Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 | #! /usr/bin/env perl # SPDX-License-Identifier: GPL-2.0 # This code is taken from the OpenSSL project but the author (Andy Polyakov) # has relicensed it under the GPLv2. Therefore this program is free software; # you can redistribute it and/or modify it under the terms of the GNU General # Public License version 2 as published by the Free Software Foundation. # # The original headers, including the original license headers, are # included below for completeness. # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # SHA256/512 for ARMv8. # # Performance in cycles per processed byte and improvement coefficient # over code generated with "default" compiler: # # SHA256-hw SHA256(*) SHA512 # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**)) # Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***)) # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***)) # Denver 2.01 10.5 (+26%) 6.70 (+8%) # X-Gene 20.0 (+100%) 12.8 (+300%(***)) # Mongoose 2.36 13.0 (+50%) 8.36 (+33%) # # (*) Software SHA256 results are of lesser relevance, presented # mostly for informational purposes. # (**) The result is a trade-off: it's possible to improve it by # 10% (or by 1 cycle per round), but at the cost of 20% loss # on Cortex-A53 (or by 4 cycles per round). # (***) Super-impressive coefficients over gcc-generated code are # indication of some compiler "pathology", most notably code # generated with -mgeneral-regs-only is significantly faster # and the gap is only 40-90%. # # October 2016. # # Originally it was reckoned that it makes no sense to implement NEON # version of SHA256 for 64-bit processors. This is because performance # improvement on most wide-spread Cortex-A5x processors was observed # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was # observed that 32-bit NEON SHA256 performs significantly better than # 64-bit scalar version on *some* of the more recent processors. As # result 64-bit NEON version of SHA256 was added to provide best # all-round performance. For example it executes ~30% faster on X-Gene # and Mongoose. [For reference, NEON version of SHA512 is bound to # deliver much less improvement, likely *negative* on Cortex-A5x. # Which is why NEON support is limited to SHA256.] $output=pop; $flavour=pop; if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; } else { open STDOUT,">$output"; } if ($output =~ /512/) { $BITS=512; $SZ=8; @Sigma0=(28,34,39); @Sigma1=(14,18,41); @sigma0=(1, 8, 7); @sigma1=(19,61, 6); $rounds=80; $reg_t="x"; } else { $BITS=256; $SZ=4; @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 7,18, 3); @sigma1=(17,19,10); $rounds=64; $reg_t="w"; } $func="sha${BITS}_block_data_order"; ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30)); @X=map("$reg_t$_",(3..15,0..2)); @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27)); ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28)); sub BODY_00_xx { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; my $j=($i+1)&15; my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]); $T0=@X[$i+3] if ($i<11); $code.=<<___ if ($i<16); #ifndef __AARCH64EB__ rev @X[$i],@X[$i] // $i #endif ___ $code.=<<___ if ($i<13 && ($i&1)); ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ ___ $code.=<<___ if ($i==13); ldp @X[14],@X[15],[$inp] ___ $code.=<<___ if ($i>=14); ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`] ___ $code.=<<___ if ($i>0 && $i<16); add $a,$a,$t1 // h+=Sigma0(a) ___ $code.=<<___ if ($i>=11); str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`] ___ # While ARMv8 specifies merged rotate-n-logical operation such as # 'eor x,y,z,ror#n', it was found to negatively affect performance # on Apple A7. The reason seems to be that it requires even 'y' to # be available earlier. This means that such merged instruction is # not necessarily best choice on critical path... On the other hand # Cortex-A5x handles merged instructions much better than disjoint # rotate and logical... See (**) footnote above. $code.=<<___ if ($i<15); ror $t0,$e,#$Sigma1[0] add $h,$h,$t2 // h+=K[i] eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]` and $t1,$f,$e bic $t2,$g,$e add $h,$h,@X[$i&15] // h+=X[i] orr $t1,$t1,$t2 // Ch(e,f,g) eor $t2,$a,$b // a^b, b^c in next round eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e) ror $T0,$a,#$Sigma0[0] add $h,$h,$t1 // h+=Ch(e,f,g) eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]` add $h,$h,$t0 // h+=Sigma1(e) and $t3,$t3,$t2 // (b^c)&=(a^b) add $d,$d,$h // d+=h eor $t3,$t3,$b // Maj(a,b,c) eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a) add $h,$h,$t3 // h+=Maj(a,b,c) ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round //add $h,$h,$t1 // h+=Sigma0(a) ___ $code.=<<___ if ($i>=15); ror $t0,$e,#$Sigma1[0] add $h,$h,$t2 // h+=K[i] ror $T1,@X[($j+1)&15],#$sigma0[0] and $t1,$f,$e ror $T2,@X[($j+14)&15],#$sigma1[0] bic $t2,$g,$e ror $T0,$a,#$Sigma0[0] add $h,$h,@X[$i&15] // h+=X[i] eor $t0,$t0,$e,ror#$Sigma1[1] eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1] orr $t1,$t1,$t2 // Ch(e,f,g) eor $t2,$a,$b // a^b, b^c in next round eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e) eor $T0,$T0,$a,ror#$Sigma0[1] add $h,$h,$t1 // h+=Ch(e,f,g) and $t3,$t3,$t2 // (b^c)&=(a^b) eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1] eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1]) add $h,$h,$t0 // h+=Sigma1(e) eor $t3,$t3,$b // Maj(a,b,c) eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a) eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14]) add @X[$j],@X[$j],@X[($j+9)&15] add $d,$d,$h // d+=h add $h,$h,$t3 // h+=Maj(a,b,c) ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round add @X[$j],@X[$j],$T1 add $h,$h,$t1 // h+=Sigma0(a) add @X[$j],@X[$j],$T2 ___ ($t2,$t3)=($t3,$t2); } $code.=<<___; #ifndef __KERNEL__ # include "arm_arch.h" #endif .text .extern OPENSSL_armcap_P .globl $func .type $func,%function .align 6 $func: ___ $code.=<<___ if ($SZ==4); #ifndef __KERNEL__ # ifdef __ILP32__ ldrsw x16,.LOPENSSL_armcap_P # else ldr x16,.LOPENSSL_armcap_P # endif adr x17,.LOPENSSL_armcap_P add x16,x16,x17 ldr w16,[x16] tst w16,#ARMV8_SHA256 b.ne .Lv8_entry tst w16,#ARMV7_NEON b.ne .Lneon_entry #endif ___ $code.=<<___; stp x29,x30,[sp,#-128]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] sub sp,sp,#4*$SZ ldp $A,$B,[$ctx] // load context ldp $C,$D,[$ctx,#2*$SZ] ldp $E,$F,[$ctx,#4*$SZ] add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input ldp $G,$H,[$ctx,#6*$SZ] adr $Ktbl,.LK$BITS stp $ctx,$num,[x29,#96] .Loop: ldp @X[0],@X[1],[$inp],#2*$SZ ldr $t2,[$Ktbl],#$SZ // *K++ eor $t3,$B,$C // magic seed str $inp,[x29,#112] ___ for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); } $code.=".Loop_16_xx:\n"; for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); } $code.=<<___; cbnz $t2,.Loop_16_xx ldp $ctx,$num,[x29,#96] ldr $inp,[x29,#112] sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind ldp @X[0],@X[1],[$ctx] ldp @X[2],@X[3],[$ctx,#2*$SZ] add $inp,$inp,#14*$SZ // advance input pointer ldp @X[4],@X[5],[$ctx,#4*$SZ] add $A,$A,@X[0] ldp @X[6],@X[7],[$ctx,#6*$SZ] add $B,$B,@X[1] add $C,$C,@X[2] add $D,$D,@X[3] stp $A,$B,[$ctx] add $E,$E,@X[4] add $F,$F,@X[5] stp $C,$D,[$ctx,#2*$SZ] add $G,$G,@X[6] add $H,$H,@X[7] cmp $inp,$num stp $E,$F,[$ctx,#4*$SZ] stp $G,$H,[$ctx,#6*$SZ] b.ne .Loop ldp x19,x20,[x29,#16] add sp,sp,#4*$SZ ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#128 ret .size $func,.-$func .align 6 .type .LK$BITS,%object .LK$BITS: ___ $code.=<<___ if ($SZ==8); .quad 0x428a2f98d728ae22,0x7137449123ef65cd .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc .quad 0x3956c25bf348b538,0x59f111f1b605d019 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 .quad 0xd807aa98a3030242,0x12835b0145706fbe .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 .quad 0x06ca6351e003826f,0x142929670a0e6e70 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 .quad 0x81c2c92e47edaee6,0x92722c851482353b .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 .quad 0xd192e819d6ef5218,0xd69906245565a910 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec .quad 0x90befffa23631e28,0xa4506cebde82bde9 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b .quad 0xca273eceea26619c,0xd186b8c721c0c207 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 .quad 0x113f9804bef90dae,0x1b710b35131c471b .quad 0x28db77f523047d84,0x32caab7b40c72493 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 .quad 0 // terminator ___ $code.=<<___ if ($SZ==4); .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .long 0 //terminator ___ $code.=<<___; .size .LK$BITS,.-.LK$BITS #ifndef __KERNEL__ .align 3 .LOPENSSL_armcap_P: # ifdef __ILP32__ .long OPENSSL_armcap_P-. # else .quad OPENSSL_armcap_P-. # endif #endif .asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>" .align 2 ___ if ($SZ==4) { my $Ktbl="x3"; my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2)); my @MSG=map("v$_.16b",(4..7)); my ($W0,$W1)=("v16.4s","v17.4s"); my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b"); $code.=<<___; #ifndef __KERNEL__ .type sha256_block_armv8,%function .align 6 sha256_block_armv8: .Lv8_entry: stp x29,x30,[sp,#-16]! add x29,sp,#0 ld1.32 {$ABCD,$EFGH},[$ctx] adr $Ktbl,.LK256 .Loop_hw: ld1 {@MSG[0]-@MSG[3]},[$inp],#64 sub $num,$num,#1 ld1.32 {$W0},[$Ktbl],#16 rev32 @MSG[0],@MSG[0] rev32 @MSG[1],@MSG[1] rev32 @MSG[2],@MSG[2] rev32 @MSG[3],@MSG[3] orr $ABCD_SAVE,$ABCD,$ABCD // offload orr $EFGH_SAVE,$EFGH,$EFGH ___ for($i=0;$i<12;$i++) { $code.=<<___; ld1.32 {$W1},[$Ktbl],#16 add.i32 $W0,$W0,@MSG[0] sha256su0 @MSG[0],@MSG[1] orr $abcd,$ABCD,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 sha256su1 @MSG[0],@MSG[2],@MSG[3] ___ ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); } $code.=<<___; ld1.32 {$W1},[$Ktbl],#16 add.i32 $W0,$W0,@MSG[0] orr $abcd,$ABCD,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 ld1.32 {$W0},[$Ktbl],#16 add.i32 $W1,$W1,@MSG[1] orr $abcd,$ABCD,$ABCD sha256h $ABCD,$EFGH,$W1 sha256h2 $EFGH,$abcd,$W1 ld1.32 {$W1},[$Ktbl] add.i32 $W0,$W0,@MSG[2] sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind orr $abcd,$ABCD,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 add.i32 $W1,$W1,@MSG[3] orr $abcd,$ABCD,$ABCD sha256h $ABCD,$EFGH,$W1 sha256h2 $EFGH,$abcd,$W1 add.i32 $ABCD,$ABCD,$ABCD_SAVE add.i32 $EFGH,$EFGH,$EFGH_SAVE cbnz $num,.Loop_hw st1.32 {$ABCD,$EFGH},[$ctx] ldr x29,[sp],#16 ret .size sha256_block_armv8,.-sha256_block_armv8 #endif ___ } if ($SZ==4) { ######################################### NEON stuff # # You'll surely note a lot of similarities with sha256-armv4 module, # and of course it's not a coincidence. sha256-armv4 was used as # initial template, but was adapted for ARMv8 instruction set and # extensively re-tuned for all-round performance. my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10)); my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15)); my $Ktbl="x16"; my $Xfer="x17"; my @X = map("q$_",(0..3)); my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19)); my $j=0; sub AUTOLOAD() # thunk [simplified] x86-style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; my $arg = pop; $arg = "#$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; } sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; } sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; } sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; } sub Xupdate() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e,$f,$g,$h); &ext_8 ($T0,@X[0],@X[1],4); # X[1..4] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &ext_8 ($T3,@X[2],@X[3],4); # X[9..12] eval(shift(@insns)); eval(shift(@insns)); &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15] eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T2,$T0,$sigma0[0]); eval(shift(@insns)); &ushr_32 ($T1,$T0,$sigma0[2]); eval(shift(@insns)); &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12] eval(shift(@insns)); &sli_32 ($T2,$T0,32-$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T3,$T0,$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T1,$T1,$T2); eval(shift(@insns)); eval(shift(@insns)); &sli_32 ($T3,$T0,32-$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T4,$T7,$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &sli_32 ($T4,$T7,32-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T5,$T7,$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T3,$T7,$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &sli_u32 ($T3,$T7,32-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T5,$T5,$T4); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T6,@X[0],$sigma1[0]); eval(shift(@insns)); &ushr_32 ($T7,@X[0],$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &sli_32 ($T6,@X[0],32-$sigma1[0]); eval(shift(@insns)); &ushr_32 ($T5,@X[0],$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T7,$T7,$T6); eval(shift(@insns)); eval(shift(@insns)); &sli_32 ($T5,@X[0],32-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &ld1_32 ("{$T0}","[$Ktbl], #16"); eval(shift(@insns)); &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T5,$T5,$T5); eval(shift(@insns)); eval(shift(@insns)); &mov (&Dhi($T5), &Dlo($T7)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &add_32 ($T0,$T0,@X[0]); while($#insns>=1) { eval(shift(@insns)); } &st1_32 ("{$T0}","[$Xfer], #16"); eval(shift(@insns)); push(@X,shift(@X)); # "rotate" X[] } sub Xpreload() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e,$f,$g,$h); eval(shift(@insns)); eval(shift(@insns)); &ld1_8 ("{@X[0]}","[$inp],#16"); eval(shift(@insns)); eval(shift(@insns)); &ld1_32 ("{$T0}","[$Ktbl],#16"); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &rev32 (@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &add_32 ($T0,$T0,@X[0]); foreach (@insns) { eval; } # remaining instructions &st1_32 ("{$T0}","[$Xfer], #16"); push(@X,shift(@X)); # "rotate" X[] } sub body_00_15 () { ( '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'. '&add ($h,$h,$t1)', # h+=X[i]+K[i] '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past '&and ($t1,$f,$e)', '&bic ($t4,$g,$e)', '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))', '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past '&orr ($t1,$t1,$t4)', # Ch(e,f,g) '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e) '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))', '&add ($h,$h,$t1)', # h+=Ch(e,f,g) '&ror ($t0,$t0,"#$Sigma1[0]")', '&eor ($t2,$a,$b)', # a^b, b^c in next round '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a) '&add ($h,$h,$t0)', # h+=Sigma1(e) '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'. '&ldr ($t1,"[$Ktbl]") if ($j==15);'. '&and ($t3,$t3,$t2)', # (b^c)&=(a^b) '&ror ($t4,$t4,"#$Sigma0[0]")', '&add ($d,$d,$h)', # d+=h '&eor ($t3,$t3,$b)', # Maj(a,b,c) '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);' ) } $code.=<<___; #ifdef __KERNEL__ .globl sha256_block_neon #endif .type sha256_block_neon,%function .align 4 sha256_block_neon: .Lneon_entry: stp x29, x30, [sp, #-16]! mov x29, sp sub sp,sp,#16*4 adr $Ktbl,.LK256 add $num,$inp,$num,lsl#6 // len to point at the end of inp ld1.8 {@X[0]},[$inp], #16 ld1.8 {@X[1]},[$inp], #16 ld1.8 {@X[2]},[$inp], #16 ld1.8 {@X[3]},[$inp], #16 ld1.32 {$T0},[$Ktbl], #16 ld1.32 {$T1},[$Ktbl], #16 ld1.32 {$T2},[$Ktbl], #16 ld1.32 {$T3},[$Ktbl], #16 rev32 @X[0],@X[0] // yes, even on rev32 @X[1],@X[1] // big-endian rev32 @X[2],@X[2] rev32 @X[3],@X[3] mov $Xfer,sp add.32 $T0,$T0,@X[0] add.32 $T1,$T1,@X[1] add.32 $T2,$T2,@X[2] st1.32 {$T0-$T1},[$Xfer], #32 add.32 $T3,$T3,@X[3] st1.32 {$T2-$T3},[$Xfer] sub $Xfer,$Xfer,#32 ldp $A,$B,[$ctx] ldp $C,$D,[$ctx,#8] ldp $E,$F,[$ctx,#16] ldp $G,$H,[$ctx,#24] ldr $t1,[sp,#0] mov $t2,wzr eor $t3,$B,$C mov $t4,wzr b .L_00_48 .align 4 .L_00_48: ___ &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); $code.=<<___; cmp $t1,#0 // check for K256 terminator ldr $t1,[sp,#0] sub $Xfer,$Xfer,#64 bne .L_00_48 sub $Ktbl,$Ktbl,#256 // rewind $Ktbl cmp $inp,$num mov $Xfer, #64 csel $Xfer, $Xfer, xzr, eq sub $inp,$inp,$Xfer // avoid SEGV mov $Xfer,sp ___ &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); $code.=<<___; add $A,$A,$t4 // h+=Sigma0(a) from the past ldp $t0,$t1,[$ctx,#0] add $A,$A,$t2 // h+=Maj(a,b,c) from the past ldp $t2,$t3,[$ctx,#8] add $A,$A,$t0 // accumulate add $B,$B,$t1 ldp $t0,$t1,[$ctx,#16] add $C,$C,$t2 add $D,$D,$t3 ldp $t2,$t3,[$ctx,#24] add $E,$E,$t0 add $F,$F,$t1 ldr $t1,[sp,#0] stp $A,$B,[$ctx,#0] add $G,$G,$t2 mov $t2,wzr stp $C,$D,[$ctx,#8] add $H,$H,$t3 stp $E,$F,[$ctx,#16] eor $t3,$B,$C stp $G,$H,[$ctx,#24] mov $t4,wzr mov $Xfer,sp b.ne .L_00_48 ldr x29,[x29] add sp,sp,#16*4+16 ret .size sha256_block_neon,.-sha256_block_neon ___ } $code.=<<___; #ifndef __KERNEL__ .comm OPENSSL_armcap_P,4,4 #endif ___ { my %opcode = ( "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000, "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 ); sub unsha256 { my ($mnemonic,$arg)=@_; $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o && sprintf ".inst\t0x%08x\t//%s %s", $opcode{$mnemonic}|$1|($2<<5)|($3<<16), $mnemonic,$arg; } } open SELF,$0; while(<SELF>) { next if (/^#!/); last if (!s/^#/\/\// and !/^$/); print; } close SELF; foreach(split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/ge; s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge; s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers s/\.[ui]?8(\s)/$1/; s/\.\w?32\b// and s/\.16b/\.4s/g; m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g; print $_,"\n"; } close STDOUT; |