Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 | // SPDX-License-Identifier: GPL-2.0-or-later /* * SGI RTC clock/timer routines. * * (C) Copyright 2020 Hewlett Packard Enterprise Development LP * Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved. * Copyright (c) Dimitri Sivanich */ #include <linux/clockchips.h> #include <linux/slab.h> #include <asm/uv/uv_mmrs.h> #include <asm/uv/uv_hub.h> #include <asm/uv/bios.h> #include <asm/uv/uv.h> #include <asm/apic.h> #include <asm/cpu.h> #define RTC_NAME "sgi_rtc" static u64 uv_read_rtc(struct clocksource *cs); static int uv_rtc_next_event(unsigned long, struct clock_event_device *); static int uv_rtc_shutdown(struct clock_event_device *evt); static struct clocksource clocksource_uv = { .name = RTC_NAME, .rating = 299, .read = uv_read_rtc, .mask = (u64)UVH_RTC_REAL_TIME_CLOCK_MASK, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static struct clock_event_device clock_event_device_uv = { .name = RTC_NAME, .features = CLOCK_EVT_FEAT_ONESHOT, .shift = 20, .rating = 400, .irq = -1, .set_next_event = uv_rtc_next_event, .set_state_shutdown = uv_rtc_shutdown, .event_handler = NULL, }; static DEFINE_PER_CPU(struct clock_event_device, cpu_ced); /* There is one of these allocated per node */ struct uv_rtc_timer_head { spinlock_t lock; /* next cpu waiting for timer, local node relative: */ int next_cpu; /* number of cpus on this node: */ int ncpus; struct { int lcpu; /* systemwide logical cpu number */ u64 expires; /* next timer expiration for this cpu */ } cpu[]; }; /* * Access to uv_rtc_timer_head via blade id. */ static struct uv_rtc_timer_head **blade_info __read_mostly; static int uv_rtc_evt_enable; /* * Hardware interface routines */ /* Send IPIs to another node */ static void uv_rtc_send_IPI(int cpu) { unsigned long apicid, val; int pnode; apicid = cpu_physical_id(cpu); pnode = uv_apicid_to_pnode(apicid); val = (1UL << UVH_IPI_INT_SEND_SHFT) | (apicid << UVH_IPI_INT_APIC_ID_SHFT) | (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT); uv_write_global_mmr64(pnode, UVH_IPI_INT, val); } /* Check for an RTC interrupt pending */ static int uv_intr_pending(int pnode) { return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED2) & UVH_EVENT_OCCURRED2_RTC_1_MASK; } /* Setup interrupt and return non-zero if early expiration occurred. */ static int uv_setup_intr(int cpu, u64 expires) { u64 val; unsigned long apicid = cpu_physical_id(cpu); int pnode = uv_cpu_to_pnode(cpu); uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, UVH_RTC1_INT_CONFIG_M_MASK); uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L); uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED2_ALIAS, UVH_EVENT_OCCURRED2_RTC_1_MASK); val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) | ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT); /* Set configuration */ uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val); /* Initialize comparator value */ uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires); if (uv_read_rtc(NULL) <= expires) return 0; return !uv_intr_pending(pnode); } /* * Per-cpu timer tracking routines */ static __init void uv_rtc_deallocate_timers(void) { int bid; for_each_possible_blade(bid) { kfree(blade_info[bid]); } kfree(blade_info); } /* Allocate per-node list of cpu timer expiration times. */ static __init int uv_rtc_allocate_timers(void) { int cpu; blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL); if (!blade_info) return -ENOMEM; for_each_present_cpu(cpu) { int nid = cpu_to_node(cpu); int bid = uv_cpu_to_blade_id(cpu); int bcpu = uv_cpu_blade_processor_id(cpu); struct uv_rtc_timer_head *head = blade_info[bid]; if (!head) { head = kmalloc_node(struct_size(head, cpu, uv_blade_nr_possible_cpus(bid)), GFP_KERNEL, nid); if (!head) { uv_rtc_deallocate_timers(); return -ENOMEM; } spin_lock_init(&head->lock); head->ncpus = uv_blade_nr_possible_cpus(bid); head->next_cpu = -1; blade_info[bid] = head; } head->cpu[bcpu].lcpu = cpu; head->cpu[bcpu].expires = ULLONG_MAX; } return 0; } /* Find and set the next expiring timer. */ static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode) { u64 lowest = ULLONG_MAX; int c, bcpu = -1; head->next_cpu = -1; for (c = 0; c < head->ncpus; c++) { u64 exp = head->cpu[c].expires; if (exp < lowest) { bcpu = c; lowest = exp; } } if (bcpu >= 0) { head->next_cpu = bcpu; c = head->cpu[bcpu].lcpu; if (uv_setup_intr(c, lowest)) /* If we didn't set it up in time, trigger */ uv_rtc_send_IPI(c); } else { uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, UVH_RTC1_INT_CONFIG_M_MASK); } } /* * Set expiration time for current cpu. * * Returns 1 if we missed the expiration time. */ static int uv_rtc_set_timer(int cpu, u64 expires) { int pnode = uv_cpu_to_pnode(cpu); int bid = uv_cpu_to_blade_id(cpu); struct uv_rtc_timer_head *head = blade_info[bid]; int bcpu = uv_cpu_blade_processor_id(cpu); u64 *t = &head->cpu[bcpu].expires; unsigned long flags; int next_cpu; spin_lock_irqsave(&head->lock, flags); next_cpu = head->next_cpu; *t = expires; /* Will this one be next to go off? */ if (next_cpu < 0 || bcpu == next_cpu || expires < head->cpu[next_cpu].expires) { head->next_cpu = bcpu; if (uv_setup_intr(cpu, expires)) { *t = ULLONG_MAX; uv_rtc_find_next_timer(head, pnode); spin_unlock_irqrestore(&head->lock, flags); return -ETIME; } } spin_unlock_irqrestore(&head->lock, flags); return 0; } /* * Unset expiration time for current cpu. * * Returns 1 if this timer was pending. */ static int uv_rtc_unset_timer(int cpu, int force) { int pnode = uv_cpu_to_pnode(cpu); int bid = uv_cpu_to_blade_id(cpu); struct uv_rtc_timer_head *head = blade_info[bid]; int bcpu = uv_cpu_blade_processor_id(cpu); u64 *t = &head->cpu[bcpu].expires; unsigned long flags; int rc = 0; spin_lock_irqsave(&head->lock, flags); if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force) rc = 1; if (rc) { *t = ULLONG_MAX; /* Was the hardware setup for this timer? */ if (head->next_cpu == bcpu) uv_rtc_find_next_timer(head, pnode); } spin_unlock_irqrestore(&head->lock, flags); return rc; } /* * Kernel interface routines. */ /* * Read the RTC. * * Starting with HUB rev 2.0, the UV RTC register is replicated across all * cachelines of it's own page. This allows faster simultaneous reads * from a given socket. */ static u64 uv_read_rtc(struct clocksource *cs) { unsigned long offset; if (uv_get_min_hub_revision_id() == 1) offset = 0; else offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE; return (u64)uv_read_local_mmr(UVH_RTC | offset); } /* * Program the next event, relative to now */ static int uv_rtc_next_event(unsigned long delta, struct clock_event_device *ced) { int ced_cpu = cpumask_first(ced->cpumask); return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL)); } /* * Shutdown the RTC timer */ static int uv_rtc_shutdown(struct clock_event_device *evt) { int ced_cpu = cpumask_first(evt->cpumask); uv_rtc_unset_timer(ced_cpu, 1); return 0; } static void uv_rtc_interrupt(void) { int cpu = smp_processor_id(); struct clock_event_device *ced = &per_cpu(cpu_ced, cpu); if (!ced || !ced->event_handler) return; if (uv_rtc_unset_timer(cpu, 0) != 1) return; ced->event_handler(ced); } static int __init uv_enable_evt_rtc(char *str) { uv_rtc_evt_enable = 1; return 1; } __setup("uvrtcevt", uv_enable_evt_rtc); static __init void uv_rtc_register_clockevents(struct work_struct *dummy) { struct clock_event_device *ced = this_cpu_ptr(&cpu_ced); *ced = clock_event_device_uv; ced->cpumask = cpumask_of(smp_processor_id()); clockevents_register_device(ced); } static __init int uv_rtc_setup_clock(void) { int rc; if (!is_uv_system()) return -ENODEV; rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second); if (rc) printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc); else printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n", sn_rtc_cycles_per_second/(unsigned long)1E6); if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback) return rc; /* Setup and register clockevents */ rc = uv_rtc_allocate_timers(); if (rc) goto error; x86_platform_ipi_callback = uv_rtc_interrupt; clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second, NSEC_PER_SEC, clock_event_device_uv.shift); clock_event_device_uv.min_delta_ns = NSEC_PER_SEC / sn_rtc_cycles_per_second; clock_event_device_uv.min_delta_ticks = 1; clock_event_device_uv.max_delta_ns = clocksource_uv.mask * (NSEC_PER_SEC / sn_rtc_cycles_per_second); clock_event_device_uv.max_delta_ticks = clocksource_uv.mask; rc = schedule_on_each_cpu(uv_rtc_register_clockevents); if (rc) { x86_platform_ipi_callback = NULL; uv_rtc_deallocate_timers(); goto error; } printk(KERN_INFO "UV RTC clockevents registered\n"); return 0; error: clocksource_unregister(&clocksource_uv); printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc); return rc; } arch_initcall(uv_rtc_setup_clock); |