Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
// SPDX-License-Identifier: GPL-2.0+
/*
 * atlas-sensor.c - Support for Atlas Scientific OEM SM sensors
 *
 * Copyright (C) 2015-2019 Konsulko Group
 * Author: Matt Ranostay <matt.ranostay@konsulko.com>
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/irq.h>
#include <linux/irq_work.h>
#include <linux/i2c.h>
#include <linux/mod_devicetable.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/pm_runtime.h>

#define ATLAS_REGMAP_NAME	"atlas_regmap"
#define ATLAS_DRV_NAME		"atlas"

#define ATLAS_REG_DEV_TYPE		0x00
#define ATLAS_REG_DEV_VERSION		0x01

#define ATLAS_REG_INT_CONTROL		0x04
#define ATLAS_REG_INT_CONTROL_EN	BIT(3)

#define ATLAS_REG_PWR_CONTROL		0x06

#define ATLAS_REG_PH_CALIB_STATUS	0x0d
#define ATLAS_REG_PH_CALIB_STATUS_MASK	0x07
#define ATLAS_REG_PH_CALIB_STATUS_LOW	BIT(0)
#define ATLAS_REG_PH_CALIB_STATUS_MID	BIT(1)
#define ATLAS_REG_PH_CALIB_STATUS_HIGH	BIT(2)

#define ATLAS_REG_EC_CALIB_STATUS		0x0f
#define ATLAS_REG_EC_CALIB_STATUS_MASK		0x0f
#define ATLAS_REG_EC_CALIB_STATUS_DRY		BIT(0)
#define ATLAS_REG_EC_CALIB_STATUS_SINGLE	BIT(1)
#define ATLAS_REG_EC_CALIB_STATUS_LOW		BIT(2)
#define ATLAS_REG_EC_CALIB_STATUS_HIGH		BIT(3)

#define ATLAS_REG_DO_CALIB_STATUS		0x09
#define ATLAS_REG_DO_CALIB_STATUS_MASK		0x03
#define ATLAS_REG_DO_CALIB_STATUS_PRESSURE	BIT(0)
#define ATLAS_REG_DO_CALIB_STATUS_DO		BIT(1)

#define ATLAS_REG_RTD_DATA		0x0e

#define ATLAS_REG_PH_TEMP_DATA		0x0e
#define ATLAS_REG_PH_DATA		0x16

#define ATLAS_REG_EC_PROBE		0x08
#define ATLAS_REG_EC_TEMP_DATA		0x10
#define ATLAS_REG_EC_DATA		0x18
#define ATLAS_REG_TDS_DATA		0x1c
#define ATLAS_REG_PSS_DATA		0x20

#define ATLAS_REG_ORP_CALIB_STATUS	0x0d
#define ATLAS_REG_ORP_DATA		0x0e

#define ATLAS_REG_DO_TEMP_DATA		0x12
#define ATLAS_REG_DO_DATA		0x22

#define ATLAS_PH_INT_TIME_IN_MS		450
#define ATLAS_EC_INT_TIME_IN_MS		650
#define ATLAS_ORP_INT_TIME_IN_MS	450
#define ATLAS_DO_INT_TIME_IN_MS		450
#define ATLAS_RTD_INT_TIME_IN_MS	450

enum {
	ATLAS_PH_SM,
	ATLAS_EC_SM,
	ATLAS_ORP_SM,
	ATLAS_DO_SM,
	ATLAS_RTD_SM,
};

struct atlas_data {
	struct i2c_client *client;
	struct iio_trigger *trig;
	struct atlas_device *chip;
	struct regmap *regmap;
	struct irq_work work;
	unsigned int interrupt_enabled;
	/* 96-bit data + 32-bit pad + 64-bit timestamp */
	__be32 buffer[6] __aligned(8);
};

static const struct regmap_config atlas_regmap_config = {
	.name = ATLAS_REGMAP_NAME,
	.reg_bits = 8,
	.val_bits = 8,
};

static int atlas_buffer_num_channels(const struct iio_chan_spec *spec)
{
	int idx = 0;

	for (; spec->type != IIO_TIMESTAMP; spec++)
		idx++;

	return idx;
};

static const struct iio_chan_spec atlas_ph_channels[] = {
	{
		.type = IIO_PH,
		.address = ATLAS_REG_PH_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.scan_index = 0,
		.scan_type = {
			.sign = 'u',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_BE,
		},
	},
	IIO_CHAN_SOFT_TIMESTAMP(1),
	{
		.type = IIO_TEMP,
		.address = ATLAS_REG_PH_TEMP_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.output = 1,
		.scan_index = -1
	},
};

#define ATLAS_CONCENTRATION_CHANNEL(_idx, _addr) \
	{\
		.type = IIO_CONCENTRATION, \
		.indexed = 1, \
		.channel = _idx, \
		.address = _addr, \
		.info_mask_separate = \
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), \
		.scan_index = _idx + 1, \
		.scan_type = { \
			.sign = 'u', \
			.realbits = 32, \
			.storagebits = 32, \
			.endianness = IIO_BE, \
		}, \
	}

static const struct iio_chan_spec atlas_ec_channels[] = {
	{
		.type = IIO_ELECTRICALCONDUCTIVITY,
		.address = ATLAS_REG_EC_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.scan_index = 0,
		.scan_type = {
			.sign = 'u',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_BE,
		},
	},
	ATLAS_CONCENTRATION_CHANNEL(0, ATLAS_REG_TDS_DATA),
	ATLAS_CONCENTRATION_CHANNEL(1, ATLAS_REG_PSS_DATA),
	IIO_CHAN_SOFT_TIMESTAMP(3),
	{
		.type = IIO_TEMP,
		.address = ATLAS_REG_EC_TEMP_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.output = 1,
		.scan_index = -1
	},
};

static const struct iio_chan_spec atlas_orp_channels[] = {
	{
		.type = IIO_VOLTAGE,
		.address = ATLAS_REG_ORP_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.scan_index = 0,
		.scan_type = {
			.sign = 's',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_BE,
		},
	},
	IIO_CHAN_SOFT_TIMESTAMP(1),
};

static const struct iio_chan_spec atlas_do_channels[] = {
	{
		.type = IIO_CONCENTRATION,
		.address = ATLAS_REG_DO_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.scan_index = 0,
		.scan_type = {
			.sign = 'u',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_BE,
		},
	},
	IIO_CHAN_SOFT_TIMESTAMP(1),
	{
		.type = IIO_TEMP,
		.address = ATLAS_REG_DO_TEMP_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.output = 1,
		.scan_index = -1
	},
};

static const struct iio_chan_spec atlas_rtd_channels[] = {
	{
		.type = IIO_TEMP,
		.address = ATLAS_REG_RTD_DATA,
		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
		.scan_index = 0,
		.scan_type = {
			.sign = 's',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_BE,
		},
	},
	IIO_CHAN_SOFT_TIMESTAMP(1),
};

static int atlas_check_ph_calibration(struct atlas_data *data)
{
	struct device *dev = &data->client->dev;
	int ret;
	unsigned int val;

	ret = regmap_read(data->regmap, ATLAS_REG_PH_CALIB_STATUS, &val);
	if (ret)
		return ret;

	if (!(val & ATLAS_REG_PH_CALIB_STATUS_MASK)) {
		dev_warn(dev, "device has not been calibrated\n");
		return 0;
	}

	if (!(val & ATLAS_REG_PH_CALIB_STATUS_LOW))
		dev_warn(dev, "device missing low point calibration\n");

	if (!(val & ATLAS_REG_PH_CALIB_STATUS_MID))
		dev_warn(dev, "device missing mid point calibration\n");

	if (!(val & ATLAS_REG_PH_CALIB_STATUS_HIGH))
		dev_warn(dev, "device missing high point calibration\n");

	return 0;
}

static int atlas_check_ec_calibration(struct atlas_data *data)
{
	struct device *dev = &data->client->dev;
	int ret;
	unsigned int val;
	__be16	rval;

	ret = regmap_bulk_read(data->regmap, ATLAS_REG_EC_PROBE, &rval, 2);
	if (ret)
		return ret;

	val = be16_to_cpu(rval);
	dev_info(dev, "probe set to K = %d.%.2d", val / 100, val % 100);

	ret = regmap_read(data->regmap, ATLAS_REG_EC_CALIB_STATUS, &val);
	if (ret)
		return ret;

	if (!(val & ATLAS_REG_EC_CALIB_STATUS_MASK)) {
		dev_warn(dev, "device has not been calibrated\n");
		return 0;
	}

	if (!(val & ATLAS_REG_EC_CALIB_STATUS_DRY))
		dev_warn(dev, "device missing dry point calibration\n");

	if (val & ATLAS_REG_EC_CALIB_STATUS_SINGLE) {
		dev_warn(dev, "device using single point calibration\n");
	} else {
		if (!(val & ATLAS_REG_EC_CALIB_STATUS_LOW))
			dev_warn(dev, "device missing low point calibration\n");

		if (!(val & ATLAS_REG_EC_CALIB_STATUS_HIGH))
			dev_warn(dev, "device missing high point calibration\n");
	}

	return 0;
}

static int atlas_check_orp_calibration(struct atlas_data *data)
{
	struct device *dev = &data->client->dev;
	int ret;
	unsigned int val;

	ret = regmap_read(data->regmap, ATLAS_REG_ORP_CALIB_STATUS, &val);
	if (ret)
		return ret;

	if (!val)
		dev_warn(dev, "device has not been calibrated\n");

	return 0;
}

static int atlas_check_do_calibration(struct atlas_data *data)
{
	struct device *dev = &data->client->dev;
	int ret;
	unsigned int val;

	ret = regmap_read(data->regmap, ATLAS_REG_DO_CALIB_STATUS, &val);
	if (ret)
		return ret;

	if (!(val & ATLAS_REG_DO_CALIB_STATUS_MASK)) {
		dev_warn(dev, "device has not been calibrated\n");
		return 0;
	}

	if (!(val & ATLAS_REG_DO_CALIB_STATUS_PRESSURE))
		dev_warn(dev, "device missing atmospheric pressure calibration\n");

	if (!(val & ATLAS_REG_DO_CALIB_STATUS_DO))
		dev_warn(dev, "device missing dissolved oxygen calibration\n");

	return 0;
}

struct atlas_device {
	const struct iio_chan_spec *channels;
	int num_channels;
	int data_reg;

	int (*calibration)(struct atlas_data *data);
	int delay;
};

static struct atlas_device atlas_devices[] = {
	[ATLAS_PH_SM] = {
				.channels = atlas_ph_channels,
				.num_channels = 3,
				.data_reg = ATLAS_REG_PH_DATA,
				.calibration = &atlas_check_ph_calibration,
				.delay = ATLAS_PH_INT_TIME_IN_MS,
	},
	[ATLAS_EC_SM] = {
				.channels = atlas_ec_channels,
				.num_channels = 5,
				.data_reg = ATLAS_REG_EC_DATA,
				.calibration = &atlas_check_ec_calibration,
				.delay = ATLAS_EC_INT_TIME_IN_MS,
	},
	[ATLAS_ORP_SM] = {
				.channels = atlas_orp_channels,
				.num_channels = 2,
				.data_reg = ATLAS_REG_ORP_DATA,
				.calibration = &atlas_check_orp_calibration,
				.delay = ATLAS_ORP_INT_TIME_IN_MS,
	},
	[ATLAS_DO_SM] = {
				.channels = atlas_do_channels,
				.num_channels = 3,
				.data_reg = ATLAS_REG_DO_DATA,
				.calibration = &atlas_check_do_calibration,
				.delay = ATLAS_DO_INT_TIME_IN_MS,
	},
	[ATLAS_RTD_SM] = {
				.channels = atlas_rtd_channels,
				.num_channels = 2,
				.data_reg = ATLAS_REG_RTD_DATA,
				.delay = ATLAS_RTD_INT_TIME_IN_MS,
	},
};

static int atlas_set_powermode(struct atlas_data *data, int on)
{
	return regmap_write(data->regmap, ATLAS_REG_PWR_CONTROL, on);
}

static int atlas_set_interrupt(struct atlas_data *data, bool state)
{
	if (!data->interrupt_enabled)
		return 0;

	return regmap_update_bits(data->regmap, ATLAS_REG_INT_CONTROL,
				  ATLAS_REG_INT_CONTROL_EN,
				  state ? ATLAS_REG_INT_CONTROL_EN : 0);
}

static int atlas_buffer_postenable(struct iio_dev *indio_dev)
{
	struct atlas_data *data = iio_priv(indio_dev);
	int ret;

	ret = pm_runtime_resume_and_get(&data->client->dev);
	if (ret)
		return ret;

	return atlas_set_interrupt(data, true);
}

static int atlas_buffer_predisable(struct iio_dev *indio_dev)
{
	struct atlas_data *data = iio_priv(indio_dev);
	int ret;

	ret = atlas_set_interrupt(data, false);
	if (ret)
		return ret;

	pm_runtime_mark_last_busy(&data->client->dev);
	ret = pm_runtime_put_autosuspend(&data->client->dev);
	if (ret)
		return ret;

	return 0;
}

static const struct iio_buffer_setup_ops atlas_buffer_setup_ops = {
	.postenable = atlas_buffer_postenable,
	.predisable = atlas_buffer_predisable,
};

static void atlas_work_handler(struct irq_work *work)
{
	struct atlas_data *data = container_of(work, struct atlas_data, work);

	iio_trigger_poll(data->trig);
}

static irqreturn_t atlas_trigger_handler(int irq, void *private)
{
	struct iio_poll_func *pf = private;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct atlas_data *data = iio_priv(indio_dev);
	int channels = atlas_buffer_num_channels(data->chip->channels);
	int ret;

	ret = regmap_bulk_read(data->regmap, data->chip->data_reg,
			      &data->buffer, sizeof(__be32) * channels);

	if (!ret)
		iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
				iio_get_time_ns(indio_dev));

	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static irqreturn_t atlas_interrupt_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct atlas_data *data = iio_priv(indio_dev);

	irq_work_queue(&data->work);

	return IRQ_HANDLED;
}

static int atlas_read_measurement(struct atlas_data *data, int reg, __be32 *val)
{
	struct device *dev = &data->client->dev;
	int suspended = pm_runtime_suspended(dev);
	int ret;

	ret = pm_runtime_resume_and_get(dev);
	if (ret)
		return ret;

	if (suspended)
		msleep(data->chip->delay);

	ret = regmap_bulk_read(data->regmap, reg, val, sizeof(*val));

	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);

	return ret;
}

static int atlas_read_raw(struct iio_dev *indio_dev,
			  struct iio_chan_spec const *chan,
			  int *val, int *val2, long mask)
{
	struct atlas_data *data = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_PROCESSED:
	case IIO_CHAN_INFO_RAW: {
		int ret;
		__be32 reg;

		switch (chan->type) {
		case IIO_TEMP:
			ret = regmap_bulk_read(data->regmap, chan->address,
					       &reg, sizeof(reg));
			break;
		case IIO_PH:
		case IIO_CONCENTRATION:
		case IIO_ELECTRICALCONDUCTIVITY:
		case IIO_VOLTAGE:
			ret = iio_device_claim_direct_mode(indio_dev);
			if (ret)
				return ret;

			ret = atlas_read_measurement(data, chan->address, &reg);

			iio_device_release_direct_mode(indio_dev);
			break;
		default:
			ret = -EINVAL;
		}

		if (!ret) {
			*val = be32_to_cpu(reg);
			ret = IIO_VAL_INT;
		}
		return ret;
	}
	case IIO_CHAN_INFO_SCALE:
		switch (chan->type) {
		case IIO_TEMP:
			*val = 10;
			return IIO_VAL_INT;
		case IIO_PH:
			*val = 1; /* 0.001 */
			*val2 = 1000;
			break;
		case IIO_ELECTRICALCONDUCTIVITY:
			*val = 1; /* 0.00001 */
			*val2 = 100000;
			break;
		case IIO_CONCENTRATION:
			*val = 0; /* 0.000000001 */
			*val2 = 1000;
			return IIO_VAL_INT_PLUS_NANO;
		case IIO_VOLTAGE:
			*val = 1; /* 0.1 */
			*val2 = 10;
			break;
		default:
			return -EINVAL;
		}
		return IIO_VAL_FRACTIONAL;
	}

	return -EINVAL;
}

static int atlas_write_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int val, int val2, long mask)
{
	struct atlas_data *data = iio_priv(indio_dev);
	__be32 reg = cpu_to_be32(val / 10);

	if (val2 != 0 || val < 0 || val > 20000)
		return -EINVAL;

	if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_TEMP)
		return -EINVAL;

	return regmap_bulk_write(data->regmap, chan->address,
				 &reg, sizeof(reg));
}

static const struct iio_info atlas_info = {
	.read_raw = atlas_read_raw,
	.write_raw = atlas_write_raw,
};

static const struct i2c_device_id atlas_id[] = {
	{ "atlas-ph-sm", ATLAS_PH_SM },
	{ "atlas-ec-sm", ATLAS_EC_SM },
	{ "atlas-orp-sm", ATLAS_ORP_SM },
	{ "atlas-do-sm", ATLAS_DO_SM },
	{ "atlas-rtd-sm", ATLAS_RTD_SM },
	{}
};
MODULE_DEVICE_TABLE(i2c, atlas_id);

static const struct of_device_id atlas_dt_ids[] = {
	{ .compatible = "atlas,ph-sm", .data = (void *)ATLAS_PH_SM, },
	{ .compatible = "atlas,ec-sm", .data = (void *)ATLAS_EC_SM, },
	{ .compatible = "atlas,orp-sm", .data = (void *)ATLAS_ORP_SM, },
	{ .compatible = "atlas,do-sm", .data = (void *)ATLAS_DO_SM, },
	{ .compatible = "atlas,rtd-sm", .data = (void *)ATLAS_RTD_SM, },
	{ }
};
MODULE_DEVICE_TABLE(of, atlas_dt_ids);

static int atlas_probe(struct i2c_client *client)
{
	const struct i2c_device_id *id = i2c_client_get_device_id(client);
	struct atlas_data *data;
	struct atlas_device *chip;
	struct iio_trigger *trig;
	struct iio_dev *indio_dev;
	int ret;

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
	if (!indio_dev)
		return -ENOMEM;

	if (!dev_fwnode(&client->dev))
		chip = &atlas_devices[id->driver_data];
	else
		chip = &atlas_devices[(unsigned long)device_get_match_data(&client->dev)];

	indio_dev->info = &atlas_info;
	indio_dev->name = ATLAS_DRV_NAME;
	indio_dev->channels = chip->channels;
	indio_dev->num_channels = chip->num_channels;
	indio_dev->modes = INDIO_BUFFER_SOFTWARE | INDIO_DIRECT_MODE;

	trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d",
				      indio_dev->name, iio_device_id(indio_dev));

	if (!trig)
		return -ENOMEM;

	data = iio_priv(indio_dev);
	data->client = client;
	data->trig = trig;
	data->chip = chip;
	iio_trigger_set_drvdata(trig, indio_dev);

	i2c_set_clientdata(client, indio_dev);

	data->regmap = devm_regmap_init_i2c(client, &atlas_regmap_config);
	if (IS_ERR(data->regmap)) {
		dev_err(&client->dev, "regmap initialization failed\n");
		return PTR_ERR(data->regmap);
	}

	ret = pm_runtime_set_active(&client->dev);
	if (ret)
		return ret;

	ret = chip->calibration(data);
	if (ret)
		return ret;

	ret = iio_trigger_register(trig);
	if (ret) {
		dev_err(&client->dev, "failed to register trigger\n");
		return ret;
	}

	ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
		&atlas_trigger_handler, &atlas_buffer_setup_ops);
	if (ret) {
		dev_err(&client->dev, "cannot setup iio trigger\n");
		goto unregister_trigger;
	}

	init_irq_work(&data->work, atlas_work_handler);

	if (client->irq > 0) {
		/* interrupt pin toggles on new conversion */
		ret = devm_request_threaded_irq(&client->dev, client->irq,
				NULL, atlas_interrupt_handler,
				IRQF_TRIGGER_RISING |
				IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
				"atlas_irq",
				indio_dev);

		if (ret)
			dev_warn(&client->dev,
				"request irq (%d) failed\n", client->irq);
		else
			data->interrupt_enabled = 1;
	}

	ret = atlas_set_powermode(data, 1);
	if (ret) {
		dev_err(&client->dev, "cannot power device on");
		goto unregister_buffer;
	}

	pm_runtime_enable(&client->dev);
	pm_runtime_set_autosuspend_delay(&client->dev, 2500);
	pm_runtime_use_autosuspend(&client->dev);

	ret = iio_device_register(indio_dev);
	if (ret) {
		dev_err(&client->dev, "unable to register device\n");
		goto unregister_pm;
	}

	return 0;

unregister_pm:
	pm_runtime_disable(&client->dev);
	atlas_set_powermode(data, 0);

unregister_buffer:
	iio_triggered_buffer_cleanup(indio_dev);

unregister_trigger:
	iio_trigger_unregister(data->trig);

	return ret;
}

static void atlas_remove(struct i2c_client *client)
{
	struct iio_dev *indio_dev = i2c_get_clientdata(client);
	struct atlas_data *data = iio_priv(indio_dev);
	int ret;

	iio_device_unregister(indio_dev);
	iio_triggered_buffer_cleanup(indio_dev);
	iio_trigger_unregister(data->trig);

	pm_runtime_disable(&client->dev);
	pm_runtime_set_suspended(&client->dev);

	ret = atlas_set_powermode(data, 0);
	if (ret)
		dev_err(&client->dev, "Failed to power down device (%pe)\n",
			ERR_PTR(ret));
}

static int atlas_runtime_suspend(struct device *dev)
{
	struct atlas_data *data =
		     iio_priv(i2c_get_clientdata(to_i2c_client(dev)));

	return atlas_set_powermode(data, 0);
}

static int atlas_runtime_resume(struct device *dev)
{
	struct atlas_data *data =
		     iio_priv(i2c_get_clientdata(to_i2c_client(dev)));

	return atlas_set_powermode(data, 1);
}

static const struct dev_pm_ops atlas_pm_ops = {
	RUNTIME_PM_OPS(atlas_runtime_suspend, atlas_runtime_resume, NULL)
};

static struct i2c_driver atlas_driver = {
	.driver = {
		.name	= ATLAS_DRV_NAME,
		.of_match_table	= atlas_dt_ids,
		.pm	= pm_ptr(&atlas_pm_ops),
	},
	.probe_new	= atlas_probe,
	.remove		= atlas_remove,
	.id_table	= atlas_id,
};
module_i2c_driver(atlas_driver);

MODULE_AUTHOR("Matt Ranostay <matt.ranostay@konsulko.com>");
MODULE_DESCRIPTION("Atlas Scientific SM sensors");
MODULE_LICENSE("GPL");