Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018-2019 SiFive, Inc. * Wesley Terpstra * Paul Walmsley * * This library supports configuration parsing and reprogramming of * the CLN28HPC variant of the Analog Bits Wide Range PLL. The * intention is for this library to be reusable for any device that * integrates this PLL; thus the register structure and programming * details are expected to be provided by a separate IP block driver. * * The bulk of this code is primarily useful for clock configurations * that must operate at arbitrary rates, as opposed to clock configurations * that are restricted by software or manufacturer guidance to a small, * pre-determined set of performance points. * * References: * - Analog Bits "Wide Range PLL Datasheet", version 2015.10.01 * - SiFive FU540-C000 Manual v1p0, Chapter 7 "Clocking and Reset" * https://static.dev.sifive.com/FU540-C000-v1.0.pdf */ #include <linux/bug.h> #include <linux/err.h> #include <linux/limits.h> #include <linux/log2.h> #include <linux/math64.h> #include <linux/math.h> #include <linux/minmax.h> #include <linux/clk/analogbits-wrpll-cln28hpc.h> /* MIN_INPUT_FREQ: minimum input clock frequency, in Hz (Fref_min) */ #define MIN_INPUT_FREQ 7000000 /* MAX_INPUT_FREQ: maximum input clock frequency, in Hz (Fref_max) */ #define MAX_INPUT_FREQ 600000000 /* MIN_POST_DIVIDE_REF_FREQ: minimum post-divider reference frequency, in Hz */ #define MIN_POST_DIVR_FREQ 7000000 /* MAX_POST_DIVIDE_REF_FREQ: maximum post-divider reference frequency, in Hz */ #define MAX_POST_DIVR_FREQ 200000000 /* MIN_VCO_FREQ: minimum VCO frequency, in Hz (Fvco_min) */ #define MIN_VCO_FREQ 2400000000UL /* MAX_VCO_FREQ: maximum VCO frequency, in Hz (Fvco_max) */ #define MAX_VCO_FREQ 4800000000ULL /* MAX_DIVQ_DIVISOR: maximum output divisor. Selected by DIVQ = 6 */ #define MAX_DIVQ_DIVISOR 64 /* MAX_DIVR_DIVISOR: maximum reference divisor. Selected by DIVR = 63 */ #define MAX_DIVR_DIVISOR 64 /* MAX_LOCK_US: maximum PLL lock time, in microseconds (tLOCK_max) */ #define MAX_LOCK_US 70 /* * ROUND_SHIFT: number of bits to shift to avoid precision loss in the rounding * algorithm */ #define ROUND_SHIFT 20 /* * Private functions */ /** * __wrpll_calc_filter_range() - determine PLL loop filter bandwidth * @post_divr_freq: input clock rate after the R divider * * Select the value to be presented to the PLL RANGE input signals, based * on the input clock frequency after the post-R-divider @post_divr_freq. * This code follows the recommendations in the PLL datasheet for filter * range selection. * * Return: The RANGE value to be presented to the PLL configuration inputs, * or a negative return code upon error. */ static int __wrpll_calc_filter_range(unsigned long post_divr_freq) { if (post_divr_freq < MIN_POST_DIVR_FREQ || post_divr_freq > MAX_POST_DIVR_FREQ) { WARN(1, "%s: post-divider reference freq out of range: %lu", __func__, post_divr_freq); return -ERANGE; } switch (post_divr_freq) { case 0 ... 10999999: return 1; case 11000000 ... 17999999: return 2; case 18000000 ... 29999999: return 3; case 30000000 ... 49999999: return 4; case 50000000 ... 79999999: return 5; case 80000000 ... 129999999: return 6; } return 7; } /** * __wrpll_calc_fbdiv() - return feedback fixed divide value * @c: ptr to a struct wrpll_cfg record to read from * * The internal feedback path includes a fixed by-two divider; the * external feedback path does not. Return the appropriate divider * value (2 or 1) depending on whether internal or external feedback * is enabled. This code doesn't test for invalid configurations * (e.g. both or neither of WRPLL_FLAGS_*_FEEDBACK are set); it relies * on the caller to do so. * * Context: Any context. Caller must protect the memory pointed to by * @c from simultaneous modification. * * Return: 2 if internal feedback is enabled or 1 if external feedback * is enabled. */ static u8 __wrpll_calc_fbdiv(const struct wrpll_cfg *c) { return (c->flags & WRPLL_FLAGS_INT_FEEDBACK_MASK) ? 2 : 1; } /** * __wrpll_calc_divq() - determine DIVQ based on target PLL output clock rate * @target_rate: target PLL output clock rate * @vco_rate: pointer to a u64 to store the computed VCO rate into * * Determine a reasonable value for the PLL Q post-divider, based on the * target output rate @target_rate for the PLL. Along with returning the * computed Q divider value as the return value, this function stores the * desired target VCO rate into the variable pointed to by @vco_rate. * * Context: Any context. Caller must protect the memory pointed to by * @vco_rate from simultaneous access or modification. * * Return: a positive integer DIVQ value to be programmed into the hardware * upon success, or 0 upon error (since 0 is an invalid DIVQ value) */ static u8 __wrpll_calc_divq(u32 target_rate, u64 *vco_rate) { u64 s; u8 divq = 0; if (!vco_rate) { WARN_ON(1); goto wcd_out; } s = div_u64(MAX_VCO_FREQ, target_rate); if (s <= 1) { divq = 1; *vco_rate = MAX_VCO_FREQ; } else if (s > MAX_DIVQ_DIVISOR) { divq = ilog2(MAX_DIVQ_DIVISOR); *vco_rate = MIN_VCO_FREQ; } else { divq = ilog2(s); *vco_rate = (u64)target_rate << divq; } wcd_out: return divq; } /** * __wrpll_update_parent_rate() - update PLL data when parent rate changes * @c: ptr to a struct wrpll_cfg record to write PLL data to * @parent_rate: PLL input refclk rate (pre-R-divider) * * Pre-compute some data used by the PLL configuration algorithm when * the PLL's reference clock rate changes. The intention is to avoid * computation when the parent rate remains constant - expected to be * the common case. * * Returns: 0 upon success or -ERANGE if the reference clock rate is * out of range. */ static int __wrpll_update_parent_rate(struct wrpll_cfg *c, unsigned long parent_rate) { u8 max_r_for_parent; if (parent_rate > MAX_INPUT_FREQ || parent_rate < MIN_POST_DIVR_FREQ) return -ERANGE; c->parent_rate = parent_rate; max_r_for_parent = div_u64(parent_rate, MIN_POST_DIVR_FREQ); c->max_r = min_t(u8, MAX_DIVR_DIVISOR, max_r_for_parent); c->init_r = DIV_ROUND_UP_ULL(parent_rate, MAX_POST_DIVR_FREQ); return 0; } /** * wrpll_configure_for_rate() - compute PLL configuration for a target rate * @c: ptr to a struct wrpll_cfg record to write into * @target_rate: target PLL output clock rate (post-Q-divider) * @parent_rate: PLL input refclk rate (pre-R-divider) * * Compute the appropriate PLL signal configuration values and store * in PLL context @c. PLL reprogramming is not glitchless, so the * caller should switch any downstream logic to a different clock * source or clock-gate it before presenting these values to the PLL * configuration signals. * * The caller must pass this function a pre-initialized struct * wrpll_cfg record: either initialized to zero (with the * exception of the .name and .flags fields) or read from the PLL. * * Context: Any context. Caller must protect the memory pointed to by @c * from simultaneous access or modification. * * Return: 0 upon success; anything else upon failure. */ int wrpll_configure_for_rate(struct wrpll_cfg *c, u32 target_rate, unsigned long parent_rate) { unsigned long ratio; u64 target_vco_rate, delta, best_delta, f_pre_div, vco, vco_pre; u32 best_f, f, post_divr_freq; u8 fbdiv, divq, best_r, r; int range; if (c->flags == 0) { WARN(1, "%s called with uninitialized PLL config", __func__); return -EINVAL; } /* Initialize rounding data if it hasn't been initialized already */ if (parent_rate != c->parent_rate) { if (__wrpll_update_parent_rate(c, parent_rate)) { pr_err("%s: PLL input rate is out of range\n", __func__); return -ERANGE; } } c->flags &= ~WRPLL_FLAGS_RESET_MASK; /* Put the PLL into bypass if the user requests the parent clock rate */ if (target_rate == parent_rate) { c->flags |= WRPLL_FLAGS_BYPASS_MASK; return 0; } c->flags &= ~WRPLL_FLAGS_BYPASS_MASK; /* Calculate the Q shift and target VCO rate */ divq = __wrpll_calc_divq(target_rate, &target_vco_rate); if (!divq) return -1; c->divq = divq; /* Precalculate the pre-Q divider target ratio */ ratio = div64_u64((target_vco_rate << ROUND_SHIFT), parent_rate); fbdiv = __wrpll_calc_fbdiv(c); best_r = 0; best_f = 0; best_delta = MAX_VCO_FREQ; /* * Consider all values for R which land within * [MIN_POST_DIVR_FREQ, MAX_POST_DIVR_FREQ]; prefer smaller R */ for (r = c->init_r; r <= c->max_r; ++r) { f_pre_div = ratio * r; f = (f_pre_div + (1 << ROUND_SHIFT)) >> ROUND_SHIFT; f >>= (fbdiv - 1); post_divr_freq = div_u64(parent_rate, r); vco_pre = fbdiv * post_divr_freq; vco = vco_pre * f; /* Ensure rounding didn't take us out of range */ if (vco > target_vco_rate) { --f; vco = vco_pre * f; } else if (vco < MIN_VCO_FREQ) { ++f; vco = vco_pre * f; } delta = abs(target_rate - vco); if (delta < best_delta) { best_delta = delta; best_r = r; best_f = f; } } c->divr = best_r - 1; c->divf = best_f - 1; post_divr_freq = div_u64(parent_rate, best_r); /* Pick the best PLL jitter filter */ range = __wrpll_calc_filter_range(post_divr_freq); if (range < 0) return range; c->range = range; return 0; } /** * wrpll_calc_output_rate() - calculate the PLL's target output rate * @c: ptr to a struct wrpll_cfg record to read from * @parent_rate: PLL refclk rate * * Given a pointer to the PLL's current input configuration @c and the * PLL's input reference clock rate @parent_rate (before the R * pre-divider), calculate the PLL's output clock rate (after the Q * post-divider). * * Context: Any context. Caller must protect the memory pointed to by @c * from simultaneous modification. * * Return: the PLL's output clock rate, in Hz. The return value from * this function is intended to be convenient to pass directly * to the Linux clock framework; thus there is no explicit * error return value. */ unsigned long wrpll_calc_output_rate(const struct wrpll_cfg *c, unsigned long parent_rate) { u8 fbdiv; u64 n; if (c->flags & WRPLL_FLAGS_EXT_FEEDBACK_MASK) { WARN(1, "external feedback mode not yet supported"); return ULONG_MAX; } fbdiv = __wrpll_calc_fbdiv(c); n = parent_rate * fbdiv * (c->divf + 1); n = div_u64(n, c->divr + 1); n >>= c->divq; return n; } /** * wrpll_calc_max_lock_us() - return the time for the PLL to lock * @c: ptr to a struct wrpll_cfg record to read from * * Return the minimum amount of time (in microseconds) that the caller * must wait after reprogramming the PLL to ensure that it is locked * to the input frequency and stable. This is likely to depend on the DIVR * value; this is under discussion with the manufacturer. * * Return: the minimum amount of time the caller must wait for the PLL * to lock (in microseconds) */ unsigned int wrpll_calc_max_lock_us(const struct wrpll_cfg *c) { return MAX_LOCK_US; } |