Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 | // SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2016-20 Intel Corporation. */ #include <linux/lockdep.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/shmem_fs.h> #include <linux/suspend.h> #include <linux/sched/mm.h> #include <asm/sgx.h> #include "encl.h" #include "encls.h" #include "sgx.h" static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index, struct sgx_backing *backing); #define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd)) /* * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to * determine the page index associated with the first PCMD entry * within a PCMD page. */ #define PCMD_FIRST_MASK GENMASK(4, 0) /** * reclaimer_writing_to_pcmd() - Query if any enclave page associated with * a PCMD page is in process of being reclaimed. * @encl: Enclave to which PCMD page belongs * @start_addr: Address of enclave page using first entry within the PCMD page * * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is * stored. The PCMD data of a reclaimed enclave page contains enough * information for the processor to verify the page at the time * it is loaded back into the Enclave Page Cache (EPC). * * The backing storage to which enclave pages are reclaimed is laid out as * follows: * Encrypted enclave pages:SECS page:PCMD pages * * Each PCMD page contains the PCMD metadata of * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages. * * A PCMD page can only be truncated if it is (a) empty, and (b) not in the * process of getting data (and thus soon being non-empty). (b) is tested with * a check if an enclave page sharing the PCMD page is in the process of being * reclaimed. * * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it * intends to reclaim that enclave page - it means that the PCMD page * associated with that enclave page is about to get some data and thus * even if the PCMD page is empty, it should not be truncated. * * Context: Enclave mutex (&sgx_encl->lock) must be held. * Return: 1 if the reclaimer is about to write to the PCMD page * 0 if the reclaimer has no intention to write to the PCMD page */ static int reclaimer_writing_to_pcmd(struct sgx_encl *encl, unsigned long start_addr) { int reclaimed = 0; int i; /* * PCMD_FIRST_MASK is based on number of PCMD entries within * PCMD page being 32. */ BUILD_BUG_ON(PCMDS_PER_PAGE != 32); for (i = 0; i < PCMDS_PER_PAGE; i++) { struct sgx_encl_page *entry; unsigned long addr; addr = start_addr + i * PAGE_SIZE; /* * Stop when reaching the SECS page - it does not * have a page_array entry and its reclaim is * started and completed with enclave mutex held so * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED * flag. */ if (addr == encl->base + encl->size) break; entry = xa_load(&encl->page_array, PFN_DOWN(addr)); if (!entry) continue; /* * VA page slot ID uses same bit as the flag so it is important * to ensure that the page is not already in backing store. */ if (entry->epc_page && (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) { reclaimed = 1; break; } } return reclaimed; } /* * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's * follow right after the EPC data in the backing storage. In addition to the * visible enclave pages, there's one extra page slot for SECS, before PCMD * structs. */ static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl, unsigned long page_index) { pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs); return epc_end_off + page_index * sizeof(struct sgx_pcmd); } /* * Free a page from the backing storage in the given page index. */ static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index) { struct inode *inode = file_inode(encl->backing); shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1); } /* * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC * Pages" in the SDM. */ static int __sgx_encl_eldu(struct sgx_encl_page *encl_page, struct sgx_epc_page *epc_page, struct sgx_epc_page *secs_page) { unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK; struct sgx_encl *encl = encl_page->encl; pgoff_t page_index, page_pcmd_off; unsigned long pcmd_first_page; struct sgx_pageinfo pginfo; struct sgx_backing b; bool pcmd_page_empty; u8 *pcmd_page; int ret; if (secs_page) page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); else page_index = PFN_DOWN(encl->size); /* * Address of enclave page using the first entry within the PCMD page. */ pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base; page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index); ret = sgx_encl_lookup_backing(encl, page_index, &b); if (ret) return ret; pginfo.addr = encl_page->desc & PAGE_MASK; pginfo.contents = (unsigned long)kmap_local_page(b.contents); pcmd_page = kmap_local_page(b.pcmd); pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset; if (secs_page) pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page); else pginfo.secs = 0; ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page), sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset); if (ret) { if (encls_failed(ret)) ENCLS_WARN(ret, "ELDU"); ret = -EFAULT; } memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd)); set_page_dirty(b.pcmd); /* * The area for the PCMD in the page was zeroed above. Check if the * whole page is now empty meaning that all PCMD's have been zeroed: */ pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE); kunmap_local(pcmd_page); kunmap_local((void *)(unsigned long)pginfo.contents); get_page(b.pcmd); sgx_encl_put_backing(&b); sgx_encl_truncate_backing_page(encl, page_index); if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) { sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off)); pcmd_page = kmap_local_page(b.pcmd); if (memchr_inv(pcmd_page, 0, PAGE_SIZE)) pr_warn("PCMD page not empty after truncate.\n"); kunmap_local(pcmd_page); } put_page(b.pcmd); return ret; } static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page, struct sgx_epc_page *secs_page) { unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK; struct sgx_encl *encl = encl_page->encl; struct sgx_epc_page *epc_page; int ret; epc_page = sgx_alloc_epc_page(encl_page, false); if (IS_ERR(epc_page)) return epc_page; ret = __sgx_encl_eldu(encl_page, epc_page, secs_page); if (ret) { sgx_encl_free_epc_page(epc_page); return ERR_PTR(ret); } sgx_free_va_slot(encl_page->va_page, va_offset); list_move(&encl_page->va_page->list, &encl->va_pages); encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK; encl_page->epc_page = epc_page; return epc_page; } static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl, struct sgx_encl_page *entry) { struct sgx_epc_page *epc_page; /* Entry successfully located. */ if (entry->epc_page) { if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED) return ERR_PTR(-EBUSY); return entry; } if (!(encl->secs.epc_page)) { epc_page = sgx_encl_eldu(&encl->secs, NULL); if (IS_ERR(epc_page)) return ERR_CAST(epc_page); } epc_page = sgx_encl_eldu(entry, encl->secs.epc_page); if (IS_ERR(epc_page)) return ERR_CAST(epc_page); encl->secs_child_cnt++; sgx_mark_page_reclaimable(entry->epc_page); return entry; } static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl, unsigned long addr, unsigned long vm_flags) { unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS; struct sgx_encl_page *entry; entry = xa_load(&encl->page_array, PFN_DOWN(addr)); if (!entry) return ERR_PTR(-EFAULT); /* * Verify that the page has equal or higher build time * permissions than the VMA permissions (i.e. the subset of {VM_READ, * VM_WRITE, VM_EXECUTE} in vma->vm_flags). */ if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits) return ERR_PTR(-EFAULT); return __sgx_encl_load_page(encl, entry); } struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl, unsigned long addr) { struct sgx_encl_page *entry; entry = xa_load(&encl->page_array, PFN_DOWN(addr)); if (!entry) return ERR_PTR(-EFAULT); return __sgx_encl_load_page(encl, entry); } /** * sgx_encl_eaug_page() - Dynamically add page to initialized enclave * @vma: VMA obtained from fault info from where page is accessed * @encl: enclave accessing the page * @addr: address that triggered the page fault * * When an initialized enclave accesses a page with no backing EPC page * on a SGX2 system then the EPC can be added dynamically via the SGX2 * ENCLS[EAUG] instruction. * * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise. */ static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma, struct sgx_encl *encl, unsigned long addr) { vm_fault_t vmret = VM_FAULT_SIGBUS; struct sgx_pageinfo pginfo = {0}; struct sgx_encl_page *encl_page; struct sgx_epc_page *epc_page; struct sgx_va_page *va_page; unsigned long phys_addr; u64 secinfo_flags; int ret; if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) return VM_FAULT_SIGBUS; /* * Ignore internal permission checking for dynamically added pages. * They matter only for data added during the pre-initialization * phase. The enclave decides the permissions by the means of * EACCEPT, EACCEPTCOPY and EMODPE. */ secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X; encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags); if (IS_ERR(encl_page)) return VM_FAULT_OOM; mutex_lock(&encl->lock); epc_page = sgx_alloc_epc_page(encl_page, false); if (IS_ERR(epc_page)) { if (PTR_ERR(epc_page) == -EBUSY) vmret = VM_FAULT_NOPAGE; goto err_out_unlock; } va_page = sgx_encl_grow(encl, false); if (IS_ERR(va_page)) { if (PTR_ERR(va_page) == -EBUSY) vmret = VM_FAULT_NOPAGE; goto err_out_epc; } if (va_page) list_add(&va_page->list, &encl->va_pages); ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc), encl_page, GFP_KERNEL); /* * If ret == -EBUSY then page was created in another flow while * running without encl->lock */ if (ret) goto err_out_shrink; pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page); pginfo.addr = encl_page->desc & PAGE_MASK; pginfo.metadata = 0; ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page)); if (ret) goto err_out; encl_page->encl = encl; encl_page->epc_page = epc_page; encl_page->type = SGX_PAGE_TYPE_REG; encl->secs_child_cnt++; sgx_mark_page_reclaimable(encl_page->epc_page); phys_addr = sgx_get_epc_phys_addr(epc_page); /* * Do not undo everything when creating PTE entry fails - next #PF * would find page ready for a PTE. */ vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr)); if (vmret != VM_FAULT_NOPAGE) { mutex_unlock(&encl->lock); return VM_FAULT_SIGBUS; } mutex_unlock(&encl->lock); return VM_FAULT_NOPAGE; err_out: xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc)); err_out_shrink: sgx_encl_shrink(encl, va_page); err_out_epc: sgx_encl_free_epc_page(epc_page); err_out_unlock: mutex_unlock(&encl->lock); kfree(encl_page); return vmret; } static vm_fault_t sgx_vma_fault(struct vm_fault *vmf) { unsigned long addr = (unsigned long)vmf->address; struct vm_area_struct *vma = vmf->vma; struct sgx_encl_page *entry; unsigned long phys_addr; struct sgx_encl *encl; vm_fault_t ret; encl = vma->vm_private_data; /* * It's very unlikely but possible that allocating memory for the * mm_list entry of a forked process failed in sgx_vma_open(). When * this happens, vm_private_data is set to NULL. */ if (unlikely(!encl)) return VM_FAULT_SIGBUS; /* * The page_array keeps track of all enclave pages, whether they * are swapped out or not. If there is no entry for this page and * the system supports SGX2 then it is possible to dynamically add * a new enclave page. This is only possible for an initialized * enclave that will be checked for right away. */ if (cpu_feature_enabled(X86_FEATURE_SGX2) && (!xa_load(&encl->page_array, PFN_DOWN(addr)))) return sgx_encl_eaug_page(vma, encl, addr); mutex_lock(&encl->lock); entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags); if (IS_ERR(entry)) { mutex_unlock(&encl->lock); if (PTR_ERR(entry) == -EBUSY) return VM_FAULT_NOPAGE; return VM_FAULT_SIGBUS; } phys_addr = sgx_get_epc_phys_addr(entry->epc_page); ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr)); if (ret != VM_FAULT_NOPAGE) { mutex_unlock(&encl->lock); return VM_FAULT_SIGBUS; } sgx_encl_test_and_clear_young(vma->vm_mm, entry); mutex_unlock(&encl->lock); return VM_FAULT_NOPAGE; } static void sgx_vma_open(struct vm_area_struct *vma) { struct sgx_encl *encl = vma->vm_private_data; /* * It's possible but unlikely that vm_private_data is NULL. This can * happen in a grandchild of a process, when sgx_encl_mm_add() had * failed to allocate memory in this callback. */ if (unlikely(!encl)) return; if (sgx_encl_mm_add(encl, vma->vm_mm)) vma->vm_private_data = NULL; } /** * sgx_encl_may_map() - Check if a requested VMA mapping is allowed * @encl: an enclave pointer * @start: lower bound of the address range, inclusive * @end: upper bound of the address range, exclusive * @vm_flags: VMA flags * * Iterate through the enclave pages contained within [@start, @end) to verify * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC} * do not contain any permissions that are not contained in the build time * permissions of any of the enclave pages within the given address range. * * An enclave creator must declare the strongest permissions that will be * needed for each enclave page. This ensures that mappings have the identical * or weaker permissions than the earlier declared permissions. * * Return: 0 on success, -EACCES otherwise */ int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start, unsigned long end, unsigned long vm_flags) { unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS; struct sgx_encl_page *page; unsigned long count = 0; int ret = 0; XA_STATE(xas, &encl->page_array, PFN_DOWN(start)); /* Disallow mapping outside enclave's address range. */ if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) && (start < encl->base || end > encl->base + encl->size)) return -EACCES; /* * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might * conflict with the enclave page permissions. */ if (current->personality & READ_IMPLIES_EXEC) return -EACCES; mutex_lock(&encl->lock); xas_lock(&xas); xas_for_each(&xas, page, PFN_DOWN(end - 1)) { if (~page->vm_max_prot_bits & vm_prot_bits) { ret = -EACCES; break; } /* Reschedule on every XA_CHECK_SCHED iteration. */ if (!(++count % XA_CHECK_SCHED)) { xas_pause(&xas); xas_unlock(&xas); mutex_unlock(&encl->lock); cond_resched(); mutex_lock(&encl->lock); xas_lock(&xas); } } xas_unlock(&xas); mutex_unlock(&encl->lock); return ret; } static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start, unsigned long end, unsigned long newflags) { return sgx_encl_may_map(vma->vm_private_data, start, end, newflags); } static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page, unsigned long addr, void *data) { unsigned long offset = addr & ~PAGE_MASK; int ret; ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data); if (ret) return -EIO; return 0; } static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page, unsigned long addr, void *data) { unsigned long offset = addr & ~PAGE_MASK; int ret; ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data); if (ret) return -EIO; return 0; } /* * Load an enclave page to EPC if required, and take encl->lock. */ static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl, unsigned long addr, unsigned long vm_flags) { struct sgx_encl_page *entry; for ( ; ; ) { mutex_lock(&encl->lock); entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags); if (PTR_ERR(entry) != -EBUSY) break; mutex_unlock(&encl->lock); } if (IS_ERR(entry)) mutex_unlock(&encl->lock); return entry; } static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { struct sgx_encl *encl = vma->vm_private_data; struct sgx_encl_page *entry = NULL; char data[sizeof(unsigned long)]; unsigned long align; int offset; int cnt; int ret = 0; int i; /* * If process was forked, VMA is still there but vm_private_data is set * to NULL. */ if (!encl) return -EFAULT; if (!test_bit(SGX_ENCL_DEBUG, &encl->flags)) return -EFAULT; for (i = 0; i < len; i += cnt) { entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK, vma->vm_flags); if (IS_ERR(entry)) { ret = PTR_ERR(entry); break; } align = ALIGN_DOWN(addr + i, sizeof(unsigned long)); offset = (addr + i) & (sizeof(unsigned long) - 1); cnt = sizeof(unsigned long) - offset; cnt = min(cnt, len - i); ret = sgx_encl_debug_read(encl, entry, align, data); if (ret) goto out; if (write) { memcpy(data + offset, buf + i, cnt); ret = sgx_encl_debug_write(encl, entry, align, data); if (ret) goto out; } else { memcpy(buf + i, data + offset, cnt); } out: mutex_unlock(&encl->lock); if (ret) break; } return ret < 0 ? ret : i; } const struct vm_operations_struct sgx_vm_ops = { .fault = sgx_vma_fault, .mprotect = sgx_vma_mprotect, .open = sgx_vma_open, .access = sgx_vma_access, }; /** * sgx_encl_release - Destroy an enclave instance * @ref: address of a kref inside &sgx_encl * * Used together with kref_put(). Frees all the resources associated with the * enclave and the instance itself. */ void sgx_encl_release(struct kref *ref) { struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount); unsigned long max_page_index = PFN_DOWN(encl->base + encl->size - 1); struct sgx_va_page *va_page; struct sgx_encl_page *entry; unsigned long count = 0; XA_STATE(xas, &encl->page_array, PFN_DOWN(encl->base)); xas_lock(&xas); xas_for_each(&xas, entry, max_page_index) { if (entry->epc_page) { /* * The page and its radix tree entry cannot be freed * if the page is being held by the reclaimer. */ if (sgx_unmark_page_reclaimable(entry->epc_page)) continue; sgx_encl_free_epc_page(entry->epc_page); encl->secs_child_cnt--; entry->epc_page = NULL; } kfree(entry); /* * Invoke scheduler on every XA_CHECK_SCHED iteration * to prevent soft lockups. */ if (!(++count % XA_CHECK_SCHED)) { xas_pause(&xas); xas_unlock(&xas); cond_resched(); xas_lock(&xas); } } xas_unlock(&xas); xa_destroy(&encl->page_array); if (!encl->secs_child_cnt && encl->secs.epc_page) { sgx_encl_free_epc_page(encl->secs.epc_page); encl->secs.epc_page = NULL; } while (!list_empty(&encl->va_pages)) { va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, list); list_del(&va_page->list); sgx_encl_free_epc_page(va_page->epc_page); kfree(va_page); } if (encl->backing) fput(encl->backing); cleanup_srcu_struct(&encl->srcu); WARN_ON_ONCE(!list_empty(&encl->mm_list)); /* Detect EPC page leak's. */ WARN_ON_ONCE(encl->secs_child_cnt); WARN_ON_ONCE(encl->secs.epc_page); kfree(encl); } /* * 'mm' is exiting and no longer needs mmu notifications. */ static void sgx_mmu_notifier_release(struct mmu_notifier *mn, struct mm_struct *mm) { struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier); struct sgx_encl_mm *tmp = NULL; /* * The enclave itself can remove encl_mm. Note, objects can't be moved * off an RCU protected list, but deletion is ok. */ spin_lock(&encl_mm->encl->mm_lock); list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) { if (tmp == encl_mm) { list_del_rcu(&encl_mm->list); break; } } spin_unlock(&encl_mm->encl->mm_lock); if (tmp == encl_mm) { synchronize_srcu(&encl_mm->encl->srcu); mmu_notifier_put(mn); } } static void sgx_mmu_notifier_free(struct mmu_notifier *mn) { struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier); /* 'encl_mm' is going away, put encl_mm->encl reference: */ kref_put(&encl_mm->encl->refcount, sgx_encl_release); kfree(encl_mm); } static const struct mmu_notifier_ops sgx_mmu_notifier_ops = { .release = sgx_mmu_notifier_release, .free_notifier = sgx_mmu_notifier_free, }; static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl, struct mm_struct *mm) { struct sgx_encl_mm *encl_mm = NULL; struct sgx_encl_mm *tmp; int idx; idx = srcu_read_lock(&encl->srcu); list_for_each_entry_rcu(tmp, &encl->mm_list, list) { if (tmp->mm == mm) { encl_mm = tmp; break; } } srcu_read_unlock(&encl->srcu, idx); return encl_mm; } int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm) { struct sgx_encl_mm *encl_mm; int ret; /* * Even though a single enclave may be mapped into an mm more than once, * each 'mm' only appears once on encl->mm_list. This is guaranteed by * holding the mm's mmap lock for write before an mm can be added or * remove to an encl->mm_list. */ mmap_assert_write_locked(mm); /* * It's possible that an entry already exists in the mm_list, because it * is removed only on VFS release or process exit. */ if (sgx_encl_find_mm(encl, mm)) return 0; encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL); if (!encl_mm) return -ENOMEM; /* Grab a refcount for the encl_mm->encl reference: */ kref_get(&encl->refcount); encl_mm->encl = encl; encl_mm->mm = mm; encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops; ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm); if (ret) { kfree(encl_mm); return ret; } spin_lock(&encl->mm_lock); list_add_rcu(&encl_mm->list, &encl->mm_list); /* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */ smp_wmb(); encl->mm_list_version++; spin_unlock(&encl->mm_lock); return 0; } /** * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave * @encl: the enclave * * Some SGX functions require that no cached linear-to-physical address * mappings are present before they can succeed. For example, ENCLS[EWB] * copies a page from the enclave page cache to regular main memory but * it fails if it cannot ensure that there are no cached * linear-to-physical address mappings referring to the page. * * SGX hardware flushes all cached linear-to-physical mappings on a CPU * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical * address mappings are cleared but coordination with the tracking done within * the SGX hardware is needed to support the SGX functions that depend on this * cache clearing. * * When the ENCLS[ETRACK] function is issued on an enclave the hardware * tracks threads operating inside the enclave at that time. The SGX * hardware tracking require that all the identified threads must have * exited the enclave in order to flush the mappings before a function such * as ENCLS[EWB] will be permitted * * The following flow is used to support SGX functions that require that * no cached linear-to-physical address mappings are present: * 1) Execute ENCLS[ETRACK] to initiate hardware tracking. * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be * accessing the enclave. * 3) Send IPI to identified CPUs, kicking them out of the enclave and * thus flushing all locally cached linear-to-physical address mappings. * 4) Execute SGX function. * * Context: It is required to call this function after ENCLS[ETRACK]. * This will ensure that if any new mm appears (racing with * sgx_encl_mm_add()) then the new mm will enter into the * enclave with fresh linear-to-physical address mappings. * * It is required that all IPIs are completed before a new * ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3 * of the above flow with the enclave's mutex. * * Return: cpumask of CPUs that might be accessing @encl */ const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl) { cpumask_t *cpumask = &encl->cpumask; struct sgx_encl_mm *encl_mm; int idx; cpumask_clear(cpumask); idx = srcu_read_lock(&encl->srcu); list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { if (!mmget_not_zero(encl_mm->mm)) continue; cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm)); mmput_async(encl_mm->mm); } srcu_read_unlock(&encl->srcu, idx); return cpumask; } static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl, pgoff_t index) { struct address_space *mapping = encl->backing->f_mapping; gfp_t gfpmask = mapping_gfp_mask(mapping); return shmem_read_mapping_page_gfp(mapping, index, gfpmask); } /** * __sgx_encl_get_backing() - Pin the backing storage * @encl: an enclave pointer * @page_index: enclave page index * @backing: data for accessing backing storage for the page * * Pin the backing storage pages for storing the encrypted contents and Paging * Crypto MetaData (PCMD) of an enclave page. * * Return: * 0 on success, * -errno otherwise. */ static int __sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index, struct sgx_backing *backing) { pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index); struct page *contents; struct page *pcmd; contents = sgx_encl_get_backing_page(encl, page_index); if (IS_ERR(contents)) return PTR_ERR(contents); pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off)); if (IS_ERR(pcmd)) { put_page(contents); return PTR_ERR(pcmd); } backing->contents = contents; backing->pcmd = pcmd; backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1); return 0; } /* * When called from ksgxd, returns the mem_cgroup of a struct mm stored * in the enclave's mm_list. When not called from ksgxd, just returns * the mem_cgroup of the current task. */ static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl) { struct mem_cgroup *memcg = NULL; struct sgx_encl_mm *encl_mm; int idx; /* * If called from normal task context, return the mem_cgroup * of the current task's mm. The remainder of the handling is for * ksgxd. */ if (!current_is_ksgxd()) return get_mem_cgroup_from_mm(current->mm); /* * Search the enclave's mm_list to find an mm associated with * this enclave to charge the allocation to. */ idx = srcu_read_lock(&encl->srcu); list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { if (!mmget_not_zero(encl_mm->mm)) continue; memcg = get_mem_cgroup_from_mm(encl_mm->mm); mmput_async(encl_mm->mm); break; } srcu_read_unlock(&encl->srcu, idx); /* * In the rare case that there isn't an mm associated with * the enclave, set memcg to the current active mem_cgroup. * This will be the root mem_cgroup if there is no active * mem_cgroup. */ if (!memcg) return get_mem_cgroup_from_mm(NULL); return memcg; } /** * sgx_encl_alloc_backing() - create a new backing storage page * @encl: an enclave pointer * @page_index: enclave page index * @backing: data for accessing backing storage for the page * * When called from ksgxd, sets the active memcg from one of the * mms in the enclave's mm_list prior to any backing page allocation, * in order to ensure that shmem page allocations are charged to the * enclave. Create a backing page for loading data back into an EPC page with * ELDU. This function takes a reference on a new backing page which * must be dropped with a corresponding call to sgx_encl_put_backing(). * * Return: * 0 on success, * -errno otherwise. */ int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index, struct sgx_backing *backing) { struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl); struct mem_cgroup *memcg = set_active_memcg(encl_memcg); int ret; ret = __sgx_encl_get_backing(encl, page_index, backing); set_active_memcg(memcg); mem_cgroup_put(encl_memcg); return ret; } /** * sgx_encl_lookup_backing() - retrieve an existing backing storage page * @encl: an enclave pointer * @page_index: enclave page index * @backing: data for accessing backing storage for the page * * Retrieve a backing page for loading data back into an EPC page with ELDU. * It is the caller's responsibility to ensure that it is appropriate to use * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is * not used correctly, this will cause an allocation which is not accounted for. * This function takes a reference on an existing backing page which must be * dropped with a corresponding call to sgx_encl_put_backing(). * * Return: * 0 on success, * -errno otherwise. */ static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index, struct sgx_backing *backing) { return __sgx_encl_get_backing(encl, page_index, backing); } /** * sgx_encl_put_backing() - Unpin the backing storage * @backing: data for accessing backing storage for the page */ void sgx_encl_put_backing(struct sgx_backing *backing) { put_page(backing->pcmd); put_page(backing->contents); } static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr, void *data) { pte_t pte; int ret; ret = pte_young(*ptep); if (ret) { pte = pte_mkold(*ptep); set_pte_at((struct mm_struct *)data, addr, ptep, pte); } return ret; } /** * sgx_encl_test_and_clear_young() - Test and reset the accessed bit * @mm: mm_struct that is checked * @page: enclave page to be tested for recent access * * Checks the Access (A) bit from the PTE corresponding to the enclave page and * clears it. * * Return: 1 if the page has been recently accessed and 0 if not. */ int sgx_encl_test_and_clear_young(struct mm_struct *mm, struct sgx_encl_page *page) { unsigned long addr = page->desc & PAGE_MASK; struct sgx_encl *encl = page->encl; struct vm_area_struct *vma; int ret; ret = sgx_encl_find(mm, addr, &vma); if (ret) return 0; if (encl != vma->vm_private_data) return 0; ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE, sgx_encl_test_and_clear_young_cb, vma->vm_mm); if (ret < 0) return 0; return ret; } struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl, unsigned long offset, u64 secinfo_flags) { struct sgx_encl_page *encl_page; unsigned long prot; encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL); if (!encl_page) return ERR_PTR(-ENOMEM); encl_page->desc = encl->base + offset; encl_page->encl = encl; prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ) | _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) | _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC); /* * TCS pages must always RW set for CPU access while the SECINFO * permissions are *always* zero - the CPU ignores the user provided * values and silently overwrites them with zero permissions. */ if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS) prot |= PROT_READ | PROT_WRITE; /* Calculate maximum of the VM flags for the page. */ encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0); return encl_page; } /** * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave * @encl: the enclave * @addr: page aligned pointer to single page for which PTEs will be removed * * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping * @addr from each VMA. Ensure that page fault handler is ready to handle * new mappings of @addr before calling this function. */ void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr) { unsigned long mm_list_version; struct sgx_encl_mm *encl_mm; struct vm_area_struct *vma; int idx, ret; do { mm_list_version = encl->mm_list_version; /* Pairs with smp_wmb() in sgx_encl_mm_add(). */ smp_rmb(); idx = srcu_read_lock(&encl->srcu); list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { if (!mmget_not_zero(encl_mm->mm)) continue; mmap_read_lock(encl_mm->mm); ret = sgx_encl_find(encl_mm->mm, addr, &vma); if (!ret && encl == vma->vm_private_data) zap_vma_ptes(vma, addr, PAGE_SIZE); mmap_read_unlock(encl_mm->mm); mmput_async(encl_mm->mm); } srcu_read_unlock(&encl->srcu, idx); } while (unlikely(encl->mm_list_version != mm_list_version)); } /** * sgx_alloc_va_page() - Allocate a Version Array (VA) page * @reclaim: Reclaim EPC pages directly if none available. Enclave * mutex should not be held if this is set. * * Allocate a free EPC page and convert it to a Version Array (VA) page. * * Return: * a VA page, * -errno otherwise */ struct sgx_epc_page *sgx_alloc_va_page(bool reclaim) { struct sgx_epc_page *epc_page; int ret; epc_page = sgx_alloc_epc_page(NULL, reclaim); if (IS_ERR(epc_page)) return ERR_CAST(epc_page); ret = __epa(sgx_get_epc_virt_addr(epc_page)); if (ret) { WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret); sgx_encl_free_epc_page(epc_page); return ERR_PTR(-EFAULT); } return epc_page; } /** * sgx_alloc_va_slot - allocate a VA slot * @va_page: a &struct sgx_va_page instance * * Allocates a slot from a &struct sgx_va_page instance. * * Return: offset of the slot inside the VA page */ unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page) { int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT); if (slot < SGX_VA_SLOT_COUNT) set_bit(slot, va_page->slots); return slot << 3; } /** * sgx_free_va_slot - free a VA slot * @va_page: a &struct sgx_va_page instance * @offset: offset of the slot inside the VA page * * Frees a slot from a &struct sgx_va_page instance. */ void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset) { clear_bit(offset >> 3, va_page->slots); } /** * sgx_va_page_full - is the VA page full? * @va_page: a &struct sgx_va_page instance * * Return: true if all slots have been taken */ bool sgx_va_page_full(struct sgx_va_page *va_page) { int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT); return slot == SGX_VA_SLOT_COUNT; } /** * sgx_encl_free_epc_page - free an EPC page assigned to an enclave * @page: EPC page to be freed * * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and * only upon success, it puts the page back to free page list. Otherwise, it * gives a WARNING to indicate page is leaked. */ void sgx_encl_free_epc_page(struct sgx_epc_page *page) { int ret; WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED); ret = __eremove(sgx_get_epc_virt_addr(page)); if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret)) return; sgx_free_epc_page(page); } |