Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 | // SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay OCS AES Crypto Driver. * * Copyright (C) 2018-2020 Intel Corporation */ #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/swab.h> #include <asm/byteorder.h> #include <asm/errno.h> #include <crypto/aes.h> #include <crypto/gcm.h> #include "ocs-aes.h" #define AES_COMMAND_OFFSET 0x0000 #define AES_KEY_0_OFFSET 0x0004 #define AES_KEY_1_OFFSET 0x0008 #define AES_KEY_2_OFFSET 0x000C #define AES_KEY_3_OFFSET 0x0010 #define AES_KEY_4_OFFSET 0x0014 #define AES_KEY_5_OFFSET 0x0018 #define AES_KEY_6_OFFSET 0x001C #define AES_KEY_7_OFFSET 0x0020 #define AES_IV_0_OFFSET 0x0024 #define AES_IV_1_OFFSET 0x0028 #define AES_IV_2_OFFSET 0x002C #define AES_IV_3_OFFSET 0x0030 #define AES_ACTIVE_OFFSET 0x0034 #define AES_STATUS_OFFSET 0x0038 #define AES_KEY_SIZE_OFFSET 0x0044 #define AES_IER_OFFSET 0x0048 #define AES_ISR_OFFSET 0x005C #define AES_MULTIPURPOSE1_0_OFFSET 0x0200 #define AES_MULTIPURPOSE1_1_OFFSET 0x0204 #define AES_MULTIPURPOSE1_2_OFFSET 0x0208 #define AES_MULTIPURPOSE1_3_OFFSET 0x020C #define AES_MULTIPURPOSE2_0_OFFSET 0x0220 #define AES_MULTIPURPOSE2_1_OFFSET 0x0224 #define AES_MULTIPURPOSE2_2_OFFSET 0x0228 #define AES_MULTIPURPOSE2_3_OFFSET 0x022C #define AES_BYTE_ORDER_CFG_OFFSET 0x02C0 #define AES_TLEN_OFFSET 0x0300 #define AES_T_MAC_0_OFFSET 0x0304 #define AES_T_MAC_1_OFFSET 0x0308 #define AES_T_MAC_2_OFFSET 0x030C #define AES_T_MAC_3_OFFSET 0x0310 #define AES_PLEN_OFFSET 0x0314 #define AES_A_DMA_SRC_ADDR_OFFSET 0x0400 #define AES_A_DMA_DST_ADDR_OFFSET 0x0404 #define AES_A_DMA_SRC_SIZE_OFFSET 0x0408 #define AES_A_DMA_DST_SIZE_OFFSET 0x040C #define AES_A_DMA_DMA_MODE_OFFSET 0x0410 #define AES_A_DMA_NEXT_SRC_DESCR_OFFSET 0x0418 #define AES_A_DMA_NEXT_DST_DESCR_OFFSET 0x041C #define AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET 0x0420 #define AES_A_DMA_LOG_OFFSET 0x0424 #define AES_A_DMA_STATUS_OFFSET 0x0428 #define AES_A_DMA_PERF_CNTR_OFFSET 0x042C #define AES_A_DMA_MSI_ISR_OFFSET 0x0480 #define AES_A_DMA_MSI_IER_OFFSET 0x0484 #define AES_A_DMA_MSI_MASK_OFFSET 0x0488 #define AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET 0x0600 #define AES_A_DMA_OUTBUFFER_READ_FIFO_OFFSET 0x0700 /* * AES_A_DMA_DMA_MODE register. * Default: 0x00000000. * bit[31] ACTIVE * This bit activates the DMA. When the DMA finishes, it resets * this bit to zero. * bit[30:26] Unused by this driver. * bit[25] SRC_LINK_LIST_EN * Source link list enable bit. When the linked list is terminated * this bit is reset by the DMA. * bit[24] DST_LINK_LIST_EN * Destination link list enable bit. When the linked list is * terminated this bit is reset by the DMA. * bit[23:0] Unused by this driver. */ #define AES_A_DMA_DMA_MODE_ACTIVE BIT(31) #define AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN BIT(25) #define AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN BIT(24) /* * AES_ACTIVE register * default 0x00000000 * bit[31:10] Reserved * bit[9] LAST_ADATA * bit[8] LAST_GCX * bit[7:2] Reserved * bit[1] TERMINATION * bit[0] TRIGGER */ #define AES_ACTIVE_LAST_ADATA BIT(9) #define AES_ACTIVE_LAST_CCM_GCM BIT(8) #define AES_ACTIVE_TERMINATION BIT(1) #define AES_ACTIVE_TRIGGER BIT(0) #define AES_DISABLE_INT 0x00000000 #define AES_DMA_CPD_ERR_INT BIT(8) #define AES_DMA_OUTBUF_RD_ERR_INT BIT(7) #define AES_DMA_OUTBUF_WR_ERR_INT BIT(6) #define AES_DMA_INBUF_RD_ERR_INT BIT(5) #define AES_DMA_INBUF_WR_ERR_INT BIT(4) #define AES_DMA_BAD_COMP_INT BIT(3) #define AES_DMA_SAI_INT BIT(2) #define AES_DMA_SRC_DONE_INT BIT(0) #define AES_COMPLETE_INT BIT(1) #define AES_DMA_MSI_MASK_CLEAR BIT(0) #define AES_128_BIT_KEY 0x00000000 #define AES_256_BIT_KEY BIT(0) #define AES_DEACTIVATE_PERF_CNTR 0x00000000 #define AES_ACTIVATE_PERF_CNTR BIT(0) #define AES_MAX_TAG_SIZE_U32 4 #define OCS_LL_DMA_FLAG_TERMINATE BIT(31) /* * There is an inconsistency in the documentation. This is documented as a * 11-bit value, but it is actually 10-bits. */ #define AES_DMA_STATUS_INPUT_BUFFER_OCCUPANCY_MASK 0x3FF /* * During CCM decrypt, the OCS block needs to finish processing the ciphertext * before the tag is written. For 128-bit mode this required delay is 28 OCS * clock cycles. For 256-bit mode it is 36 OCS clock cycles. */ #define CCM_DECRYPT_DELAY_TAG_CLK_COUNT 36UL /* * During CCM decrypt there must be a delay of at least 42 OCS clock cycles * between setting the TRIGGER bit in AES_ACTIVE and setting the LAST_CCM_GCM * bit in the same register (as stated in the OCS databook) */ #define CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT 42UL /* See RFC3610 section 2.2 */ #define L_PRIME_MIN (1) #define L_PRIME_MAX (7) /* * CCM IV format from RFC 3610 section 2.3 * * Octet Number Contents * ------------ --------- * 0 Flags * 1 ... 15-L Nonce N * 16-L ... 15 Counter i * * Flags = L' = L - 1 */ #define L_PRIME_IDX 0 #define COUNTER_START(lprime) (16 - ((lprime) + 1)) #define COUNTER_LEN(lprime) ((lprime) + 1) enum aes_counter_mode { AES_CTR_M_NO_INC = 0, AES_CTR_M_32_INC = 1, AES_CTR_M_64_INC = 2, AES_CTR_M_128_INC = 3, }; /** * struct ocs_dma_linked_list - OCS DMA linked list entry. * @src_addr: Source address of the data. * @src_len: Length of data to be fetched. * @next: Next dma_list to fetch. * @ll_flags: Flags (Freeze @ terminate) for the DMA engine. */ struct ocs_dma_linked_list { u32 src_addr; u32 src_len; u32 next; u32 ll_flags; } __packed; /* * Set endianness of inputs and outputs * AES_BYTE_ORDER_CFG * default 0x00000000 * bit [10] - KEY_HI_LO_SWAP * bit [9] - KEY_HI_SWAP_DWORDS_IN_OCTWORD * bit [8] - KEY_HI_SWAP_BYTES_IN_DWORD * bit [7] - KEY_LO_SWAP_DWORDS_IN_OCTWORD * bit [6] - KEY_LO_SWAP_BYTES_IN_DWORD * bit [5] - IV_SWAP_DWORDS_IN_OCTWORD * bit [4] - IV_SWAP_BYTES_IN_DWORD * bit [3] - DOUT_SWAP_DWORDS_IN_OCTWORD * bit [2] - DOUT_SWAP_BYTES_IN_DWORD * bit [1] - DOUT_SWAP_DWORDS_IN_OCTWORD * bit [0] - DOUT_SWAP_BYTES_IN_DWORD */ static inline void aes_a_set_endianness(const struct ocs_aes_dev *aes_dev) { iowrite32(0x7FF, aes_dev->base_reg + AES_BYTE_ORDER_CFG_OFFSET); } /* Trigger AES process start. */ static inline void aes_a_op_trigger(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_ACTIVE_TRIGGER, aes_dev->base_reg + AES_ACTIVE_OFFSET); } /* Indicate last bulk of data. */ static inline void aes_a_op_termination(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_ACTIVE_TERMINATION, aes_dev->base_reg + AES_ACTIVE_OFFSET); } /* * Set LAST_CCM_GCM in AES_ACTIVE register and clear all other bits. * * Called when DMA is programmed to fetch the last batch of data. * - For AES-CCM it is called for the last batch of Payload data and Ciphertext * data. * - For AES-GCM, it is called for the last batch of Plaintext data and * Ciphertext data. */ static inline void aes_a_set_last_gcx(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_ACTIVE_LAST_CCM_GCM, aes_dev->base_reg + AES_ACTIVE_OFFSET); } /* Wait for LAST_CCM_GCM bit to be unset. */ static inline void aes_a_wait_last_gcx(const struct ocs_aes_dev *aes_dev) { u32 aes_active_reg; do { aes_active_reg = ioread32(aes_dev->base_reg + AES_ACTIVE_OFFSET); } while (aes_active_reg & AES_ACTIVE_LAST_CCM_GCM); } /* Wait for 10 bits of input occupancy. */ static void aes_a_dma_wait_input_buffer_occupancy(const struct ocs_aes_dev *aes_dev) { u32 reg; do { reg = ioread32(aes_dev->base_reg + AES_A_DMA_STATUS_OFFSET); } while (reg & AES_DMA_STATUS_INPUT_BUFFER_OCCUPANCY_MASK); } /* * Set LAST_CCM_GCM and LAST_ADATA bits in AES_ACTIVE register (and clear all * other bits). * * Called when DMA is programmed to fetch the last batch of Associated Data * (CCM case) or Additional Authenticated Data (GCM case). */ static inline void aes_a_set_last_gcx_and_adata(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_ACTIVE_LAST_ADATA | AES_ACTIVE_LAST_CCM_GCM, aes_dev->base_reg + AES_ACTIVE_OFFSET); } /* Set DMA src and dst transfer size to 0 */ static inline void aes_a_dma_set_xfer_size_zero(const struct ocs_aes_dev *aes_dev) { iowrite32(0, aes_dev->base_reg + AES_A_DMA_SRC_SIZE_OFFSET); iowrite32(0, aes_dev->base_reg + AES_A_DMA_DST_SIZE_OFFSET); } /* Activate DMA for zero-byte transfer case. */ static inline void aes_a_dma_active(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_A_DMA_DMA_MODE_ACTIVE, aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET); } /* Activate DMA and enable src linked list */ static inline void aes_a_dma_active_src_ll_en(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_A_DMA_DMA_MODE_ACTIVE | AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN, aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET); } /* Activate DMA and enable dst linked list */ static inline void aes_a_dma_active_dst_ll_en(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_A_DMA_DMA_MODE_ACTIVE | AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN, aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET); } /* Activate DMA and enable src and dst linked lists */ static inline void aes_a_dma_active_src_dst_ll_en(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_A_DMA_DMA_MODE_ACTIVE | AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN | AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN, aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET); } /* Reset PERF_CNTR to 0 and activate it */ static inline void aes_a_dma_reset_and_activate_perf_cntr(const struct ocs_aes_dev *aes_dev) { iowrite32(0x00000000, aes_dev->base_reg + AES_A_DMA_PERF_CNTR_OFFSET); iowrite32(AES_ACTIVATE_PERF_CNTR, aes_dev->base_reg + AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET); } /* Wait until PERF_CNTR is > delay, then deactivate it */ static inline void aes_a_dma_wait_and_deactivate_perf_cntr(const struct ocs_aes_dev *aes_dev, int delay) { while (ioread32(aes_dev->base_reg + AES_A_DMA_PERF_CNTR_OFFSET) < delay) ; iowrite32(AES_DEACTIVATE_PERF_CNTR, aes_dev->base_reg + AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET); } /* Disable AES and DMA IRQ. */ static void aes_irq_disable(struct ocs_aes_dev *aes_dev) { u32 isr_val = 0; /* Disable interrupts */ iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET); iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_IER_OFFSET); /* Clear any pending interrupt */ isr_val = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET); if (isr_val) iowrite32(isr_val, aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET); isr_val = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_MASK_OFFSET); if (isr_val) iowrite32(isr_val, aes_dev->base_reg + AES_A_DMA_MSI_MASK_OFFSET); isr_val = ioread32(aes_dev->base_reg + AES_ISR_OFFSET); if (isr_val) iowrite32(isr_val, aes_dev->base_reg + AES_ISR_OFFSET); } /* Enable AES or DMA IRQ. IRQ is disabled once fired. */ static void aes_irq_enable(struct ocs_aes_dev *aes_dev, u8 irq) { if (irq == AES_COMPLETE_INT) { /* Ensure DMA error interrupts are enabled */ iowrite32(AES_DMA_CPD_ERR_INT | AES_DMA_OUTBUF_RD_ERR_INT | AES_DMA_OUTBUF_WR_ERR_INT | AES_DMA_INBUF_RD_ERR_INT | AES_DMA_INBUF_WR_ERR_INT | AES_DMA_BAD_COMP_INT | AES_DMA_SAI_INT, aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET); /* * AES_IER * default 0x00000000 * bits [31:3] - reserved * bit [2] - EN_SKS_ERR * bit [1] - EN_AES_COMPLETE * bit [0] - reserved */ iowrite32(AES_COMPLETE_INT, aes_dev->base_reg + AES_IER_OFFSET); return; } if (irq == AES_DMA_SRC_DONE_INT) { /* Ensure AES interrupts are disabled */ iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_IER_OFFSET); /* * DMA_MSI_IER * default 0x00000000 * bits [31:9] - reserved * bit [8] - CPD_ERR_INT_EN * bit [7] - OUTBUF_RD_ERR_INT_EN * bit [6] - OUTBUF_WR_ERR_INT_EN * bit [5] - INBUF_RD_ERR_INT_EN * bit [4] - INBUF_WR_ERR_INT_EN * bit [3] - BAD_COMP_INT_EN * bit [2] - SAI_INT_EN * bit [1] - DST_DONE_INT_EN * bit [0] - SRC_DONE_INT_EN */ iowrite32(AES_DMA_CPD_ERR_INT | AES_DMA_OUTBUF_RD_ERR_INT | AES_DMA_OUTBUF_WR_ERR_INT | AES_DMA_INBUF_RD_ERR_INT | AES_DMA_INBUF_WR_ERR_INT | AES_DMA_BAD_COMP_INT | AES_DMA_SAI_INT | AES_DMA_SRC_DONE_INT, aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET); } } /* Enable and wait for IRQ (either from OCS AES engine or DMA) */ static int ocs_aes_irq_enable_and_wait(struct ocs_aes_dev *aes_dev, u8 irq) { int rc; reinit_completion(&aes_dev->irq_completion); aes_irq_enable(aes_dev, irq); rc = wait_for_completion_interruptible(&aes_dev->irq_completion); if (rc) return rc; return aes_dev->dma_err_mask ? -EIO : 0; } /* Configure DMA to OCS, linked list mode */ static inline void dma_to_ocs_aes_ll(struct ocs_aes_dev *aes_dev, dma_addr_t dma_list) { iowrite32(0, aes_dev->base_reg + AES_A_DMA_SRC_SIZE_OFFSET); iowrite32(dma_list, aes_dev->base_reg + AES_A_DMA_NEXT_SRC_DESCR_OFFSET); } /* Configure DMA from OCS, linked list mode */ static inline void dma_from_ocs_aes_ll(struct ocs_aes_dev *aes_dev, dma_addr_t dma_list) { iowrite32(0, aes_dev->base_reg + AES_A_DMA_DST_SIZE_OFFSET); iowrite32(dma_list, aes_dev->base_reg + AES_A_DMA_NEXT_DST_DESCR_OFFSET); } irqreturn_t ocs_aes_irq_handler(int irq, void *dev_id) { struct ocs_aes_dev *aes_dev = dev_id; u32 aes_dma_isr; /* Read DMA ISR status. */ aes_dma_isr = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET); /* Disable and clear interrupts. */ aes_irq_disable(aes_dev); /* Save DMA error status. */ aes_dev->dma_err_mask = aes_dma_isr & (AES_DMA_CPD_ERR_INT | AES_DMA_OUTBUF_RD_ERR_INT | AES_DMA_OUTBUF_WR_ERR_INT | AES_DMA_INBUF_RD_ERR_INT | AES_DMA_INBUF_WR_ERR_INT | AES_DMA_BAD_COMP_INT | AES_DMA_SAI_INT); /* Signal IRQ completion. */ complete(&aes_dev->irq_completion); return IRQ_HANDLED; } /** * ocs_aes_set_key() - Write key into OCS AES hardware. * @aes_dev: The OCS AES device to write the key to. * @key_size: The size of the key (in bytes). * @key: The key to write. * @cipher: The cipher the key is for. * * For AES @key_size must be either 16 or 32. For SM4 @key_size must be 16. * * Return: 0 on success, negative error code otherwise. */ int ocs_aes_set_key(struct ocs_aes_dev *aes_dev, u32 key_size, const u8 *key, enum ocs_cipher cipher) { const u32 *key_u32; u32 val; int i; /* OCS AES supports 128-bit and 256-bit keys only. */ if (cipher == OCS_AES && !(key_size == 32 || key_size == 16)) { dev_err(aes_dev->dev, "%d-bit keys not supported by AES cipher\n", key_size * 8); return -EINVAL; } /* OCS SM4 supports 128-bit keys only. */ if (cipher == OCS_SM4 && key_size != 16) { dev_err(aes_dev->dev, "%d-bit keys not supported for SM4 cipher\n", key_size * 8); return -EINVAL; } if (!key) return -EINVAL; key_u32 = (const u32 *)key; /* Write key to AES_KEY[0-7] registers */ for (i = 0; i < (key_size / sizeof(u32)); i++) { iowrite32(key_u32[i], aes_dev->base_reg + AES_KEY_0_OFFSET + (i * sizeof(u32))); } /* * Write key size * bits [31:1] - reserved * bit [0] - AES_KEY_SIZE * 0 - 128 bit key * 1 - 256 bit key */ val = (key_size == 16) ? AES_128_BIT_KEY : AES_256_BIT_KEY; iowrite32(val, aes_dev->base_reg + AES_KEY_SIZE_OFFSET); return 0; } /* Write AES_COMMAND */ static inline void set_ocs_aes_command(struct ocs_aes_dev *aes_dev, enum ocs_cipher cipher, enum ocs_mode mode, enum ocs_instruction instruction) { u32 val; /* AES_COMMAND * default 0x000000CC * bit [14] - CIPHER_SELECT * 0 - AES * 1 - SM4 * bits [11:8] - OCS_AES_MODE * 0000 - ECB * 0001 - CBC * 0010 - CTR * 0110 - CCM * 0111 - GCM * 1001 - CTS * bits [7:6] - AES_INSTRUCTION * 00 - ENCRYPT * 01 - DECRYPT * 10 - EXPAND * 11 - BYPASS * bits [3:2] - CTR_M_BITS * 00 - No increment * 01 - Least significant 32 bits are incremented * 10 - Least significant 64 bits are incremented * 11 - Full 128 bits are incremented */ val = (cipher << 14) | (mode << 8) | (instruction << 6) | (AES_CTR_M_128_INC << 2); iowrite32(val, aes_dev->base_reg + AES_COMMAND_OFFSET); } static void ocs_aes_init(struct ocs_aes_dev *aes_dev, enum ocs_mode mode, enum ocs_cipher cipher, enum ocs_instruction instruction) { /* Ensure interrupts are disabled and pending interrupts cleared. */ aes_irq_disable(aes_dev); /* Set endianness recommended by data-sheet. */ aes_a_set_endianness(aes_dev); /* Set AES_COMMAND register. */ set_ocs_aes_command(aes_dev, cipher, mode, instruction); } /* * Write the byte length of the last AES/SM4 block of Payload data (without * zero padding and without the length of the MAC) in register AES_PLEN. */ static inline void ocs_aes_write_last_data_blk_len(struct ocs_aes_dev *aes_dev, u32 size) { u32 val; if (size == 0) { val = 0; goto exit; } val = size % AES_BLOCK_SIZE; if (val == 0) val = AES_BLOCK_SIZE; exit: iowrite32(val, aes_dev->base_reg + AES_PLEN_OFFSET); } /* * Validate inputs according to mode. * If OK return 0; else return -EINVAL. */ static int ocs_aes_validate_inputs(dma_addr_t src_dma_list, u32 src_size, const u8 *iv, u32 iv_size, dma_addr_t aad_dma_list, u32 aad_size, const u8 *tag, u32 tag_size, enum ocs_cipher cipher, enum ocs_mode mode, enum ocs_instruction instruction, dma_addr_t dst_dma_list) { /* Ensure cipher, mode and instruction are valid. */ if (!(cipher == OCS_AES || cipher == OCS_SM4)) return -EINVAL; if (mode != OCS_MODE_ECB && mode != OCS_MODE_CBC && mode != OCS_MODE_CTR && mode != OCS_MODE_CCM && mode != OCS_MODE_GCM && mode != OCS_MODE_CTS) return -EINVAL; if (instruction != OCS_ENCRYPT && instruction != OCS_DECRYPT && instruction != OCS_EXPAND && instruction != OCS_BYPASS) return -EINVAL; /* * When instruction is OCS_BYPASS, OCS simply copies data from source * to destination using DMA. * * AES mode is irrelevant, but both source and destination DMA * linked-list must be defined. */ if (instruction == OCS_BYPASS) { if (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; return 0; } /* * For performance reasons switch based on mode to limit unnecessary * conditionals for each mode */ switch (mode) { case OCS_MODE_ECB: /* Ensure input length is multiple of block size */ if (src_size % AES_BLOCK_SIZE != 0) return -EINVAL; /* Ensure source and destination linked lists are created */ if (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; return 0; case OCS_MODE_CBC: /* Ensure input length is multiple of block size */ if (src_size % AES_BLOCK_SIZE != 0) return -EINVAL; /* Ensure source and destination linked lists are created */ if (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* Ensure IV is present and block size in length */ if (!iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; return 0; case OCS_MODE_CTR: /* Ensure input length of 1 byte or greater */ if (src_size == 0) return -EINVAL; /* Ensure source and destination linked lists are created */ if (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* Ensure IV is present and block size in length */ if (!iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; return 0; case OCS_MODE_CTS: /* Ensure input length >= block size */ if (src_size < AES_BLOCK_SIZE) return -EINVAL; /* Ensure source and destination linked lists are created */ if (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* Ensure IV is present and block size in length */ if (!iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; return 0; case OCS_MODE_GCM: /* Ensure IV is present and GCM_AES_IV_SIZE in length */ if (!iv || iv_size != GCM_AES_IV_SIZE) return -EINVAL; /* * If input data present ensure source and destination linked * lists are created */ if (src_size && (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR)) return -EINVAL; /* If aad present ensure aad linked list is created */ if (aad_size && aad_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* Ensure tag destination is set */ if (!tag) return -EINVAL; /* Just ensure that tag_size doesn't cause overflows. */ if (tag_size > (AES_MAX_TAG_SIZE_U32 * sizeof(u32))) return -EINVAL; return 0; case OCS_MODE_CCM: /* Ensure IV is present and block size in length */ if (!iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; /* 2 <= L <= 8, so 1 <= L' <= 7 */ if (iv[L_PRIME_IDX] < L_PRIME_MIN || iv[L_PRIME_IDX] > L_PRIME_MAX) return -EINVAL; /* If aad present ensure aad linked list is created */ if (aad_size && aad_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* Just ensure that tag_size doesn't cause overflows. */ if (tag_size > (AES_MAX_TAG_SIZE_U32 * sizeof(u32))) return -EINVAL; if (instruction == OCS_DECRYPT) { /* * If input data present ensure source and destination * linked lists are created */ if (src_size && (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR)) return -EINVAL; /* Ensure input tag is present */ if (!tag) return -EINVAL; return 0; } /* Instruction == OCS_ENCRYPT */ /* * Destination linked list always required (for tag even if no * input data) */ if (dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* If input data present ensure src linked list is created */ if (src_size && src_dma_list == DMA_MAPPING_ERROR) return -EINVAL; return 0; default: return -EINVAL; } } /** * ocs_aes_op() - Perform AES/SM4 operation. * @aes_dev: The OCS AES device to use. * @mode: The mode to use (ECB, CBC, CTR, or CTS). * @cipher: The cipher to use (AES or SM4). * @instruction: The instruction to perform (encrypt or decrypt). * @dst_dma_list: The OCS DMA list mapping output memory. * @src_dma_list: The OCS DMA list mapping input payload data. * @src_size: The amount of data mapped by @src_dma_list. * @iv: The IV vector. * @iv_size: The size (in bytes) of @iv. * * Return: 0 on success, negative error code otherwise. */ int ocs_aes_op(struct ocs_aes_dev *aes_dev, enum ocs_mode mode, enum ocs_cipher cipher, enum ocs_instruction instruction, dma_addr_t dst_dma_list, dma_addr_t src_dma_list, u32 src_size, u8 *iv, u32 iv_size) { u32 *iv32; int rc; rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv, iv_size, 0, 0, NULL, 0, cipher, mode, instruction, dst_dma_list); if (rc) return rc; /* * ocs_aes_validate_inputs() is a generic check, now ensure mode is not * GCM or CCM. */ if (mode == OCS_MODE_GCM || mode == OCS_MODE_CCM) return -EINVAL; /* Cast IV to u32 array. */ iv32 = (u32 *)iv; ocs_aes_init(aes_dev, mode, cipher, instruction); if (mode == OCS_MODE_CTS) { /* Write the byte length of the last data block to engine. */ ocs_aes_write_last_data_blk_len(aes_dev, src_size); } /* ECB is the only mode that doesn't use IV. */ if (mode != OCS_MODE_ECB) { iowrite32(iv32[0], aes_dev->base_reg + AES_IV_0_OFFSET); iowrite32(iv32[1], aes_dev->base_reg + AES_IV_1_OFFSET); iowrite32(iv32[2], aes_dev->base_reg + AES_IV_2_OFFSET); iowrite32(iv32[3], aes_dev->base_reg + AES_IV_3_OFFSET); } /* Set AES_ACTIVE.TRIGGER to start the operation. */ aes_a_op_trigger(aes_dev); /* Configure and activate input / output DMA. */ dma_to_ocs_aes_ll(aes_dev, src_dma_list); dma_from_ocs_aes_ll(aes_dev, dst_dma_list); aes_a_dma_active_src_dst_ll_en(aes_dev); if (mode == OCS_MODE_CTS) { /* * For CTS mode, instruct engine to activate ciphertext * stealing if last block of data is incomplete. */ aes_a_set_last_gcx(aes_dev); } else { /* For all other modes, just write the 'termination' bit. */ aes_a_op_termination(aes_dev); } /* Wait for engine to complete processing. */ rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT); if (rc) return rc; if (mode == OCS_MODE_CTR) { /* Read back IV for streaming mode */ iv32[0] = ioread32(aes_dev->base_reg + AES_IV_0_OFFSET); iv32[1] = ioread32(aes_dev->base_reg + AES_IV_1_OFFSET); iv32[2] = ioread32(aes_dev->base_reg + AES_IV_2_OFFSET); iv32[3] = ioread32(aes_dev->base_reg + AES_IV_3_OFFSET); } return 0; } /* Compute and write J0 to engine registers. */ static void ocs_aes_gcm_write_j0(const struct ocs_aes_dev *aes_dev, const u8 *iv) { const u32 *j0 = (u32 *)iv; /* * IV must be 12 bytes; Other sizes not supported as Linux crypto API * does only expects/allows 12 byte IV for GCM */ iowrite32(0x00000001, aes_dev->base_reg + AES_IV_0_OFFSET); iowrite32(__swab32(j0[2]), aes_dev->base_reg + AES_IV_1_OFFSET); iowrite32(__swab32(j0[1]), aes_dev->base_reg + AES_IV_2_OFFSET); iowrite32(__swab32(j0[0]), aes_dev->base_reg + AES_IV_3_OFFSET); } /* Read GCM tag from engine registers. */ static inline void ocs_aes_gcm_read_tag(struct ocs_aes_dev *aes_dev, u8 *tag, u32 tag_size) { u32 tag_u32[AES_MAX_TAG_SIZE_U32]; /* * The Authentication Tag T is stored in Little Endian order in the * registers with the most significant bytes stored from AES_T_MAC[3] * downward. */ tag_u32[0] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_3_OFFSET)); tag_u32[1] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_2_OFFSET)); tag_u32[2] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_1_OFFSET)); tag_u32[3] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_0_OFFSET)); memcpy(tag, tag_u32, tag_size); } /** * ocs_aes_gcm_op() - Perform GCM operation. * @aes_dev: The OCS AES device to use. * @cipher: The Cipher to use (AES or SM4). * @instruction: The instruction to perform (encrypt or decrypt). * @dst_dma_list: The OCS DMA list mapping output memory. * @src_dma_list: The OCS DMA list mapping input payload data. * @src_size: The amount of data mapped by @src_dma_list. * @iv: The input IV vector. * @aad_dma_list: The OCS DMA list mapping input AAD data. * @aad_size: The amount of data mapped by @aad_dma_list. * @out_tag: Where to store computed tag. * @tag_size: The size (in bytes) of @out_tag. * * Return: 0 on success, negative error code otherwise. */ int ocs_aes_gcm_op(struct ocs_aes_dev *aes_dev, enum ocs_cipher cipher, enum ocs_instruction instruction, dma_addr_t dst_dma_list, dma_addr_t src_dma_list, u32 src_size, const u8 *iv, dma_addr_t aad_dma_list, u32 aad_size, u8 *out_tag, u32 tag_size) { u64 bit_len; u32 val; int rc; rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv, GCM_AES_IV_SIZE, aad_dma_list, aad_size, out_tag, tag_size, cipher, OCS_MODE_GCM, instruction, dst_dma_list); if (rc) return rc; ocs_aes_init(aes_dev, OCS_MODE_GCM, cipher, instruction); /* Compute and write J0 to OCS HW. */ ocs_aes_gcm_write_j0(aes_dev, iv); /* Write out_tag byte length */ iowrite32(tag_size, aes_dev->base_reg + AES_TLEN_OFFSET); /* Write the byte length of the last plaintext / ciphertext block. */ ocs_aes_write_last_data_blk_len(aes_dev, src_size); /* Write ciphertext bit length */ bit_len = (u64)src_size * 8; val = bit_len & 0xFFFFFFFF; iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_0_OFFSET); val = bit_len >> 32; iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_1_OFFSET); /* Write aad bit length */ bit_len = (u64)aad_size * 8; val = bit_len & 0xFFFFFFFF; iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_2_OFFSET); val = bit_len >> 32; iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_3_OFFSET); /* Set AES_ACTIVE.TRIGGER to start the operation. */ aes_a_op_trigger(aes_dev); /* Process AAD. */ if (aad_size) { /* If aad present, configure DMA to feed it to the engine. */ dma_to_ocs_aes_ll(aes_dev, aad_dma_list); aes_a_dma_active_src_ll_en(aes_dev); /* Instructs engine to pad last block of aad, if needed. */ aes_a_set_last_gcx_and_adata(aes_dev); /* Wait for DMA transfer to complete. */ rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT); if (rc) return rc; } else { aes_a_set_last_gcx_and_adata(aes_dev); } /* Wait until adata (if present) has been processed. */ aes_a_wait_last_gcx(aes_dev); aes_a_dma_wait_input_buffer_occupancy(aes_dev); /* Now process payload. */ if (src_size) { /* Configure and activate DMA for both input and output data. */ dma_to_ocs_aes_ll(aes_dev, src_dma_list); dma_from_ocs_aes_ll(aes_dev, dst_dma_list); aes_a_dma_active_src_dst_ll_en(aes_dev); } else { aes_a_dma_set_xfer_size_zero(aes_dev); aes_a_dma_active(aes_dev); } /* Instruct AES/SMA4 engine payload processing is over. */ aes_a_set_last_gcx(aes_dev); /* Wait for OCS AES engine to complete processing. */ rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT); if (rc) return rc; ocs_aes_gcm_read_tag(aes_dev, out_tag, tag_size); return 0; } /* Write encrypted tag to AES/SM4 engine. */ static void ocs_aes_ccm_write_encrypted_tag(struct ocs_aes_dev *aes_dev, const u8 *in_tag, u32 tag_size) { int i; /* Ensure DMA input buffer is empty */ aes_a_dma_wait_input_buffer_occupancy(aes_dev); /* * During CCM decrypt, the OCS block needs to finish processing the * ciphertext before the tag is written. So delay needed after DMA has * completed writing the ciphertext */ aes_a_dma_reset_and_activate_perf_cntr(aes_dev); aes_a_dma_wait_and_deactivate_perf_cntr(aes_dev, CCM_DECRYPT_DELAY_TAG_CLK_COUNT); /* Write encrypted tag to AES/SM4 engine. */ for (i = 0; i < tag_size; i++) { iowrite8(in_tag[i], aes_dev->base_reg + AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET); } } /* * Write B0 CCM block to OCS AES HW. * * Note: B0 format is documented in NIST Special Publication 800-38C * https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf * (see Section A.2.1) */ static int ocs_aes_ccm_write_b0(const struct ocs_aes_dev *aes_dev, const u8 *iv, u32 adata_size, u32 tag_size, u32 cryptlen) { u8 b0[16]; /* CCM B0 block is 16 bytes long. */ int i, q; /* Initialize B0 to 0. */ memset(b0, 0, sizeof(b0)); /* * B0[0] is the 'Flags Octet' and has the following structure: * bit 7: Reserved * bit 6: Adata flag * bit 5-3: t value encoded as (t-2)/2 * bit 2-0: q value encoded as q - 1 */ /* If there is AAD data, set the Adata flag. */ if (adata_size) b0[0] |= BIT(6); /* * t denotes the octet length of T. * t can only be an element of { 4, 6, 8, 10, 12, 14, 16} and is * encoded as (t - 2) / 2 */ b0[0] |= (((tag_size - 2) / 2) & 0x7) << 3; /* * q is the octet length of Q. * q can only be an element of {2, 3, 4, 5, 6, 7, 8} and is encoded as * q - 1 == iv[0] & 0x7; */ b0[0] |= iv[0] & 0x7; /* * Copy the Nonce N from IV to B0; N is located in iv[1]..iv[15 - q] * and must be copied to b0[1]..b0[15-q]. * q == (iv[0] & 0x7) + 1 */ q = (iv[0] & 0x7) + 1; for (i = 1; i <= 15 - q; i++) b0[i] = iv[i]; /* * The rest of B0 must contain Q, i.e., the message length. * Q is encoded in q octets, in big-endian order, so to write it, we * start from the end of B0 and we move backward. */ i = sizeof(b0) - 1; while (q) { b0[i] = cryptlen & 0xff; cryptlen >>= 8; i--; q--; } /* * If cryptlen is not zero at this point, it means that its original * value was too big. */ if (cryptlen) return -EOVERFLOW; /* Now write B0 to OCS AES input buffer. */ for (i = 0; i < sizeof(b0); i++) iowrite8(b0[i], aes_dev->base_reg + AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET); return 0; } /* * Write adata length to OCS AES HW. * * Note: adata len encoding is documented in NIST Special Publication 800-38C * https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf * (see Section A.2.2) */ static void ocs_aes_ccm_write_adata_len(const struct ocs_aes_dev *aes_dev, u64 adata_len) { u8 enc_a[10]; /* Maximum encoded size: 10 octets. */ int i, len; /* * adata_len ('a') is encoded as follows: * If 0 < a < 2^16 - 2^8 ==> 'a' encoded as [a]16, i.e., two octets * (big endian). * If 2^16 - 2^8 ≤ a < 2^32 ==> 'a' encoded as 0xff || 0xfe || [a]32, * i.e., six octets (big endian). * If 2^32 ≤ a < 2^64 ==> 'a' encoded as 0xff || 0xff || [a]64, * i.e., ten octets (big endian). */ if (adata_len < 65280) { len = 2; *(__be16 *)enc_a = cpu_to_be16(adata_len); } else if (adata_len <= 0xFFFFFFFF) { len = 6; *(__be16 *)enc_a = cpu_to_be16(0xfffe); *(__be32 *)&enc_a[2] = cpu_to_be32(adata_len); } else { /* adata_len >= 2^32 */ len = 10; *(__be16 *)enc_a = cpu_to_be16(0xffff); *(__be64 *)&enc_a[2] = cpu_to_be64(adata_len); } for (i = 0; i < len; i++) iowrite8(enc_a[i], aes_dev->base_reg + AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET); } static int ocs_aes_ccm_do_adata(struct ocs_aes_dev *aes_dev, dma_addr_t adata_dma_list, u32 adata_size) { int rc; if (!adata_size) { /* Since no aad the LAST_GCX bit can be set now */ aes_a_set_last_gcx_and_adata(aes_dev); goto exit; } /* Adata case. */ /* * Form the encoding of the Associated data length and write it * to the AES/SM4 input buffer. */ ocs_aes_ccm_write_adata_len(aes_dev, adata_size); /* Configure the AES/SM4 DMA to fetch the Associated Data */ dma_to_ocs_aes_ll(aes_dev, adata_dma_list); /* Activate DMA to fetch Associated data. */ aes_a_dma_active_src_ll_en(aes_dev); /* Set LAST_GCX and LAST_ADATA in AES ACTIVE register. */ aes_a_set_last_gcx_and_adata(aes_dev); /* Wait for DMA transfer to complete. */ rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT); if (rc) return rc; exit: /* Wait until adata (if present) has been processed. */ aes_a_wait_last_gcx(aes_dev); aes_a_dma_wait_input_buffer_occupancy(aes_dev); return 0; } static int ocs_aes_ccm_encrypt_do_payload(struct ocs_aes_dev *aes_dev, dma_addr_t dst_dma_list, dma_addr_t src_dma_list, u32 src_size) { if (src_size) { /* * Configure and activate DMA for both input and output * data. */ dma_to_ocs_aes_ll(aes_dev, src_dma_list); dma_from_ocs_aes_ll(aes_dev, dst_dma_list); aes_a_dma_active_src_dst_ll_en(aes_dev); } else { /* Configure and activate DMA for output data only. */ dma_from_ocs_aes_ll(aes_dev, dst_dma_list); aes_a_dma_active_dst_ll_en(aes_dev); } /* * Set the LAST GCX bit in AES_ACTIVE Register to instruct * AES/SM4 engine to pad the last block of data. */ aes_a_set_last_gcx(aes_dev); /* We are done, wait for IRQ and return. */ return ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT); } static int ocs_aes_ccm_decrypt_do_payload(struct ocs_aes_dev *aes_dev, dma_addr_t dst_dma_list, dma_addr_t src_dma_list, u32 src_size) { if (!src_size) { /* Let engine process 0-length input. */ aes_a_dma_set_xfer_size_zero(aes_dev); aes_a_dma_active(aes_dev); aes_a_set_last_gcx(aes_dev); return 0; } /* * Configure and activate DMA for both input and output * data. */ dma_to_ocs_aes_ll(aes_dev, src_dma_list); dma_from_ocs_aes_ll(aes_dev, dst_dma_list); aes_a_dma_active_src_dst_ll_en(aes_dev); /* * Set the LAST GCX bit in AES_ACTIVE Register; this allows the * AES/SM4 engine to differentiate between encrypted data and * encrypted MAC. */ aes_a_set_last_gcx(aes_dev); /* * Enable DMA DONE interrupt; once DMA transfer is over, * interrupt handler will process the MAC/tag. */ return ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT); } /* * Compare Tag to Yr. * * Only used at the end of CCM decrypt. If tag == yr, message authentication * has succeeded. */ static inline int ccm_compare_tag_to_yr(struct ocs_aes_dev *aes_dev, u8 tag_size_bytes) { u32 tag[AES_MAX_TAG_SIZE_U32]; u32 yr[AES_MAX_TAG_SIZE_U32]; u8 i; /* Read Tag and Yr from AES registers. */ for (i = 0; i < AES_MAX_TAG_SIZE_U32; i++) { tag[i] = ioread32(aes_dev->base_reg + AES_T_MAC_0_OFFSET + (i * sizeof(u32))); yr[i] = ioread32(aes_dev->base_reg + AES_MULTIPURPOSE2_0_OFFSET + (i * sizeof(u32))); } return memcmp(tag, yr, tag_size_bytes) ? -EBADMSG : 0; } /** * ocs_aes_ccm_op() - Perform CCM operation. * @aes_dev: The OCS AES device to use. * @cipher: The Cipher to use (AES or SM4). * @instruction: The instruction to perform (encrypt or decrypt). * @dst_dma_list: The OCS DMA list mapping output memory. * @src_dma_list: The OCS DMA list mapping input payload data. * @src_size: The amount of data mapped by @src_dma_list. * @iv: The input IV vector. * @adata_dma_list: The OCS DMA list mapping input A-data. * @adata_size: The amount of data mapped by @adata_dma_list. * @in_tag: Input tag. * @tag_size: The size (in bytes) of @in_tag. * * Note: for encrypt the tag is appended to the ciphertext (in the memory * mapped by @dst_dma_list). * * Return: 0 on success, negative error code otherwise. */ int ocs_aes_ccm_op(struct ocs_aes_dev *aes_dev, enum ocs_cipher cipher, enum ocs_instruction instruction, dma_addr_t dst_dma_list, dma_addr_t src_dma_list, u32 src_size, u8 *iv, dma_addr_t adata_dma_list, u32 adata_size, u8 *in_tag, u32 tag_size) { u32 *iv_32; u8 lprime; int rc; rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv, AES_BLOCK_SIZE, adata_dma_list, adata_size, in_tag, tag_size, cipher, OCS_MODE_CCM, instruction, dst_dma_list); if (rc) return rc; ocs_aes_init(aes_dev, OCS_MODE_CCM, cipher, instruction); /* * Note: rfc 3610 and NIST 800-38C require counter of zero to encrypt * auth tag so ensure this is the case */ lprime = iv[L_PRIME_IDX]; memset(&iv[COUNTER_START(lprime)], 0, COUNTER_LEN(lprime)); /* * Nonce is already converted to ctr0 before being passed into this * function as iv. */ iv_32 = (u32 *)iv; iowrite32(__swab32(iv_32[0]), aes_dev->base_reg + AES_MULTIPURPOSE1_3_OFFSET); iowrite32(__swab32(iv_32[1]), aes_dev->base_reg + AES_MULTIPURPOSE1_2_OFFSET); iowrite32(__swab32(iv_32[2]), aes_dev->base_reg + AES_MULTIPURPOSE1_1_OFFSET); iowrite32(__swab32(iv_32[3]), aes_dev->base_reg + AES_MULTIPURPOSE1_0_OFFSET); /* Write MAC/tag length in register AES_TLEN */ iowrite32(tag_size, aes_dev->base_reg + AES_TLEN_OFFSET); /* * Write the byte length of the last AES/SM4 block of Payload data * (without zero padding and without the length of the MAC) in register * AES_PLEN. */ ocs_aes_write_last_data_blk_len(aes_dev, src_size); /* Set AES_ACTIVE.TRIGGER to start the operation. */ aes_a_op_trigger(aes_dev); aes_a_dma_reset_and_activate_perf_cntr(aes_dev); /* Form block B0 and write it to the AES/SM4 input buffer. */ rc = ocs_aes_ccm_write_b0(aes_dev, iv, adata_size, tag_size, src_size); if (rc) return rc; /* * Ensure there has been at least CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT * clock cycles since TRIGGER bit was set */ aes_a_dma_wait_and_deactivate_perf_cntr(aes_dev, CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT); /* Process Adata. */ ocs_aes_ccm_do_adata(aes_dev, adata_dma_list, adata_size); /* For Encrypt case we just process the payload and return. */ if (instruction == OCS_ENCRYPT) { return ocs_aes_ccm_encrypt_do_payload(aes_dev, dst_dma_list, src_dma_list, src_size); } /* For Decypt we need to process the payload and then the tag. */ rc = ocs_aes_ccm_decrypt_do_payload(aes_dev, dst_dma_list, src_dma_list, src_size); if (rc) return rc; /* Process MAC/tag directly: feed tag to engine and wait for IRQ. */ ocs_aes_ccm_write_encrypted_tag(aes_dev, in_tag, tag_size); rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT); if (rc) return rc; return ccm_compare_tag_to_yr(aes_dev, tag_size); } /** * ocs_create_linked_list_from_sg() - Create OCS DMA linked list from SG list. * @aes_dev: The OCS AES device the list will be created for. * @sg: The SG list OCS DMA linked list will be created from. When * passed to this function, @sg must have been already mapped * with dma_map_sg(). * @sg_dma_count: The number of DMA-mapped entries in @sg. This must be the * value returned by dma_map_sg() when @sg was mapped. * @dll_desc: The OCS DMA dma_list to use to store information about the * created linked list. * @data_size: The size of the data (from the SG list) to be mapped into the * OCS DMA linked list. * @data_offset: The offset (within the SG list) of the data to be mapped. * * Return: 0 on success, negative error code otherwise. */ int ocs_create_linked_list_from_sg(const struct ocs_aes_dev *aes_dev, struct scatterlist *sg, int sg_dma_count, struct ocs_dll_desc *dll_desc, size_t data_size, size_t data_offset) { struct ocs_dma_linked_list *ll = NULL; struct scatterlist *sg_tmp; unsigned int tmp; int dma_nents; int i; if (!dll_desc || !sg || !aes_dev) return -EINVAL; /* Default values for when no ddl_desc is created. */ dll_desc->vaddr = NULL; dll_desc->dma_addr = DMA_MAPPING_ERROR; dll_desc->size = 0; if (data_size == 0) return 0; /* Loop over sg_list until we reach entry at specified offset. */ while (data_offset >= sg_dma_len(sg)) { data_offset -= sg_dma_len(sg); sg_dma_count--; sg = sg_next(sg); /* If we reach the end of the list, offset was invalid. */ if (!sg || sg_dma_count == 0) return -EINVAL; } /* Compute number of DMA-mapped SG entries to add into OCS DMA list. */ dma_nents = 0; tmp = 0; sg_tmp = sg; while (tmp < data_offset + data_size) { /* If we reach the end of the list, data_size was invalid. */ if (!sg_tmp) return -EINVAL; tmp += sg_dma_len(sg_tmp); dma_nents++; sg_tmp = sg_next(sg_tmp); } if (dma_nents > sg_dma_count) return -EINVAL; /* Allocate the DMA list, one entry for each SG entry. */ dll_desc->size = sizeof(struct ocs_dma_linked_list) * dma_nents; dll_desc->vaddr = dma_alloc_coherent(aes_dev->dev, dll_desc->size, &dll_desc->dma_addr, GFP_KERNEL); if (!dll_desc->vaddr) return -ENOMEM; /* Populate DMA linked list entries. */ ll = dll_desc->vaddr; for (i = 0; i < dma_nents; i++, sg = sg_next(sg)) { ll[i].src_addr = sg_dma_address(sg) + data_offset; ll[i].src_len = (sg_dma_len(sg) - data_offset) < data_size ? (sg_dma_len(sg) - data_offset) : data_size; data_offset = 0; data_size -= ll[i].src_len; /* Current element points to the DMA address of the next one. */ ll[i].next = dll_desc->dma_addr + (sizeof(*ll) * (i + 1)); ll[i].ll_flags = 0; } /* Terminate last element. */ ll[i - 1].next = 0; ll[i - 1].ll_flags = OCS_LL_DMA_FLAG_TERMINATE; return 0; } |