Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Spreadtrum Communications Inc.

#include <linux/gpio/consumer.h>
#include <linux/iio/consumer.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regmap.h>
#include <linux/slab.h>

/* PMIC global control registers definition */
#define SC27XX_MODULE_EN0		0xc08
#define SC27XX_CLK_EN0			0xc18
#define SC27XX_FGU_EN			BIT(7)
#define SC27XX_FGU_RTC_EN		BIT(6)

/* FGU registers definition */
#define SC27XX_FGU_START		0x0
#define SC27XX_FGU_CONFIG		0x4
#define SC27XX_FGU_ADC_CONFIG		0x8
#define SC27XX_FGU_STATUS		0xc
#define SC27XX_FGU_INT_EN		0x10
#define SC27XX_FGU_INT_CLR		0x14
#define SC27XX_FGU_INT_STS		0x1c
#define SC27XX_FGU_VOLTAGE		0x20
#define SC27XX_FGU_OCV			0x24
#define SC27XX_FGU_POCV			0x28
#define SC27XX_FGU_CURRENT		0x2c
#define SC27XX_FGU_LOW_OVERLOAD		0x34
#define SC27XX_FGU_CLBCNT_SETH		0x50
#define SC27XX_FGU_CLBCNT_SETL		0x54
#define SC27XX_FGU_CLBCNT_DELTH		0x58
#define SC27XX_FGU_CLBCNT_DELTL		0x5c
#define SC27XX_FGU_CLBCNT_VALH		0x68
#define SC27XX_FGU_CLBCNT_VALL		0x6c
#define SC27XX_FGU_CLBCNT_QMAXL		0x74
#define SC27XX_FGU_USER_AREA_SET	0xa0
#define SC27XX_FGU_USER_AREA_CLEAR	0xa4
#define SC27XX_FGU_USER_AREA_STATUS	0xa8
#define SC27XX_FGU_VOLTAGE_BUF		0xd0
#define SC27XX_FGU_CURRENT_BUF		0xf0

#define SC27XX_WRITE_SELCLB_EN		BIT(0)
#define SC27XX_FGU_CLBCNT_MASK		GENMASK(15, 0)
#define SC27XX_FGU_CLBCNT_SHIFT		16
#define SC27XX_FGU_LOW_OVERLOAD_MASK	GENMASK(12, 0)

#define SC27XX_FGU_INT_MASK		GENMASK(9, 0)
#define SC27XX_FGU_LOW_OVERLOAD_INT	BIT(0)
#define SC27XX_FGU_CLBCNT_DELTA_INT	BIT(2)

#define SC27XX_FGU_MODE_AREA_MASK	GENMASK(15, 12)
#define SC27XX_FGU_CAP_AREA_MASK	GENMASK(11, 0)
#define SC27XX_FGU_MODE_AREA_SHIFT	12

#define SC27XX_FGU_FIRST_POWERTON	GENMASK(3, 0)
#define SC27XX_FGU_DEFAULT_CAP		GENMASK(11, 0)
#define SC27XX_FGU_NORMAIL_POWERTON	0x5

#define SC27XX_FGU_CUR_BASIC_ADC	8192
#define SC27XX_FGU_SAMPLE_HZ		2
/* micro Ohms */
#define SC27XX_FGU_IDEAL_RESISTANCE	20000

/*
 * struct sc27xx_fgu_data: describe the FGU device
 * @regmap: regmap for register access
 * @dev: platform device
 * @battery: battery power supply
 * @base: the base offset for the controller
 * @lock: protect the structure
 * @gpiod: GPIO for battery detection
 * @channel: IIO channel to get battery temperature
 * @charge_chan: IIO channel to get charge voltage
 * @internal_resist: the battery internal resistance in mOhm
 * @total_cap: the total capacity of the battery in mAh
 * @init_cap: the initial capacity of the battery in mAh
 * @alarm_cap: the alarm capacity
 * @init_clbcnt: the initial coulomb counter
 * @max_volt: the maximum constant input voltage in millivolt
 * @min_volt: the minimum drained battery voltage in microvolt
 * @boot_volt: the voltage measured during boot in microvolt
 * @table_len: the capacity table length
 * @resist_table_len: the resistance table length
 * @cur_1000ma_adc: ADC value corresponding to 1000 mA
 * @vol_1000mv_adc: ADC value corresponding to 1000 mV
 * @calib_resist: the real resistance of coulomb counter chip in uOhm
 * @cap_table: capacity table with corresponding ocv
 * @resist_table: resistance percent table with corresponding temperature
 */
struct sc27xx_fgu_data {
	struct regmap *regmap;
	struct device *dev;
	struct power_supply *battery;
	u32 base;
	struct mutex lock;
	struct gpio_desc *gpiod;
	struct iio_channel *channel;
	struct iio_channel *charge_chan;
	bool bat_present;
	int internal_resist;
	int total_cap;
	int init_cap;
	int alarm_cap;
	int init_clbcnt;
	int max_volt;
	int min_volt;
	int boot_volt;
	int table_len;
	int resist_table_len;
	int cur_1000ma_adc;
	int vol_1000mv_adc;
	int calib_resist;
	struct power_supply_battery_ocv_table *cap_table;
	struct power_supply_resistance_temp_table *resist_table;
};

static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
					    int cap, bool int_mode);
static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);

static const char * const sc27xx_charger_supply_name[] = {
	"sc2731_charger",
	"sc2720_charger",
	"sc2721_charger",
	"sc2723_charger",
};

static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc)
{
	return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
}

static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc)
{
	return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
}

static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
{
	return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
}

static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
{
	int ret, status, cap, mode;

	ret = regmap_read(data->regmap,
			  data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
	if (ret)
		return false;

	/*
	 * We use low 4 bits to save the last battery capacity and high 12 bits
	 * to save the system boot mode.
	 */
	mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
	cap = status & SC27XX_FGU_CAP_AREA_MASK;

	/*
	 * When FGU has been powered down, the user area registers became
	 * default value (0xffff), which can be used to valid if the system is
	 * first power on or not.
	 */
	if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
		return true;

	return false;
}

static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
				     int boot_mode)
{
	int ret;

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_USER_AREA_CLEAR,
				 SC27XX_FGU_MODE_AREA_MASK,
				 SC27XX_FGU_MODE_AREA_MASK);
	if (ret)
		return ret;

	/*
	 * Since the user area registers are put on power always-on region,
	 * then these registers changing time will be a little long. Thus
	 * here we should delay 200us to wait until values are updated
	 * successfully according to the datasheet.
	 */
	udelay(200);

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_USER_AREA_SET,
				 SC27XX_FGU_MODE_AREA_MASK,
				 boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
	if (ret)
		return ret;

	/*
	 * Since the user area registers are put on power always-on region,
	 * then these registers changing time will be a little long. Thus
	 * here we should delay 200us to wait until values are updated
	 * successfully according to the datasheet.
	 */
	udelay(200);

	/*
	 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
	 * make the user area data available, otherwise we can not save the user
	 * area data.
	 */
	return regmap_update_bits(data->regmap,
				  data->base + SC27XX_FGU_USER_AREA_CLEAR,
				  SC27XX_FGU_MODE_AREA_MASK, 0);
}

static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
{
	int ret;

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_USER_AREA_CLEAR,
				 SC27XX_FGU_CAP_AREA_MASK,
				 SC27XX_FGU_CAP_AREA_MASK);
	if (ret)
		return ret;

	/*
	 * Since the user area registers are put on power always-on region,
	 * then these registers changing time will be a little long. Thus
	 * here we should delay 200us to wait until values are updated
	 * successfully according to the datasheet.
	 */
	udelay(200);

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_USER_AREA_SET,
				 SC27XX_FGU_CAP_AREA_MASK, cap);
	if (ret)
		return ret;

	/*
	 * Since the user area registers are put on power always-on region,
	 * then these registers changing time will be a little long. Thus
	 * here we should delay 200us to wait until values are updated
	 * successfully according to the datasheet.
	 */
	udelay(200);

	/*
	 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
	 * make the user area data available, otherwise we can not save the user
	 * area data.
	 */
	return regmap_update_bits(data->regmap,
				  data->base + SC27XX_FGU_USER_AREA_CLEAR,
				  SC27XX_FGU_CAP_AREA_MASK, 0);
}

static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
{
	int ret, value;

	ret = regmap_read(data->regmap,
			  data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
	if (ret)
		return ret;

	*cap = value & SC27XX_FGU_CAP_AREA_MASK;
	return 0;
}

/*
 * When system boots on, we can not read battery capacity from coulomb
 * registers, since now the coulomb registers are invalid. So we should
 * calculate the battery open circuit voltage, and get current battery
 * capacity according to the capacity table.
 */
static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
{
	int volt, cur, oci, ocv, ret;
	bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);

	/*
	 * If system is not the first power on, we should use the last saved
	 * battery capacity as the initial battery capacity. Otherwise we should
	 * re-calculate the initial battery capacity.
	 */
	if (!is_first_poweron) {
		ret = sc27xx_fgu_read_last_cap(data, cap);
		if (ret)
			return ret;

		return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
	}

	/*
	 * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
	 * the first sampled open circuit current.
	 */
	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
			  &cur);
	if (ret)
		return ret;

	cur <<= 1;
	oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);

	/*
	 * Should get the OCV from SC27XX_FGU_POCV register at the system
	 * beginning. It is ADC values reading from registers which need to
	 * convert the corresponding voltage.
	 */
	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
	if (ret)
		return ret;

	volt = sc27xx_fgu_adc_to_voltage(data, volt);
	ocv = volt * 1000 - oci * data->internal_resist;
	data->boot_volt = ocv;

	/*
	 * Parse the capacity table to look up the correct capacity percent
	 * according to current battery's corresponding OCV values.
	 */
	*cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
					   ocv);

	ret = sc27xx_fgu_save_last_cap(data, *cap);
	if (ret)
		return ret;

	return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
}

static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
{
	int ret;

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_CLBCNT_SETL,
				 SC27XX_FGU_CLBCNT_MASK, clbcnt);
	if (ret)
		return ret;

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_CLBCNT_SETH,
				 SC27XX_FGU_CLBCNT_MASK,
				 clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
	if (ret)
		return ret;

	return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
				 SC27XX_WRITE_SELCLB_EN,
				 SC27XX_WRITE_SELCLB_EN);
}

static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
{
	int ccl, cch, ret;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
			  &ccl);
	if (ret)
		return ret;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
			  &cch);
	if (ret)
		return ret;

	*clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
	*clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;

	return 0;
}

static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val)
{
	int ret;
	u32 vol;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF,
			  &vol);
	if (ret)
		return ret;

	/*
	 * It is ADC values reading from registers which need to convert to
	 * corresponding voltage values.
	 */
	*val = sc27xx_fgu_adc_to_voltage(data, vol);

	return 0;
}

static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val)
{
	int ret;
	u32 cur;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF,
			  &cur);
	if (ret)
		return ret;

	/*
	 * It is ADC values reading from registers which need to convert to
	 * corresponding current values.
	 */
	*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);

	return 0;
}

static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
{
	int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;

	/* Get current coulomb counters firstly */
	ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
	if (ret)
		return ret;

	delta_clbcnt = cur_clbcnt - data->init_clbcnt;

	/*
	 * Convert coulomb counter to delta capacity (mAh), and set multiplier
	 * as 10 to improve the precision.
	 */
	temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
	temp = sc27xx_fgu_adc_to_current(data, temp / 1000);

	/*
	 * Convert to capacity percent of the battery total capacity,
	 * and multiplier is 100 too.
	 */
	delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
	*cap = delta_cap + data->init_cap;

	/* Calibrate the battery capacity in a normal range. */
	sc27xx_fgu_capacity_calibration(data, *cap, false);

	return 0;
}

static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
{
	int ret, vol;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
	if (ret)
		return ret;

	/*
	 * It is ADC values reading from registers which need to convert to
	 * corresponding voltage values.
	 */
	*val = sc27xx_fgu_adc_to_voltage(data, vol);

	return 0;
}

static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
{
	int ret, cur;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
	if (ret)
		return ret;

	/*
	 * It is ADC values reading from registers which need to convert to
	 * corresponding current values.
	 */
	*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);

	return 0;
}

static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
{
	int vol, cur, ret, temp, resistance;

	ret = sc27xx_fgu_get_vbat_vol(data, &vol);
	if (ret)
		return ret;

	ret = sc27xx_fgu_get_current(data, &cur);
	if (ret)
		return ret;

	resistance = data->internal_resist;
	if (data->resist_table_len > 0) {
		ret = sc27xx_fgu_get_temp(data, &temp);
		if (ret)
			return ret;

		resistance = power_supply_temp2resist_simple(data->resist_table,
						data->resist_table_len, temp);
		resistance = data->internal_resist * resistance / 100;
	}

	/* Return the battery OCV in micro volts. */
	*val = vol * 1000 - cur * resistance;

	return 0;
}

static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
{
	int ret, vol;

	ret = iio_read_channel_processed(data->charge_chan, &vol);
	if (ret < 0)
		return ret;

	*val = vol * 1000;
	return 0;
}

static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
{
	return iio_read_channel_processed(data->channel, temp);
}

static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
{
	int ret, vol;

	ret = sc27xx_fgu_get_vbat_vol(data, &vol);
	if (ret)
		return ret;

	if (vol > data->max_volt)
		*health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
	else
		*health = POWER_SUPPLY_HEALTH_GOOD;

	return 0;
}

static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
{
	union power_supply_propval val;
	struct power_supply *psy;
	int i, ret = -EINVAL;

	for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
		psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
		if (!psy)
			continue;

		ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
						&val);
		power_supply_put(psy);
		if (ret)
			return ret;

		*status = val.intval;
	}

	return ret;
}

static int sc27xx_fgu_get_property(struct power_supply *psy,
				   enum power_supply_property psp,
				   union power_supply_propval *val)
{
	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
	int ret = 0;
	int value;

	mutex_lock(&data->lock);

	switch (psp) {
	case POWER_SUPPLY_PROP_STATUS:
		ret = sc27xx_fgu_get_status(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_HEALTH:
		ret = sc27xx_fgu_get_health(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_PRESENT:
		val->intval = data->bat_present;
		break;

	case POWER_SUPPLY_PROP_TEMP:
		ret = sc27xx_fgu_get_temp(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_TECHNOLOGY:
		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
		break;

	case POWER_SUPPLY_PROP_CAPACITY:
		ret = sc27xx_fgu_get_capacity(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
		ret = sc27xx_fgu_get_vbat_vol(data, &value);
		if (ret)
			goto error;

		val->intval = value * 1000;
		break;

	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
		ret = sc27xx_fgu_get_vbat_ocv(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
		ret = sc27xx_fgu_get_charge_vol(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_CURRENT_AVG:
		ret = sc27xx_fgu_get_current(data, &value);
		if (ret)
			goto error;

		val->intval = value * 1000;
		break;

	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
		val->intval = data->total_cap * 1000;
		break;

	case POWER_SUPPLY_PROP_CHARGE_NOW:
		ret = sc27xx_fgu_get_clbcnt(data, &value);
		if (ret)
			goto error;

		value = DIV_ROUND_CLOSEST(value * 10,
					  36 * SC27XX_FGU_SAMPLE_HZ);
		val->intval = sc27xx_fgu_adc_to_current(data, value);

		break;

	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
		ret = sc27xx_fgu_get_vol_now(data, &value);
		if (ret)
			goto error;

		val->intval = value * 1000;
		break;

	case POWER_SUPPLY_PROP_CURRENT_NOW:
		ret = sc27xx_fgu_get_cur_now(data, &value);
		if (ret)
			goto error;

		val->intval = value * 1000;
		break;

	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
		val->intval = data->boot_volt;
		break;

	default:
		ret = -EINVAL;
		break;
	}

error:
	mutex_unlock(&data->lock);
	return ret;
}

static int sc27xx_fgu_set_property(struct power_supply *psy,
				   enum power_supply_property psp,
				   const union power_supply_propval *val)
{
	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
	int ret;

	mutex_lock(&data->lock);

	switch (psp) {
	case POWER_SUPPLY_PROP_CAPACITY:
		ret = sc27xx_fgu_save_last_cap(data, val->intval);
		if (ret < 0)
			dev_err(data->dev, "failed to save battery capacity\n");
		break;

	case POWER_SUPPLY_PROP_CALIBRATE:
		sc27xx_fgu_adjust_cap(data, val->intval);
		ret = 0;
		break;

	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
		data->total_cap = val->intval / 1000;
		ret = 0;
		break;

	default:
		ret = -EINVAL;
	}

	mutex_unlock(&data->lock);

	return ret;
}

static void sc27xx_fgu_external_power_changed(struct power_supply *psy)
{
	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);

	power_supply_changed(data->battery);
}

static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
					    enum power_supply_property psp)
{
	return psp == POWER_SUPPLY_PROP_CAPACITY ||
		psp == POWER_SUPPLY_PROP_CALIBRATE ||
		psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN;
}

static enum power_supply_property sc27xx_fgu_props[] = {
	POWER_SUPPLY_PROP_STATUS,
	POWER_SUPPLY_PROP_HEALTH,
	POWER_SUPPLY_PROP_PRESENT,
	POWER_SUPPLY_PROP_TEMP,
	POWER_SUPPLY_PROP_TECHNOLOGY,
	POWER_SUPPLY_PROP_CAPACITY,
	POWER_SUPPLY_PROP_VOLTAGE_NOW,
	POWER_SUPPLY_PROP_VOLTAGE_OCV,
	POWER_SUPPLY_PROP_VOLTAGE_AVG,
	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
	POWER_SUPPLY_PROP_CURRENT_NOW,
	POWER_SUPPLY_PROP_CURRENT_AVG,
	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
	POWER_SUPPLY_PROP_CALIBRATE,
	POWER_SUPPLY_PROP_CHARGE_NOW
};

static const struct power_supply_desc sc27xx_fgu_desc = {
	.name			= "sc27xx-fgu",
	.type			= POWER_SUPPLY_TYPE_BATTERY,
	.properties		= sc27xx_fgu_props,
	.num_properties		= ARRAY_SIZE(sc27xx_fgu_props),
	.get_property		= sc27xx_fgu_get_property,
	.set_property		= sc27xx_fgu_set_property,
	.external_power_changed	= sc27xx_fgu_external_power_changed,
	.property_is_writeable	= sc27xx_fgu_property_is_writeable,
	.no_thermal		= true,
};

static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
{
	int ret;

	data->init_cap = cap;
	ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
	if (ret)
		dev_err(data->dev, "failed to get init coulomb counter\n");
}

static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
					    int cap, bool int_mode)
{
	int ret, ocv, chg_sts, adc;

	ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
	if (ret) {
		dev_err(data->dev, "get battery ocv error.\n");
		return;
	}

	ret = sc27xx_fgu_get_status(data, &chg_sts);
	if (ret) {
		dev_err(data->dev, "get charger status error.\n");
		return;
	}

	/*
	 * If we are in charging mode, then we do not need to calibrate the
	 * lower capacity.
	 */
	if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
		return;

	if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
		/*
		 * If current OCV value is larger than the max OCV value in
		 * OCV table, or the current capacity is larger than 100,
		 * we should force the inititial capacity to 100.
		 */
		sc27xx_fgu_adjust_cap(data, 100);
	} else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
		/*
		 * If current OCV value is leass than the minimum OCV value in
		 * OCV table, we should force the inititial capacity to 0.
		 */
		sc27xx_fgu_adjust_cap(data, 0);
	} else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
		   (ocv > data->min_volt && cap <= data->alarm_cap)) {
		/*
		 * If current OCV value is not matchable with current capacity,
		 * we should re-calculate current capacity by looking up the
		 * OCV table.
		 */
		int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
							  data->table_len, ocv);

		sc27xx_fgu_adjust_cap(data, cur_cap);
	} else if (ocv <= data->min_volt) {
		/*
		 * If current OCV value is less than the low alarm voltage, but
		 * current capacity is larger than the alarm capacity, we should
		 * adjust the inititial capacity to alarm capacity.
		 */
		if (cap > data->alarm_cap) {
			sc27xx_fgu_adjust_cap(data, data->alarm_cap);
		} else {
			int cur_cap;

			/*
			 * If current capacity is equal with 0 or less than 0
			 * (some error occurs), we should adjust inititial
			 * capacity to the capacity corresponding to current OCV
			 * value.
			 */
			cur_cap = power_supply_ocv2cap_simple(data->cap_table,
							      data->table_len,
							      ocv);
			sc27xx_fgu_adjust_cap(data, cur_cap);
		}

		if (!int_mode)
			return;

		/*
		 * After adjusting the battery capacity, we should set the
		 * lowest alarm voltage instead.
		 */
		data->min_volt = data->cap_table[data->table_len - 1].ocv;
		data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
							      data->table_len,
							      data->min_volt);

		adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
		regmap_update_bits(data->regmap,
				   data->base + SC27XX_FGU_LOW_OVERLOAD,
				   SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
	}
}

static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
{
	struct sc27xx_fgu_data *data = dev_id;
	int ret, cap;
	u32 status;

	mutex_lock(&data->lock);

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
			  &status);
	if (ret)
		goto out;

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
				 status, status);
	if (ret)
		goto out;

	/*
	 * When low overload voltage interrupt happens, we should calibrate the
	 * battery capacity in lower voltage stage.
	 */
	if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
		goto out;

	ret = sc27xx_fgu_get_capacity(data, &cap);
	if (ret)
		goto out;

	sc27xx_fgu_capacity_calibration(data, cap, true);

out:
	mutex_unlock(&data->lock);

	power_supply_changed(data->battery);
	return IRQ_HANDLED;
}

static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
{
	struct sc27xx_fgu_data *data = dev_id;
	int state;

	mutex_lock(&data->lock);

	state = gpiod_get_value_cansleep(data->gpiod);
	if (state < 0) {
		dev_err(data->dev, "failed to get gpio state\n");
		mutex_unlock(&data->lock);
		return IRQ_RETVAL(state);
	}

	data->bat_present = !!state;

	mutex_unlock(&data->lock);

	power_supply_changed(data->battery);
	return IRQ_HANDLED;
}

static void sc27xx_fgu_disable(void *_data)
{
	struct sc27xx_fgu_data *data = _data;

	regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
	regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
}

static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
{
	/*
	 * Get current capacity (mAh) = battery total capacity (mAh) *
	 * current capacity percent (capacity / 100).
	 */
	int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);

	/*
	 * Convert current capacity (mAh) to coulomb counter according to the
	 * formula: 1 mAh =3.6 coulomb.
	 */
	return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
}

static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
{
	struct nvmem_cell *cell;
	int calib_data, cal_4200mv;
	void *buf;
	size_t len;

	cell = nvmem_cell_get(data->dev, "fgu_calib");
	if (IS_ERR(cell))
		return PTR_ERR(cell);

	buf = nvmem_cell_read(cell, &len);
	nvmem_cell_put(cell);

	if (IS_ERR(buf))
		return PTR_ERR(buf);

	memcpy(&calib_data, buf, min(len, sizeof(u32)));

	/*
	 * Get the ADC value corresponding to 4200 mV from eFuse controller
	 * according to below formula. Then convert to ADC values corresponding
	 * to 1000 mV and 1000 mA.
	 */
	cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
	data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
	data->cur_1000ma_adc =
		DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
				  SC27XX_FGU_IDEAL_RESISTANCE);

	kfree(buf);
	return 0;
}

static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
{
	struct power_supply_battery_info *info;
	struct power_supply_battery_ocv_table *table;
	int ret, delta_clbcnt, alarm_adc;

	ret = power_supply_get_battery_info(data->battery, &info);
	if (ret) {
		dev_err(data->dev, "failed to get battery information\n");
		return ret;
	}

	data->total_cap = info->charge_full_design_uah / 1000;
	data->max_volt = info->constant_charge_voltage_max_uv / 1000;
	data->internal_resist = info->factory_internal_resistance_uohm / 1000;
	data->min_volt = info->voltage_min_design_uv;

	/*
	 * For SC27XX fuel gauge device, we only use one ocv-capacity
	 * table in normal temperature 20 Celsius.
	 */
	table = power_supply_find_ocv2cap_table(info, 20, &data->table_len);
	if (!table)
		return -EINVAL;

	data->cap_table = devm_kmemdup(data->dev, table,
				       data->table_len * sizeof(*table),
				       GFP_KERNEL);
	if (!data->cap_table) {
		power_supply_put_battery_info(data->battery, info);
		return -ENOMEM;
	}

	data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
						      data->table_len,
						      data->min_volt);
	if (!data->alarm_cap)
		data->alarm_cap += 1;

	data->resist_table_len = info->resist_table_size;
	if (data->resist_table_len > 0) {
		data->resist_table = devm_kmemdup(data->dev, info->resist_table,
						  data->resist_table_len *
						  sizeof(struct power_supply_resistance_temp_table),
						  GFP_KERNEL);
		if (!data->resist_table) {
			power_supply_put_battery_info(data->battery, info);
			return -ENOMEM;
		}
	}

	power_supply_put_battery_info(data->battery, info);

	ret = sc27xx_fgu_calibration(data);
	if (ret)
		return ret;

	/* Enable the FGU module */
	ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
				 SC27XX_FGU_EN, SC27XX_FGU_EN);
	if (ret) {
		dev_err(data->dev, "failed to enable fgu\n");
		return ret;
	}

	/* Enable the FGU RTC clock to make it work */
	ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
				 SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
	if (ret) {
		dev_err(data->dev, "failed to enable fgu RTC clock\n");
		goto disable_fgu;
	}

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
				 SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
	if (ret) {
		dev_err(data->dev, "failed to clear interrupt status\n");
		goto disable_clk;
	}

	/*
	 * Set the voltage low overload threshold, which means when the battery
	 * voltage is lower than this threshold, the controller will generate
	 * one interrupt to notify.
	 */
	alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
				 SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
	if (ret) {
		dev_err(data->dev, "failed to set fgu low overload\n");
		goto disable_clk;
	}

	/*
	 * Set the coulomb counter delta threshold, that means when the coulomb
	 * counter change is multiples of the delta threshold, the controller
	 * will generate one interrupt to notify the users to update the battery
	 * capacity. Now we set the delta threshold as a counter value of 1%
	 * capacity.
	 */
	delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
				 SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
	if (ret) {
		dev_err(data->dev, "failed to set low delta coulomb counter\n");
		goto disable_clk;
	}

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
				 SC27XX_FGU_CLBCNT_MASK,
				 delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
	if (ret) {
		dev_err(data->dev, "failed to set high delta coulomb counter\n");
		goto disable_clk;
	}

	/*
	 * Get the boot battery capacity when system powers on, which is used to
	 * initialize the coulomb counter. After that, we can read the coulomb
	 * counter to measure the battery capacity.
	 */
	ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
	if (ret) {
		dev_err(data->dev, "failed to get boot capacity\n");
		goto disable_clk;
	}

	/*
	 * Convert battery capacity to the corresponding initial coulomb counter
	 * and set into coulomb counter registers.
	 */
	data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
	ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
	if (ret) {
		dev_err(data->dev, "failed to initialize coulomb counter\n");
		goto disable_clk;
	}

	return 0;

disable_clk:
	regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
disable_fgu:
	regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);

	return ret;
}

static int sc27xx_fgu_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct power_supply_config fgu_cfg = { };
	struct sc27xx_fgu_data *data;
	int ret, irq;

	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->regmap = dev_get_regmap(dev->parent, NULL);
	if (!data->regmap) {
		dev_err(dev, "failed to get regmap\n");
		return -ENODEV;
	}

	ret = device_property_read_u32(dev, "reg", &data->base);
	if (ret) {
		dev_err(dev, "failed to get fgu address\n");
		return ret;
	}

	ret = device_property_read_u32(&pdev->dev,
				       "sprd,calib-resistance-micro-ohms",
				       &data->calib_resist);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to get fgu calibration resistance\n");
		return ret;
	}

	data->channel = devm_iio_channel_get(dev, "bat-temp");
	if (IS_ERR(data->channel)) {
		dev_err(dev, "failed to get IIO channel\n");
		return PTR_ERR(data->channel);
	}

	data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
	if (IS_ERR(data->charge_chan)) {
		dev_err(dev, "failed to get charge IIO channel\n");
		return PTR_ERR(data->charge_chan);
	}

	data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
	if (IS_ERR(data->gpiod)) {
		dev_err(dev, "failed to get battery detection GPIO\n");
		return PTR_ERR(data->gpiod);
	}

	ret = gpiod_get_value_cansleep(data->gpiod);
	if (ret < 0) {
		dev_err(dev, "failed to get gpio state\n");
		return ret;
	}

	data->bat_present = !!ret;
	mutex_init(&data->lock);
	data->dev = dev;
	platform_set_drvdata(pdev, data);

	fgu_cfg.drv_data = data;
	fgu_cfg.of_node = np;
	data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
						   &fgu_cfg);
	if (IS_ERR(data->battery)) {
		dev_err(dev, "failed to register power supply\n");
		return PTR_ERR(data->battery);
	}

	ret = sc27xx_fgu_hw_init(data);
	if (ret) {
		dev_err(dev, "failed to initialize fgu hardware\n");
		return ret;
	}

	ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
	if (ret) {
		dev_err(dev, "failed to add fgu disable action\n");
		return ret;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	ret = devm_request_threaded_irq(data->dev, irq, NULL,
					sc27xx_fgu_interrupt,
					IRQF_NO_SUSPEND | IRQF_ONESHOT,
					pdev->name, data);
	if (ret) {
		dev_err(data->dev, "failed to request fgu IRQ\n");
		return ret;
	}

	irq = gpiod_to_irq(data->gpiod);
	if (irq < 0) {
		dev_err(dev, "failed to translate GPIO to IRQ\n");
		return irq;
	}

	ret = devm_request_threaded_irq(dev, irq, NULL,
					sc27xx_fgu_bat_detection,
					IRQF_ONESHOT | IRQF_TRIGGER_RISING |
					IRQF_TRIGGER_FALLING,
					pdev->name, data);
	if (ret) {
		dev_err(dev, "failed to request IRQ\n");
		return ret;
	}

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int sc27xx_fgu_resume(struct device *dev)
{
	struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
	int ret;

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
				 SC27XX_FGU_LOW_OVERLOAD_INT |
				 SC27XX_FGU_CLBCNT_DELTA_INT, 0);
	if (ret) {
		dev_err(data->dev, "failed to disable fgu interrupts\n");
		return ret;
	}

	return 0;
}

static int sc27xx_fgu_suspend(struct device *dev)
{
	struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
	int ret, status, ocv;

	ret = sc27xx_fgu_get_status(data, &status);
	if (ret)
		return ret;

	/*
	 * If we are charging, then no need to enable the FGU interrupts to
	 * adjust the battery capacity.
	 */
	if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
	    status != POWER_SUPPLY_STATUS_DISCHARGING)
		return 0;

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
				 SC27XX_FGU_LOW_OVERLOAD_INT,
				 SC27XX_FGU_LOW_OVERLOAD_INT);
	if (ret) {
		dev_err(data->dev, "failed to enable low voltage interrupt\n");
		return ret;
	}

	ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
	if (ret)
		goto disable_int;

	/*
	 * If current OCV is less than the minimum voltage, we should enable the
	 * coulomb counter threshold interrupt to notify events to adjust the
	 * battery capacity.
	 */
	if (ocv < data->min_volt) {
		ret = regmap_update_bits(data->regmap,
					 data->base + SC27XX_FGU_INT_EN,
					 SC27XX_FGU_CLBCNT_DELTA_INT,
					 SC27XX_FGU_CLBCNT_DELTA_INT);
		if (ret) {
			dev_err(data->dev,
				"failed to enable coulomb threshold int\n");
			goto disable_int;
		}
	}

	return 0;

disable_int:
	regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
			   SC27XX_FGU_LOW_OVERLOAD_INT, 0);
	return ret;
}
#endif

static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
};

static const struct of_device_id sc27xx_fgu_of_match[] = {
	{ .compatible = "sprd,sc2731-fgu", },
	{ }
};
MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match);

static struct platform_driver sc27xx_fgu_driver = {
	.probe = sc27xx_fgu_probe,
	.driver = {
		.name = "sc27xx-fgu",
		.of_match_table = sc27xx_fgu_of_match,
		.pm = &sc27xx_fgu_pm_ops,
	}
};

module_platform_driver(sc27xx_fgu_driver);

MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
MODULE_LICENSE("GPL v2");