpus[i] = vm_vcpu_add(vm, i, guest_code); return vm; } struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, uint64_t extra_mem_pages, void *guest_code) { struct kvm_vcpu *vcpus[1]; struct kvm_vm *vm; vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages, guest_code, vcpus); *vcpu = vcpus[0]; return vm; } /* * VM Restart * * Input Args: * vm - VM that has been released before * * Output Args: None * * Reopens the file descriptors associated to the VM and reinstates the * global state, such as the irqchip and the memory regions that are mapped * into the guest. */ void kvm_vm_restart(struct kvm_vm *vmp) { int ctr; struct userspace_mem_region *region; vm_open(vmp); if (vmp->has_irqchip) vm_create_irqchip(vmp); hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" " rc: %i errno: %i\n" " slot: %u flags: 0x%x\n" " guest_phys_addr: 0x%llx size: 0x%llx", ret, errno, region->region.slot, region->region.flags, region->region.guest_phys_addr, region->region.memory_size); } } __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id) { return __vm_vcpu_add(vm, vcpu_id); } struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) { kvm_vm_restart(vm); return vm_vcpu_recreate(vm, 0); } void kvm_pin_this_task_to_pcpu(uint32_t pcpu) { cpu_set_t mask; int r; CPU_ZERO(&mask); CPU_SET(pcpu, &mask); r = sched_setaffinity(0, sizeof(mask), &mask); TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.\n", pcpu); } static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) { uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), "Not allowed to run on pCPU '%d', check cgroups?\n", pcpu); return pcpu; } void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], int nr_vcpus) { cpu_set_t allowed_mask; char *cpu, *cpu_list; char delim[2] = ","; int i, r; cpu_list = strdup(pcpus_string); TEST_ASSERT(cpu_list, "strdup() allocation failed.\n"); r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); TEST_ASSERT(!r, "sched_getaffinity() failed"); cpu = strtok(cpu_list, delim); /* 1. Get all pcpus for vcpus. */ for (i = 0; i < nr_vcpus; i++) { TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'\n", i); vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); cpu = strtok(NULL, delim); } /* 2. Check if the main worker needs to be pinned. */ if (cpu) { kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask)); cpu = strtok(NULL, delim); } TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); free(cpu_list); } /* * Userspace Memory Region Find * * Input Args: * vm - Virtual Machine * start - Starting VM physical address * end - Ending VM physical address, inclusive. * * Output Args: None * * Return: * Pointer to overlapping region, NULL if no such region. * * Searches for a region with any physical memory that overlaps with * any portion of the guest physical addresses from start to end * inclusive. If multiple overlapping regions exist, a pointer to any * of the regions is returned. Null is returned only when no overlapping * region exists. */ static struct userspace_mem_region * userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) { struct rb_node *node; for (node = vm->regions.gpa_tree.rb_node; node; ) { struct userspace_mem_region *region = container_of(node, struct userspace_mem_region, gpa_node); uint64_t existing_start = region->region.guest_phys_addr; uint64_t existing_end = region->region.guest_phys_addr + region->region.memory_size - 1; if (start <= existing_end && end >= existing_start) return region; if (start < existing_start) node = node->rb_left; else node = node->rb_right; } return NULL; } /* * KVM Userspace Memory Region Find * * Input Args: * vm - Virtual Machine * start - Starting VM physical address * end - Ending VM physical address, inclusive. * * Output Args: None * * Return: * Pointer to overlapping region, NULL if no such region. * * Public interface to userspace_mem_region_find. Allows tests to look up * the memslot datastructure for a given range of guest physical memory. */ struct kvm_userspace_memory_region * kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) { struct userspace_mem_region *region; region = userspace_mem_region_find(vm, start, end); if (!region) return NULL; return ®ion->region; } __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) { } /* * VM VCPU Remove * * Input Args: * vcpu - VCPU to remove * * Output Args: None * * Return: None, TEST_ASSERT failures for all error conditions * * Removes a vCPU from a VM and frees its resources. */ static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) { int ret; if (vcpu->dirty_gfns) { ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); vcpu->dirty_gfns = NULL; } ret = munmap(vcpu->run, vcpu_mmap_sz()); TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); ret = close(vcpu->fd); TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); list_del(&vcpu->list); vcpu_arch_free(vcpu); free(vcpu); } void kvm_vm_release(struct kvm_vm *vmp) { struct kvm_vcpu *vcpu, *tmp; int ret; list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) vm_vcpu_rm(vmp, vcpu); ret = close(vmp->fd); TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); ret = close(vmp->kvm_fd); TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); } static void __vm_mem_region_delete(struct kvm_vm *vm, struct userspace_mem_region *region, bool unlink) { int ret; if (unlink) { rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); rb_erase(®ion->hva_node, &vm->regions.hva_tree); hash_del(®ion->slot_node); } region->region.memory_size = 0; vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region); sparsebit_free(®ion->unused_phy_pages); ret = munmap(region->mmap_start, region->mmap_size); TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); if (region->fd >= 0) { /* There's an extra map when using shared memory. */ ret = munmap(region->mmap_alias, region->mmap_size); TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); close(region->fd); } free(region); } /* * Destroys and frees the VM pointed to by vmp. */ void kvm_vm_free(struct kvm_vm *vmp) { int ctr; struct hlist_node *node; struct userspace_mem_region *region; if (vmp == NULL) return; /* Free cached stats metadata and close FD */ if (vmp->stats_fd) { free(vmp->stats_desc); close(vmp->stats_fd); } /* Free userspace_mem_regions. */ hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) __vm_mem_region_delete(vmp, region, false); /* Free sparsebit arrays. */ sparsebit_free(&vmp->vpages_valid); sparsebit_free(&vmp->vpages_mapped); kvm_vm_release(vmp); /* Free the structure describing the VM. */ free(vmp); } int kvm_memfd_alloc(size_t size, bool hugepages) { int memfd_flags = MFD_CLOEXEC; int fd, r; if (hugepages) memfd_flags |= MFD_HUGETLB; fd = memfd_create("kvm_selftest", memfd_flags); TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); r = ftruncate(fd, size); TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r)); r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); return fd; } /* * Memory Compare, host virtual to guest virtual * * Input Args: * hva - Starting host virtual address * vm - Virtual Machine * gva - Starting guest virtual address * len - number of bytes to compare * * Output Args: None * * Input/Output Args: None * * Return: * Returns 0 if the bytes starting at hva for a length of len * are equal the guest virtual bytes starting at gva. Returns * a value < 0, if bytes at hva are less than those at gva. * Otherwise a value > 0 is returned. * * Compares the bytes starting at the host virtual address hva, for * a length of len, to the guest bytes starting at the guest virtual * address given by gva. */ int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) { size_t amt; /* * Compare a batch of bytes until either a match is found * or all the bytes have been compared. */ for (uintptr_t offset = 0; offset < len; offset += amt) { uintptr_t ptr1 = (uintptr_t)hva + offset; /* * Determine host address for guest virtual address * at offset. */ uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); /* * Determine amount to compare on this pass. * Don't allow the comparsion to cross a page boundary. */ amt = len - offset; if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) amt = vm->page_size - (ptr1 % vm->page_size); if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) amt = vm->page_size - (ptr2 % vm->page_size); assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); /* * Perform the comparison. If there is a difference * return that result to the caller, otherwise need * to continue on looking for a mismatch. */ int ret = memcmp((void *)ptr1, (void *)ptr2, amt); if (ret != 0) return ret; } /* * No mismatch found. Let the caller know the two memory * areas are equal. */ return 0; } static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, struct userspace_mem_region *region) { struct rb_node **cur, *parent; for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { struct userspace_mem_region *cregion; cregion = container_of(*cur, typeof(*cregion), gpa_node); parent = *cur; if (region->region.guest_phys_addr < cregion->region.guest_phys_addr) cur = &(*cur)->rb_left; else { TEST_ASSERT(region->region.guest_phys_addr != cregion->region.guest_phys_addr, "Duplicate GPA in region tree"); cur = &(*cur)->rb_right; } } rb_link_node(®ion->gpa_node, parent, cur); rb_insert_color(®ion->gpa_node, gpa_tree); } static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, struct userspace_mem_region *region) { struct rb_node **cur, *parent; for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { struct userspace_mem_region *cregion; cregion = container_of(*cur, typeof(*cregion), hva_node); parent = *cur; if (region->host_mem < cregion->host_mem) cur = &(*cur)->rb_left; else { TEST_ASSERT(region->host_mem != cregion->host_mem, "Duplicate HVA in region tree"); cur = &(*cur)->rb_right; } } rb_link_node(®ion->hva_node, parent, cur); rb_insert_color(®ion->hva_node, hva_tree); } int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, uint64_t gpa, uint64_t size, void *hva) { struct kvm_userspace_memory_region region = { .slot = slot, .flags = flags, .guest_phys_addr = gpa, .memory_size = size, .userspace_addr = (uintptr_t)hva, }; return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); } void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, uint64_t gpa, uint64_t size, void *hva) { int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", errno, strerror(errno)); } /* * VM Userspace Memory Region Add * * Input Args: * vm - Virtual Machine * src_type - Storage source for this region. * NULL to use anonymous memory. * guest_paddr - Starting guest physical address * slot - KVM region slot * npages - Number of physical pages * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) * * Output Args: None * * Return: None * * Allocates a memory area of the number of pages specified by npages * and maps it to the VM specified by vm, at a starting physical address * given by guest_paddr. The region is created with a KVM region slot * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The * region is created with the flags given by flags. */ void vm_userspace_mem_region_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, uint64_t guest_paddr, uint32_t slot, uint64_t npages, uint32_t flags) { int ret; struct userspace_mem_region *region; size_t backing_src_pagesz = get_backing_src_pagesz(src_type); size_t alignment; TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, "Number of guest pages is not compatible with the host. " "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " "address not on a page boundary.\n" " guest_paddr: 0x%lx vm->page_size: 0x%x", guest_paddr, vm->page_size); TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) <= vm->max_gfn, "Physical range beyond maximum " "supported physical address,\n" " guest_paddr: 0x%lx npages: 0x%lx\n" " vm->max_gfn: 0x%lx vm->page_size: 0x%x", guest_paddr, npages, vm->max_gfn, vm->page_size); /* * Confirm a mem region with an overlapping address doesn't * already exist. */ region = (struct userspace_mem_region *) userspace_mem_region_find( vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); if (region != NULL) TEST_FAIL("overlapping userspace_mem_region already " "exists\n" " requested guest_paddr: 0x%lx npages: 0x%lx " "page_size: 0x%x\n" " existing guest_paddr: 0x%lx size: 0x%lx", guest_paddr, npages, vm->page_size, (uint64_t) region->region.guest_phys_addr, (uint64_t) region->region.memory_size); /* Confirm no region with the requested slot already exists. */ hash_for_each_possible(vm->regions.slot_hash, region, slot_node, slot) { if (region->region.slot != slot) continue; TEST_FAIL("A mem region with the requested slot " "already exists.\n" " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" " existing slot: %u paddr: 0x%lx size: 0x%lx", slot, guest_paddr, npages, region->region.slot, (uint64_t) region->region.guest_phys_addr, (uint64_t) region->region.memory_size); } /* Allocate and initialize new mem region structure. */ region = calloc(1, sizeof(*region)); TEST_ASSERT(region != NULL, "Insufficient Memory"); region->mmap_size = npages * vm->page_size; #ifdef __s390x__ /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ alignment = 0x100000; #else alignment = 1; #endif /* * When using THP mmap is not guaranteed to returned a hugepage aligned * address so we have to pad the mmap. Padding is not needed for HugeTLB * because mmap will always return an address aligned to the HugeTLB * page size. */ if (src_type == VM_MEM_SRC_ANONYMOUS_THP) alignment = max(backing_src_pagesz, alignment); ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); /* Add enough memory to align up if necessary */ if (alignment > 1) region->mmap_size += alignment; region->fd = -1; if (backing_src_is_shared(src_type)) region->fd = kvm_memfd_alloc(region->mmap_size, src_type == VM_MEM_SRC_SHARED_HUGETLB); region->mmap_start = mmap(NULL, region->mmap_size, PROT_READ | PROT_WRITE, vm_mem_backing_src_alias(src_type)->flag, region->fd, 0); TEST_ASSERT(region->mmap_start != MAP_FAILED, __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); TEST_ASSERT(!is_backing_src_hugetlb(src_type) || region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), "mmap_start %p is not aligned to HugeTLB page size 0x%lx", region->mmap_start, backing_src_pagesz); /* Align host address */ region->host_mem = align_ptr_up(region->mmap_start, alignment); /* As needed perform madvise */ if ((src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { ret = madvise(region->host_mem, npages * vm->page_size, src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", region->host_mem, npages * vm->page_size, vm_mem_backing_src_alias(src_type)->name); } region->backing_src_type = src_type; region->unused_phy_pages = sparsebit_alloc(); sparsebit_set_num(region->unused_phy_pages, guest_paddr >> vm->page_shift, npages); region->region.slot = slot; region->region.flags = flags; region->region.guest_phys_addr = guest_paddr; region->region.memory_size = npages * vm->page_size; region->region.userspace_addr = (uintptr_t) region->host_mem; ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region); TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" " rc: %i errno: %i\n" " slot: %u flags: 0x%x\n" " guest_phys_addr: 0x%lx size: 0x%lx", ret, errno, slot, flags, guest_paddr, (uint64_t) region->region.memory_size); /* Add to quick lookup data structures */ vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); /* If shared memory, create an alias. */ if (region->fd >= 0) { region->mmap_alias = mmap(NULL, region->mmap_size, PROT_READ | PROT_WRITE, vm_mem_backing_src_alias(src_type)->flag, region->fd, 0); TEST_ASSERT(region->mmap_alias != MAP_FAILED, __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); /* Align host alias address */ region->host_alias = align_ptr_up(region->mmap_alias, alignment); } } /* * Memslot to region * * Input Args: * vm - Virtual Machine * memslot - KVM memory slot ID * * Output Args: None * * Return: * Pointer to memory region structure that describe memory region * using kvm memory slot ID given by memslot. TEST_ASSERT failure * on error (e.g. currently no memory region using memslot as a KVM * memory slot ID). */ struct userspace_mem_region * memslot2region(struct kvm_vm *vm, uint32_t memslot) { struct userspace_mem_region *region; hash_for_each_possible(vm->regions.slot_hash, region, slot_node, memslot) if (region->region.slot == memslot) return region; fprintf(stderr, "No mem region with the requested slot found,\n" " requested slot: %u\n", memslot); fputs("---- vm dump ----\n", stderr); vm_dump(stderr, vm, 2); TEST_FAIL("Mem region not found"); return NULL; } /* * VM Memory Region Flags Set * * Input Args: * vm - Virtual Machine * flags - Starting guest physical address * * Output Args: None * * Return: None * * Sets the flags of the memory region specified by the value of slot, * to the values given by flags. */ void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) { int ret; struct userspace_mem_region *region; region = memslot2region(vm, slot); region->region.flags = flags; ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region); TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" " rc: %i errno: %i slot: %u flags: 0x%x", ret, errno, slot, flags); } /* * VM Memory Region Move * * Input Args: * vm - Virtual Machine * slot - Slot of the memory region to move * new_gpa - Starting guest physical address * * Output Args: None * * Return: None * * Change the gpa of a memory region. */ void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) { struct userspace_mem_region *region; int ret; region = memslot2region(vm, slot); region->region.guest_phys_addr = new_gpa; ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region); TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n" "ret: %i errno: %i slot: %u new_gpa: 0x%lx", ret, errno, slot, new_gpa); } /* * VM Memory Region Delete * * Input Args: * vm - Virtual Machine * slot - Slot of the memory region to delete * * Output Args: None * * Return: None * * Delete a memory region. */ void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) { __vm_mem_region_delete(vm, memslot2region(vm, slot), true); } /* Returns the size of a vCPU's kvm_run structure. */ static int vcpu_mmap_sz(void) { int dev_fd, ret; dev_fd = open_kvm_dev_path_or_exit(); ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); TEST_ASSERT(ret >= sizeof(struct kvm_run), KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); close(dev_fd); return ret; } static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) { struct kvm_vcpu *vcpu; list_for_each_entry(vcpu, &vm->vcpus, list) { if (vcpu->id == vcpu_id) return true; } return false; } /* * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. * No additional vCPU setup is done. Returns the vCPU. */ struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) { struct kvm_vcpu *vcpu; /* Confirm a vcpu with the specified id doesn't already exist. */ TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id); /* Allocate and initialize new vcpu structure. */ vcpu = calloc(1, sizeof(*vcpu)); TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); vcpu->vm = vm; vcpu->id = vcpu_id; vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd)); TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", vcpu_mmap_sz(), sizeof(*vcpu->run)); vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); TEST_ASSERT(vcpu->run != MAP_FAILED, __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); /* Add to linked-list of VCPUs. */ list_add(&vcpu->list, &vm->vcpus); return vcpu; } /* * VM Virtual Address Unused Gap * * Input Args: * vm - Virtual Machine * sz - Size (bytes) * vaddr_min - Minimum Virtual Address * * Output Args: None * * Return: * Lowest virtual address at or below vaddr_min, with at least * sz unused bytes. TEST_ASSERT failure if no area of at least * size sz is available. * * Within the VM specified by vm, locates the lowest starting virtual * address >= vaddr_min, that has at least sz unallocated bytes. A * TEST_ASSERT failure occurs for invalid input or no area of at least * sz unallocated bytes >= vaddr_min is available. */ vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) { uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; /* Determine lowest permitted virtual page index. */ uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; if ((pgidx_start * vm->page_size) < vaddr_min) goto no_va_found; /* Loop over section with enough valid virtual page indexes. */ if (!sparsebit_is_set_num(vm->vpages_valid, pgidx_start, pages)) pgidx_start = sparsebit_next_set_num(vm->vpages_valid, pgidx_start, pages); do { /* * Are there enough unused virtual pages available at * the currently proposed starting virtual page index. * If not, adjust proposed starting index to next * possible. */ if (sparsebit_is_clear_num(vm->vpages_mapped, pgidx_start, pages)) goto va_found; pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, pgidx_start, pages); if (pgidx_start == 0) goto no_va_found; /* * If needed, adjust proposed starting virtual address, * to next range of valid virtual addresses. */ if (!sparsebit_is_set_num(vm->vpages_valid, pgidx_start, pages)) { pgidx_start = sparsebit_next_set_num( vm->vpages_valid, pgidx_start, pages); if (pgidx_start == 0) goto no_va_found; } } while (pgidx_start != 0); no_va_found: TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); /* NOT REACHED */ return -1; va_found: TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, pgidx_start, pages), "Unexpected, invalid virtual page index range,\n" " pgidx_start: 0x%lx\n" " pages: 0x%lx", pgidx_start, pages); TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, pgidx_start, pages), "Unexpected, pages already mapped,\n" " pgidx_start: 0x%lx\n" " pages: 0x%lx", pgidx_start, pages); return pgidx_start * vm->page_size; } vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, enum kvm_mem_region_type type) { uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); virt_pgd_alloc(vm); vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages, KVM_UTIL_MIN_PFN * vm->page_size, vm->memslots[type]); /* * Find an unused range of virtual page addresses of at least * pages in length. */ vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); /* Map the virtual pages. */ for (vm_vaddr_t vaddr = vaddr_start; pages > 0; pages--, vaddr += vm->page_size, paddr += vm->page_size) { virt_pg_map(vm, vaddr, paddr); sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); } return vaddr_start; } /* * VM Virtual Address Allocate * * Input Args: * vm - Virtual Machine * sz - Size in bytes * vaddr_min - Minimum starting virtual address * * Output Args: None * * Return: * Starting guest virtual address * * Allocates at least sz bytes within the virtual address space of the vm * given by vm. The allocated bytes are mapped to a virtual address >= * the address given by vaddr_min. Note that each allocation uses a * a unique set of pages, with the minimum real allocation being at least * a page. The allocated physical space comes from the TEST_DATA memory region. */ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) { return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); } /* * VM Virtual Address Allocate Pages * * Input Args: * vm - Virtual Machine * * Output Args: None * * Return: * Starting guest virtual address * * Allocates at least N system pages worth of bytes within the virtual address * space of the vm. */ vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) { return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); } vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) { return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); } /* * VM Virtual Address Allocate Page * * Input Args: * vm - Virtual Machine * * Output Args: None * * Return: * Starting guest virtual address * * Allocates at least one system page worth of bytes within the virtual address * space of the vm. */ vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) { return vm_vaddr_alloc_pages(vm, 1); } /* * Map a range of VM virtual address to the VM's physical address * * Input Args: * vm - Virtual Machine * vaddr - Virtuall address to map * paddr - VM Physical Address * npages - The number of pages to map * * Output Args: None * * Return: None * * Within the VM given by @vm, creates a virtual translation for * @npages starting at @vaddr to the page range starting at @paddr. */ void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, unsigned int npages) { size_t page_size = vm->page_size; size_t size = npages * page_size; TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); while (npages--) { virt_pg_map(vm, vaddr, paddr); sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); vaddr += page_size; paddr += page_size; } } /* * Address VM Physical to Host Virtual * * Input Args: * vm - Virtual Machine * gpa - VM physical address * * Output Args: None * * Return: * Equivalent host virtual address * * Locates the memory region containing the VM physical address given * by gpa, within the VM given by vm. When found, the host virtual * address providing the memory to the vm physical address is returned. * A TEST_ASSERT failure occurs if no region containing gpa exists. */ void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) { struct userspace_mem_region *region; region = userspace_mem_region_find(vm, gpa, gpa); if (!region) { TEST_FAIL("No vm physical memory at 0x%lx", gpa); return NULL; } return (void *)((uintptr_t)region->host_mem + (gpa - region->region.guest_phys_addr)); } /* * Address Host Virtual to VM Physical * * Input Args: * vm - Virtual Machine * hva - Host virtual address * * Output Args: None * * Return: * Equivalent VM physical address * * Locates the memory region containing the host virtual address given * by hva, within the VM given by vm. When found, the equivalent * VM physical address is returned. A TEST_ASSERT failure occurs if no * region containing hva exists. */ vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) { struct rb_node *node; for (node = vm->regions.hva_tree.rb_node; node; ) { struct userspace_mem_region *region = container_of(node, struct userspace_mem_region, hva_node); if (hva >= region->host_mem) { if (hva <= (region->host_mem + region->region.memory_size - 1)) return (vm_paddr_t)((uintptr_t) region->region.guest_phys_addr + (hva - (uintptr_t)region->host_mem)); node = node->rb_right; } else node = node->rb_left; } TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); return -1; } /* * Address VM physical to Host Virtual *alias*. * * Input Args: * vm - Virtual Machine * gpa - VM physical address * * Output Args: None * * Return: * Equivalent address within the host virtual *alias* area, or NULL * (without failing the test) if the guest memory is not shared (so * no alias exists). * * Create a writable, shared virtual=>physical alias for the specific GPA. * The primary use case is to allow the host selftest to manipulate guest * memory without mapping said memory in the guest's address space. And, for * userfaultfd-based demand paging, to do so without triggering userfaults. */ void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) { struct userspace_mem_region *region; uintptr_t offset; region = userspace_mem_region_find(vm, gpa, gpa); if (!region) return NULL; if (!region->host_alias) return NULL; offset = gpa - region->region.guest_phys_addr; return (void *) ((uintptr_t) region->host_alias + offset); } /* Create an interrupt controller chip for the specified VM. */ void vm_create_irqchip(struct kvm_vm *vm) { vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); vm->has_irqchip = true; } int _vcpu_run(struct kvm_vcpu *vcpu) { int rc; do { rc = __vcpu_run(vcpu); } while (rc == -1 && errno == EINTR); assert_on_unhandled_exception(vcpu); return rc; } /* * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. * Assert if the KVM returns an error (other than -EINTR). */ void vcpu_run(struct kvm_vcpu *vcpu) { int ret = _vcpu_run(vcpu); TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); } void vcpu_run_complete_io(struct kvm_vcpu *vcpu) { int ret; vcpu->run->immediate_exit = 1; ret = __vcpu_run(vcpu); vcpu->run->immediate_exit = 0; TEST_ASSERT(ret == -1 && errno == EINTR, "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", ret, errno); } /* * Get the list of guest registers which are supported for * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, * it is the caller's responsibility to free the list. */ struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) { struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; int ret; ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); reg_list->n = reg_list_n.n; vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); return reg_list; } void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) { uint32_t page_size = getpagesize(); uint32_t size = vcpu->vm->dirty_ring_size; TEST_ASSERT(size > 0, "Should enable dirty ring first"); if (!vcpu->dirty_gfns) { void *addr; addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, page_size * KVM_DIRTY_LOG_PAGE_OFFSET); TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, page_size * KVM_DIRTY_LOG_PAGE_OFFSET); TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, page_size * KVM_DIRTY_LOG_PAGE_OFFSET); TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); vcpu->dirty_gfns = addr; vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); } return vcpu->dirty_gfns; } /* * Device Ioctl */ int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) { struct kvm_device_attr attribute = { .group = group, .attr = attr, .flags = 0, }; return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); } int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) { struct kvm_create_device create_dev = { .type = type, .flags = KVM_CREATE_DEVICE_TEST, }; return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); } int __kvm_create_device(struct kvm_vm *vm, uint64_t type) { struct kvm_create_device create_dev = { .type = type, .fd = -1, .flags = 0, }; int err; err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); return err ? : create_dev.fd; } int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) { struct kvm_device_attr kvmattr = { .group = group, .attr = attr, .flags = 0, .addr = (uintptr_t)val, }; return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); } int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) { struct kvm_device_attr kvmattr = { .group = group, .attr = attr, .flags = 0, .addr = (uintptr_t)val, }; return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); } /* * IRQ related functions. */ int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) { struct kvm_irq_level irq_level = { .irq = irq, .level = level, }; return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); } void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) { int ret = _kvm_irq_line(vm, irq, level); TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); } struct kvm_irq_routing *kvm_gsi_routing_create(void) { struct kvm_irq_routing *routing; size_t size; size = sizeof(struct kvm_irq_routing); /* Allocate space for the max number of entries: this wastes 196 KBs. */ size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); routing = calloc(1, size); assert(routing); return routing; } void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, uint32_t gsi, uint32_t pin) { int i; assert(routing); assert(routing->nr < KVM_MAX_IRQ_ROUTES); i = routing->nr; routing->entries[i].gsi = gsi; routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; routing->entries[i].flags = 0; routing->entries[i].u.irqchip.irqchip = 0; routing->entries[i].u.irqchip.pin = pin; routing->nr++; } int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) { int ret; assert(routing); ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); free(routing); return ret; } void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) { int ret; ret = _kvm_gsi_routing_write(vm, routing); TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); } /* * VM Dump * * Input Args: * vm - Virtual Machine * indent - Left margin indent amount * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the current state of the VM given by vm, to the FILE stream * given by stream. */ void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) { int ctr; struct userspace_mem_region *region; struct kvm_vcpu *vcpu; fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); fprintf(stream, "%*sMem Regions:\n", indent, ""); hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " "host_virt: %p\n", indent + 2, "", (uint64_t) region->region.guest_phys_addr, (uint64_t) region->region.memory_size, region->host_mem); fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); sparsebit_dump(stream, region->unused_phy_pages, 0); } fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); sparsebit_dump(stream, vm->vpages_mapped, indent + 2); fprintf(stream, "%*spgd_created: %u\n", indent, "", vm->pgd_created); if (vm->pgd_created) { fprintf(stream, "%*sVirtual Translation Tables:\n", indent + 2, ""); virt_dump(stream, vm, indent + 4); } fprintf(stream, "%*sVCPUs:\n", indent, ""); list_for_each_entry(vcpu, &vm->vcpus, list) vcpu_dump(stream, vcpu, indent + 2); } /* Known KVM exit reasons */ static struct exit_reason { unsigned int reason; const char *name; } exit_reasons_known[] = { {KVM_EXIT_UNKNOWN, "UNKNOWN"}, {KVM_EXIT_EXCEPTION, "EXCEPTION"}, {KVM_EXIT_IO, "IO"}, {KVM_EXIT_HYPERCALL, "HYPERCALL"}, {KVM_EXIT_DEBUG, "DEBUG"}, {KVM_EXIT_HLT, "HLT"}, {KVM_EXIT_MMIO, "MMIO"}, {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, {KVM_EXIT_INTR, "INTR"}, {KVM_EXIT_SET_TPR, "SET_TPR"}, {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, {KVM_EXIT_S390_RESET, "S390_RESET"}, {KVM_EXIT_DCR, "DCR"}, {KVM_EXIT_NMI, "NMI"}, {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, {KVM_EXIT_OSI, "OSI"}, {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"}, {KVM_EXIT_X86_RDMSR, "RDMSR"}, {KVM_EXIT_X86_WRMSR, "WRMSR"}, {KVM_EXIT_XEN, "XEN"}, #ifdef KVM_EXIT_MEMORY_NOT_PRESENT {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, #endif }; /* * Exit Reason String * * Input Args: * exit_reason - Exit reason * * Output Args: None * * Return: * Constant string pointer describing the exit reason. * * Locates and returns a constant string that describes the KVM exit * reason given by exit_reason. If no such string is found, a constant * string of "Unknown" is returned. */ const char *exit_reason_str(unsigned int exit_reason) { unsigned int n1; for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { if (exit_reason == exit_reasons_known[n1].reason) return exit_reasons_known[n1].name; } return "Unknown"; } /* * Physical Contiguous Page Allocator * * Input Args: * vm - Virtual Machine * num - number of pages * paddr_min - Physical address minimum * memslot - Memory region to allocate page from * * Output Args: None * * Return: * Starting physical address * * Within the VM specified by vm, locates a range of available physical * pages at or above paddr_min. If found, the pages are marked as in use * and their base address is returned. A TEST_ASSERT failure occurs if * not enough pages are available at or above paddr_min. */ vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, vm_paddr_t paddr_min, uint32_t memslot) { struct userspace_mem_region *region; sparsebit_idx_t pg, base; TEST_ASSERT(num > 0, "Must allocate at least one page"); TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " "not divisible by page size.\n" " paddr_min: 0x%lx page_size: 0x%x", paddr_min, vm->page_size); region = memslot2region(vm, memslot); base = pg = paddr_min >> vm->page_shift; do { for (; pg < base + num; ++pg) { if (!sparsebit_is_set(region->unused_phy_pages, pg)) { base = pg = sparsebit_next_set(region->unused_phy_pages, pg); break; } } } while (pg && pg != base + num); if (pg == 0) { fprintf(stderr, "No guest physical page available, " "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", paddr_min, vm->page_size, memslot); fputs("---- vm dump ----\n", stderr); vm_dump(stderr, vm, 2); abort(); } for (pg = base; pg < base + num; ++pg) sparsebit_clear(region->unused_phy_pages, pg); return base * vm->page_size; } vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, uint32_t memslot) { return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); } /* Arbitrary minimum physical address used for virtual translation tables. */ #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) { return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, vm->memslots[MEM_REGION_PT]); } /* * Address Guest Virtual to Host Virtual * * Input Args: * vm - Virtual Machine * gva - VM virtual address * * Output Args: None * * Return: * Equivalent host virtual address */ void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) { return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); } unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) { return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; } static unsigned int vm_calc_num_pages(unsigned int num_pages, unsigned int page_shift, unsigned int new_page_shift, bool ceil) { unsigned int n = 1 << (new_page_shift - page_shift); if (page_shift >= new_page_shift) return num_pages * (1 << (page_shift - new_page_shift)); return num_pages / n + !!(ceil && num_pages % n); } static inline int getpageshift(void) { return __builtin_ffs(getpagesize()) - 1; } unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) { return vm_calc_num_pages(num_guest_pages, vm_guest_mode_params[mode].page_shift, getpageshift(), true); } unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) { return vm_calc_num_pages(num_host_pages, getpageshift(), vm_guest_mode_params[mode].page_shift, false); } unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) { unsigned int n; n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); return vm_adjust_num_guest_pages(mode, n); } /* * Read binary stats descriptors * * Input Args: * stats_fd - the file descriptor for the binary stats file from which to read * header - the binary stats metadata header corresponding to the given FD * * Output Args: None * * Return: * A pointer to a newly allocated series of stat descriptors. * Caller is responsible for freeing the returned kvm_stats_desc. * * Read the stats descriptors from the binary stats interface. */ struct kvm_stats_desc *read_stats_descriptors(int stats_fd, struct kvm_stats_header *header) { struct kvm_stats_desc *stats_desc; ssize_t desc_size, total_size, ret; desc_size = get_stats_descriptor_size(header); total_size = header->num_desc * desc_size; stats_desc = calloc(header->num_desc, desc_size); TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); return stats_desc; } /* * Read stat data for a particular stat * * Input Args: * stats_fd - the file descriptor for the binary stats file from which to read * header - the binary stats metadata header corresponding to the given FD * desc - the binary stat metadata for the particular stat to be read * max_elements - the maximum number of 8-byte values to read into data * * Output Args: * data - the buffer into which stat data should be read * * Read the data values of a specified stat from the binary stats interface. */ void read_stat_data(int stats_fd, struct kvm_stats_header *header, struct kvm_stats_desc *desc, uint64_t *data, size_t max_elements) { size_t nr_elements = min_t(ssize_t, desc->size, max_elements); size_t size = nr_elements * sizeof(*data); ssize_t ret; TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); ret = pread(stats_fd, data, size, header->data_offset + desc->offset); TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", desc->name, errno, strerror(errno)); TEST_ASSERT(ret == size, "pread() on stat '%s' read %ld bytes, wanted %lu bytes", desc->name, size, ret); } /* * Read the data of the named stat * * Input Args: * vm - the VM for which the stat should be read * stat_name - the name of the stat to read * max_elements - the maximum number of 8-byte values to read into data * * Output Args: * data - the buffer into which stat data should be read * * Read the data values of a specified stat from the binary stats interface. */ void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data, size_t max_elements) { struct kvm_stats_desc *desc; size_t size_desc; int i; if (!vm->stats_fd) { vm->stats_fd = vm_get_stats_fd(vm); read_stats_header(vm->stats_fd, &vm->stats_header); vm->stats_desc = read_stats_descriptors(vm->stats_fd, &vm->stats_header); } size_desc = get_stats_descriptor_size(&vm->stats_header); for (i = 0; i < vm->stats_header.num_desc; ++i) { desc = (void *)vm->stats_desc + (i * size_desc); if (strcmp(desc->name, stat_name)) continue; read_stat_data(vm->stats_fd, &vm->stats_header, desc, data, max_elements); break; } } __weak void kvm_arch_vm_post_create(struct kvm_vm *vm) { } __weak void kvm_selftest_arch_init(void) { } void __attribute((constructor)) kvm_selftest_init(void) { /* Tell stdout not to buffer its content. */ setbuf(stdout, NULL); kvm_selftest_arch_init(); } |