Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | /* * linux/drivers/video/kyro/STG4000InitDevice.c * * Copyright (C) 2000 Imagination Technologies Ltd * Copyright (C) 2002 STMicroelectronics * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/pci.h> #include "STG4000Reg.h" #include "STG4000Interface.h" /* SDRAM fixed settings */ #define SDRAM_CFG_0 0x49A1 #define SDRAM_CFG_1 0xA732 #define SDRAM_CFG_2 0x31 #define SDRAM_ARB_CFG 0xA0 #define SDRAM_REFRESH 0x20 /* Reset values */ #define PMX2_SOFTRESET_DAC_RST 0x0001 #define PMX2_SOFTRESET_C1_RST 0x0004 #define PMX2_SOFTRESET_C2_RST 0x0008 #define PMX2_SOFTRESET_3D_RST 0x0010 #define PMX2_SOFTRESET_VIDIN_RST 0x0020 #define PMX2_SOFTRESET_TLB_RST 0x0040 #define PMX2_SOFTRESET_SD_RST 0x0080 #define PMX2_SOFTRESET_VGA_RST 0x0100 #define PMX2_SOFTRESET_ROM_RST 0x0200 /* reserved bit, do not reset */ #define PMX2_SOFTRESET_TA_RST 0x0400 #define PMX2_SOFTRESET_REG_RST 0x4000 #define PMX2_SOFTRESET_ALL 0x7fff /* Core clock freq */ #define CORE_PLL_FREQ 1000000 /* Reference Clock freq */ #define REF_FREQ 14318 /* PCI Registers */ static u16 CorePllControl = 0x70; #define PCI_CONFIG_SUBSYS_ID 0x2e /* Misc */ #define CORE_PLL_MODE_REG_0_7 3 #define CORE_PLL_MODE_REG_8_15 2 #define CORE_PLL_MODE_CONFIG_REG 1 #define DAC_PLL_CONFIG_REG 0 #define STG_MAX_VCO 500000 #define STG_MIN_VCO 100000 /* PLL Clock */ #define STG4K3_PLL_SCALER 8 /* scale numbers by 2^8 for fixed point calc */ #define STG4K3_PLL_MIN_R 2 /* Minimum multiplier */ #define STG4K3_PLL_MAX_R 33 /* Max */ #define STG4K3_PLL_MIN_F 2 /* Minimum divisor */ #define STG4K3_PLL_MAX_F 513 /* Max */ #define STG4K3_PLL_MIN_OD 0 /* Min output divider (shift) */ #define STG4K3_PLL_MAX_OD 2 /* Max */ #define STG4K3_PLL_MIN_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate */ #define STG4K3_PLL_MAX_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate */ #define STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate (restricted) */ #define STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate (restricted) */ #define STG4K3_PLL_MINR_VCO 100000000 /* Min VCO rate (restricted) */ #define STG4K3_PLL_MAX_VCO 500000000 /* Max VCO rate */ #define STG4K3_PLL_MAXR_VCO 500000000 /* Max VCO rate (restricted) */ #define OS_DELAY(X) \ { \ volatile u32 i,count=0; \ for(i=0;i<X;i++) count++; \ } static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg, u32 dwSubSysID, u32 dwRevID) { u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 }; u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 }; u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 }; u32 adwSDRAMRsh[] = { 36, 39, 40 }; u32 adwChipSpeed[] = { 110, 120, 125 }; u32 dwMemTypeIdx; u32 dwChipSpeedIdx; /* Get memory tpye and chip speed indexs from the SubSysDevID */ dwMemTypeIdx = (dwSubSysID & 0x70) >> 4; dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7; if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2) return 0; /* Program SD-RAM interface */ STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]); if (dwRevID < 5) { STG_WRITE_REG(SDRAMConf0, 0x49A1); STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]); } else { STG_WRITE_REG(SDRAMConf0, 0x4DF1); STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]); } STG_WRITE_REG(SDRAMConf2, 0x31); STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]); return adwChipSpeed[dwChipSpeedIdx] * 10000; } u32 ProgramClock(u32 refClock, u32 coreClock, u32 * FOut, u32 * ROut, u32 * POut) { u32 R = 0, F = 0, OD = 0, ODIndex = 0; u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0; u32 ulBestClk = 0, ulBestScore = 0; u32 ulScore, ulPhaseScore, ulVcoScore; u32 ulTmp = 0, ulVCO; u32 ulScaleClockReq, ulMinClock, ulMaxClock; static const unsigned char ODValues[] = { 1, 2, 0 }; /* Translate clock in Hz */ coreClock *= 100; /* in Hz */ refClock *= 1000; /* in Hz */ /* Work out acceptable clock * The method calculates ~ +- 0.4% (1/256) */ ulMinClock = coreClock - (coreClock >> 8); ulMaxClock = coreClock + (coreClock >> 8); /* Scale clock required for use in calculations */ ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER; /* Iterate through post divider values */ for (ODIndex = 0; ODIndex < 3; ODIndex++) { OD = ODValues[ODIndex]; R = STG4K3_PLL_MIN_R; /* loop for pre-divider from min to max */ while (R <= STG4K3_PLL_MAX_R) { /* estimate required feedback multiplier */ ulTmp = R * (ulScaleClockReq << OD); /* F = ClkRequired * R * (2^OD) / Fref */ F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER)); /* compensate for accuracy */ if (F > STG4K3_PLL_MIN_F) F--; /* * We should be close to our target frequency (if it's * achievable with current OD & R) let's iterate * through F for best fit */ while ((F >= STG4K3_PLL_MIN_F) && (F <= STG4K3_PLL_MAX_F)) { /* Calc VCO at full accuracy */ ulVCO = refClock / R; ulVCO = F * ulVCO; /* * Check it's within restricted VCO range * unless of course the desired frequency is * above the restricted range, then test * against VCO limit */ if ((ulVCO >= STG4K3_PLL_MINR_VCO) && ((ulVCO <= STG4K3_PLL_MAXR_VCO) || ((coreClock > STG4K3_PLL_MAXR_VCO) && (ulVCO <= STG4K3_PLL_MAX_VCO)))) { ulTmp = (ulVCO >> OD); /* Clock = VCO / (2^OD) */ /* Is this clock good enough? */ if ((ulTmp >= ulMinClock) && (ulTmp <= ulMaxClock)) { ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10); ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10); ulScore = ulPhaseScore + ulVcoScore; if (!ulBestScore) { ulBestOD = OD; ulBestF = F; ulBestR = R; ulBestClk = ulTmp; ulBestScore = ulScore; } /* is this better, ( aim for highest Score) */ /*-------------------------------------------------------------------------- Here we want to use a scoring system which will take account of both the value at the phase comparater and the VCO output to do this we will use a cumulative score between the two The way this ends up is that we choose the first value in the loop anyway but we shall keep this code in case new restrictions come into play --------------------------------------------------------------------------*/ if ((ulScore >= ulBestScore) && (OD > 0)) { ulBestOD = OD; ulBestF = F; ulBestR = R; ulBestClk = ulTmp; ulBestScore = ulScore; } } } F++; } R++; } } /* did we find anything? Then return RFOD */ if (ulBestScore) { *ROut = ulBestR; *FOut = ulBestF; if ((ulBestOD == 2) || (ulBestOD == 3)) { *POut = 3; } else *POut = ulBestOD; } return (ulBestClk); } int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev) { u32 F, R, P; u16 core_pll = 0, sub; u32 tmp; u32 ulChipSpeed; STG_WRITE_REG(IntMask, 0xFFFF); /* Disable Primary Core Thread0 */ tmp = STG_READ_REG(Thread0Enable); CLEAR_BIT(0); STG_WRITE_REG(Thread0Enable, tmp); /* Disable Primary Core Thread1 */ tmp = STG_READ_REG(Thread1Enable); CLEAR_BIT(0); STG_WRITE_REG(Thread1Enable, tmp); STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST); STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST | PMX2_SOFTRESET_ROM_RST); /* Need to play around to reset TA */ STG_WRITE_REG(TAConfiguration, 0); STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST); STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST | PMX2_SOFTRESET_ROM_RST); pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub); ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub, (u32)pDev->revision); if (ulChipSpeed == 0) return -EINVAL; ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P); core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11)); /* Set Core PLL Control to Core PLL Mode */ /* Send bits 0:7 of the Core PLL Mode register */ tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF)); pci_write_config_word(pDev, CorePllControl, tmp); /* Without some delay between the PCI config writes the clock does not reliably set when the code is compiled -O3 */ OS_DELAY(1000000); tmp |= SET_BIT(14); pci_write_config_word(pDev, CorePllControl, tmp); OS_DELAY(1000000); /* Send bits 8:15 of the Core PLL Mode register */ tmp = ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8)); pci_write_config_word(pDev, CorePllControl, tmp); OS_DELAY(1000000); tmp |= SET_BIT(14); pci_write_config_word(pDev, CorePllControl, tmp); OS_DELAY(1000000); STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL); #if 0 /* Enable Primary Core Thread0 */ tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0)); STG_WRITE_REG(Thread0Enable, tmp); /* Enable Primary Core Thread1 */ tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0)); STG_WRITE_REG(Thread1Enable, tmp); #endif return 0; } |