Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
 */

#include <crypto/internal/hash.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>

#include "cipher.h"
#include "common.h"
#include "core.h"
#include "regs-v5.h"
#include "sha.h"
#include "aead.h"

static inline u32 qce_read(struct qce_device *qce, u32 offset)
{
	return readl(qce->base + offset);
}

static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
{
	writel(val, qce->base + offset);
}

static inline void qce_write_array(struct qce_device *qce, u32 offset,
				   const u32 *val, unsigned int len)
{
	int i;

	for (i = 0; i < len; i++)
		qce_write(qce, offset + i * sizeof(u32), val[i]);
}

static inline void
qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
{
	int i;

	for (i = 0; i < len; i++)
		qce_write(qce, offset + i * sizeof(u32), 0);
}

static u32 qce_config_reg(struct qce_device *qce, int little)
{
	u32 beats = (qce->burst_size >> 3) - 1;
	u32 pipe_pair = qce->pipe_pair_id;
	u32 config;

	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
	config &= ~HIGH_SPD_EN_N_SHIFT;

	if (little)
		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);

	return config;
}

void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
{
	__be32 *d = dst;
	const u8 *s = src;
	unsigned int n;

	n = len / sizeof(u32);
	for (; n > 0; n--) {
		*d = cpu_to_be32p((const __u32 *) s);
		s += sizeof(__u32);
		d++;
	}
}

static void qce_setup_config(struct qce_device *qce)
{
	u32 config;

	/* get big endianness */
	config = qce_config_reg(qce, 0);

	/* clear status */
	qce_write(qce, REG_STATUS, 0);
	qce_write(qce, REG_CONFIG, config);
}

static inline void qce_crypto_go(struct qce_device *qce, bool result_dump)
{
	if (result_dump)
		qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
	else
		qce_write(qce, REG_GOPROC, BIT(GO_SHIFT));
}

#if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size)
{
	u32 cfg = 0;

	if (IS_CCM(flags) || IS_CMAC(flags))
		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
	else
		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;

	if (IS_CCM(flags) || IS_CMAC(flags)) {
		if (key_size == AES_KEYSIZE_128)
			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
		else if (key_size == AES_KEYSIZE_256)
			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
	}

	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
	else if (IS_CMAC(flags))
		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
	else if (IS_CCM(flags))
		cfg |= (auth_size - 1) << AUTH_SIZE_SHIFT;

	if (IS_SHA1(flags) || IS_SHA256(flags))
		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags))
		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
	else if (IS_CCM(flags))
		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
	else if (IS_CMAC(flags))
		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;

	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;

	if (IS_CCM(flags))
		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;

	return cfg;
}
#endif

#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
{
	struct ahash_request *req = ahash_request_cast(async_req);
	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
	struct qce_device *qce = tmpl->qce;
	unsigned int digestsize = crypto_ahash_digestsize(ahash);
	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
	u32 auth_cfg = 0, config;
	unsigned int iv_words;

	/* if not the last, the size has to be on the block boundary */
	if (!rctx->last_blk && req->nbytes % blocksize)
		return -EINVAL;

	qce_setup_config(qce);

	if (IS_CMAC(rctx->flags)) {
		qce_write(qce, REG_AUTH_SEG_CFG, 0);
		qce_write(qce, REG_ENCR_SEG_CFG, 0);
		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
		qce_clear_array(qce, REG_AUTH_IV0, 16);
		qce_clear_array(qce, REG_AUTH_KEY0, 16);
		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);

		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen, digestsize);
	}

	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
		u32 authkey_words = rctx->authklen / sizeof(u32);

		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
				authkey_words);
	}

	if (IS_CMAC(rctx->flags))
		goto go_proc;

	if (rctx->first_blk)
		memcpy(auth, rctx->digest, digestsize);
	else
		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);

	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);

	if (rctx->first_blk)
		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
	else
		qce_write_array(qce, REG_AUTH_BYTECNT0,
				(u32 *)rctx->byte_count, 2);

	auth_cfg = qce_auth_cfg(rctx->flags, 0, digestsize);

	if (rctx->last_blk)
		auth_cfg |= BIT(AUTH_LAST_SHIFT);
	else
		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);

	if (rctx->first_blk)
		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
	else
		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);

go_proc:
	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
	qce_write(qce, REG_AUTH_SEG_START, 0);
	qce_write(qce, REG_ENCR_SEG_CFG, 0);
	qce_write(qce, REG_SEG_SIZE, req->nbytes);

	/* get little endianness */
	config = qce_config_reg(qce, 1);
	qce_write(qce, REG_CONFIG, config);

	qce_crypto_go(qce, true);

	return 0;
}
#endif

#if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
{
	u32 cfg = 0;

	if (IS_AES(flags)) {
		if (aes_key_size == AES_KEYSIZE_128)
			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
		else if (aes_key_size == AES_KEYSIZE_256)
			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
	}

	if (IS_AES(flags))
		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
	else if (IS_DES(flags) || IS_3DES(flags))
		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;

	if (IS_DES(flags))
		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;

	if (IS_3DES(flags))
		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;

	switch (flags & QCE_MODE_MASK) {
	case QCE_MODE_ECB:
		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
		break;
	case QCE_MODE_CBC:
		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
		break;
	case QCE_MODE_CTR:
		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
		break;
	case QCE_MODE_XTS:
		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
		break;
	case QCE_MODE_CCM:
		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
		break;
	default:
		return ~0;
	}

	return cfg;
}
#endif

#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
{
	u8 swap[QCE_AES_IV_LENGTH];
	u32 i, j;

	if (ivsize > QCE_AES_IV_LENGTH)
		return;

	memset(swap, 0, QCE_AES_IV_LENGTH);

	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
	     i < QCE_AES_IV_LENGTH; i++, j--)
		swap[i] = src[j];

	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
}

static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
		       unsigned int enckeylen, unsigned int cryptlen)
{
	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));

	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
			       enckeylen / 2);
	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);

	/* Set data unit size to cryptlen. Anything else causes
	 * crypto engine to return back incorrect results.
	 */
	qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen);
}

static int qce_setup_regs_skcipher(struct crypto_async_request *async_req)
{
	struct skcipher_request *req = skcipher_request_cast(async_req);
	struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
	struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
	struct qce_device *qce = tmpl->qce;
	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
	unsigned int enckey_words, enciv_words;
	unsigned int keylen;
	u32 encr_cfg = 0, auth_cfg = 0, config;
	unsigned int ivsize = rctx->ivsize;
	unsigned long flags = rctx->flags;

	qce_setup_config(qce);

	if (IS_XTS(flags))
		keylen = ctx->enc_keylen / 2;
	else
		keylen = ctx->enc_keylen;

	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
	enckey_words = keylen / sizeof(u32);

	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);

	encr_cfg = qce_encr_cfg(flags, keylen);

	if (IS_DES(flags)) {
		enciv_words = 2;
		enckey_words = 2;
	} else if (IS_3DES(flags)) {
		enciv_words = 2;
		enckey_words = 6;
	} else if (IS_AES(flags)) {
		if (IS_XTS(flags))
			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
				   rctx->cryptlen);
		enciv_words = 4;
	} else {
		return -EINVAL;
	}

	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);

	if (!IS_ECB(flags)) {
		if (IS_XTS(flags))
			qce_xts_swapiv(enciv, rctx->iv, ivsize);
		else
			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);

		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
	}

	if (IS_ENCRYPT(flags))
		encr_cfg |= BIT(ENCODE_SHIFT);

	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
	qce_write(qce, REG_ENCR_SEG_START, 0);

	if (IS_CTR(flags)) {
		qce_write(qce, REG_CNTR_MASK, ~0);
		qce_write(qce, REG_CNTR_MASK0, ~0);
		qce_write(qce, REG_CNTR_MASK1, ~0);
		qce_write(qce, REG_CNTR_MASK2, ~0);
	}

	qce_write(qce, REG_SEG_SIZE, rctx->cryptlen);

	/* get little endianness */
	config = qce_config_reg(qce, 1);
	qce_write(qce, REG_CONFIG, config);

	qce_crypto_go(qce, true);

	return 0;
}
#endif

#ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
};

static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
};

static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len)
{
	u32 *d = dst;
	const u8 *s = src;
	unsigned int n;

	n = len / sizeof(u32);
	for (; n > 0; n--) {
		*d = be32_to_cpup((const __be32 *)s);
		s += sizeof(u32);
		d++;
	}
	return DIV_ROUND_UP(len, sizeof(u32));
}

static int qce_setup_regs_aead(struct crypto_async_request *async_req)
{
	struct aead_request *req = aead_request_cast(async_req);
	struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req);
	struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
	struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req));
	struct qce_device *qce = tmpl->qce;
	u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
	u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0};
	u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0};
	u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0};
	u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0};
	unsigned int enc_keylen = ctx->enc_keylen;
	unsigned int auth_keylen = ctx->auth_keylen;
	unsigned int enc_ivsize = rctx->ivsize;
	unsigned int auth_ivsize = 0;
	unsigned int enckey_words, enciv_words;
	unsigned int authkey_words, authiv_words, authnonce_words;
	unsigned long flags = rctx->flags;
	u32 encr_cfg, auth_cfg, config, totallen;
	u32 iv_last_word;

	qce_setup_config(qce);

	/* Write encryption key */
	enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen);
	qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words);

	/* Write encryption iv */
	enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize);
	qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words);

	if (IS_CCM(rctx->flags)) {
		iv_last_word = enciv[enciv_words - 1];
		qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1);
		qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words);
		qce_write(qce, REG_CNTR_MASK, ~0);
		qce_write(qce, REG_CNTR_MASK0, ~0);
		qce_write(qce, REG_CNTR_MASK1, ~0);
		qce_write(qce, REG_CNTR_MASK2, ~0);
	}

	/* Clear authentication IV and KEY registers of previous values */
	qce_clear_array(qce, REG_AUTH_IV0, 16);
	qce_clear_array(qce, REG_AUTH_KEY0, 16);

	/* Clear byte count */
	qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);

	/* Write authentication key */
	authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen);
	qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words);

	/* Write initial authentication IV only for HMAC algorithms */
	if (IS_SHA_HMAC(rctx->flags)) {
		/* Write default authentication iv */
		if (IS_SHA1_HMAC(rctx->flags)) {
			auth_ivsize = SHA1_DIGEST_SIZE;
			memcpy(authiv, std_iv_sha1, auth_ivsize);
		} else if (IS_SHA256_HMAC(rctx->flags)) {
			auth_ivsize = SHA256_DIGEST_SIZE;
			memcpy(authiv, std_iv_sha256, auth_ivsize);
		}
		authiv_words = auth_ivsize / sizeof(u32);
		qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words);
	} else if (IS_CCM(rctx->flags)) {
		/* Write nonce for CCM algorithms */
		authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE);
		qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words);
	}

	/* Set up ENCR_SEG_CFG */
	encr_cfg = qce_encr_cfg(flags, enc_keylen);
	if (IS_ENCRYPT(flags))
		encr_cfg |= BIT(ENCODE_SHIFT);
	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);

	/* Set up AUTH_SEG_CFG */
	auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize);
	auth_cfg |= BIT(AUTH_LAST_SHIFT);
	auth_cfg |= BIT(AUTH_FIRST_SHIFT);
	if (IS_ENCRYPT(flags)) {
		if (IS_CCM(rctx->flags))
			auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
		else
			auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
	} else {
		if (IS_CCM(rctx->flags))
			auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
		else
			auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
	}
	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);

	totallen = rctx->cryptlen + rctx->assoclen;

	/* Set the encryption size and start offset */
	if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
		qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize);
	else
		qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
	qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff);

	/* Set the authentication size and start offset */
	qce_write(qce, REG_AUTH_SEG_SIZE, totallen);
	qce_write(qce, REG_AUTH_SEG_START, 0);

	/* Write total length */
	if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
		qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize);
	else
		qce_write(qce, REG_SEG_SIZE, totallen);

	/* get little endianness */
	config = qce_config_reg(qce, 1);
	qce_write(qce, REG_CONFIG, config);

	/* Start the process */
	qce_crypto_go(qce, !IS_CCM(flags));

	return 0;
}
#endif

int qce_start(struct crypto_async_request *async_req, u32 type)
{
	switch (type) {
#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
	case CRYPTO_ALG_TYPE_SKCIPHER:
		return qce_setup_regs_skcipher(async_req);
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
	case CRYPTO_ALG_TYPE_AHASH:
		return qce_setup_regs_ahash(async_req);
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
	case CRYPTO_ALG_TYPE_AEAD:
		return qce_setup_regs_aead(async_req);
#endif
	default:
		return -EINVAL;
	}
}

#define STATUS_ERRORS	\
		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))

int qce_check_status(struct qce_device *qce, u32 *status)
{
	int ret = 0;

	*status = qce_read(qce, REG_STATUS);

	/*
	 * Don't use result dump status. The operation may not be complete.
	 * Instead, use the status we just read from device. In case, we need to
	 * use result_status from result dump the result_status needs to be byte
	 * swapped, since we set the device to little endian.
	 */
	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
		ret = -ENXIO;
	else if (*status & BIT(MAC_FAILED_SHIFT))
		ret = -EBADMSG;

	return ret;
}

void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
{
	u32 val;

	val = qce_read(qce, REG_VERSION);
	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
}