Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | // SPDX-License-Identifier: GPL-2.0-only /* * Keystone broadcast clock-event * * Copyright 2013 Texas Instruments, Inc. * * Author: Ivan Khoronzhuk <ivan.khoronzhuk@ti.com> */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/interrupt.h> #include <linux/of_address.h> #include <linux/of_irq.h> #define TIMER_NAME "timer-keystone" /* Timer register offsets */ #define TIM12 0x10 #define TIM34 0x14 #define PRD12 0x18 #define PRD34 0x1c #define TCR 0x20 #define TGCR 0x24 #define INTCTLSTAT 0x44 /* Timer register bitfields */ #define TCR_ENAMODE_MASK 0xC0 #define TCR_ENAMODE_ONESHOT_MASK 0x40 #define TCR_ENAMODE_PERIODIC_MASK 0x80 #define TGCR_TIM_UNRESET_MASK 0x03 #define INTCTLSTAT_ENINT_MASK 0x01 /** * struct keystone_timer: holds timer's data * @base: timer memory base address * @hz_period: cycles per HZ period * @event_dev: event device based on timer */ static struct keystone_timer { void __iomem *base; unsigned long hz_period; struct clock_event_device event_dev; } timer; static inline u32 keystone_timer_readl(unsigned long rg) { return readl_relaxed(timer.base + rg); } static inline void keystone_timer_writel(u32 val, unsigned long rg) { writel_relaxed(val, timer.base + rg); } /** * keystone_timer_barrier: write memory barrier * use explicit barrier to avoid using readl/writel non relaxed function * variants, because in our case non relaxed variants hide the true places * where barrier is needed. */ static inline void keystone_timer_barrier(void) { __iowmb(); } /** * keystone_timer_config: configures timer to work in oneshot/periodic modes. * @ mask: mask of the mode to configure * @ period: cycles number to configure for */ static int keystone_timer_config(u64 period, int mask) { u32 tcr; u32 off; tcr = keystone_timer_readl(TCR); off = tcr & ~(TCR_ENAMODE_MASK); /* set enable mode */ tcr |= mask; /* disable timer */ keystone_timer_writel(off, TCR); /* here we have to be sure the timer has been disabled */ keystone_timer_barrier(); /* reset counter to zero, set new period */ keystone_timer_writel(0, TIM12); keystone_timer_writel(0, TIM34); keystone_timer_writel(period & 0xffffffff, PRD12); keystone_timer_writel(period >> 32, PRD34); /* * enable timer * here we have to be sure that CNTLO, CNTHI, PRDLO, PRDHI registers * have been written. */ keystone_timer_barrier(); keystone_timer_writel(tcr, TCR); return 0; } static void keystone_timer_disable(void) { u32 tcr; tcr = keystone_timer_readl(TCR); /* disable timer */ tcr &= ~(TCR_ENAMODE_MASK); keystone_timer_writel(tcr, TCR); } static irqreturn_t keystone_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; evt->event_handler(evt); return IRQ_HANDLED; } static int keystone_set_next_event(unsigned long cycles, struct clock_event_device *evt) { return keystone_timer_config(cycles, TCR_ENAMODE_ONESHOT_MASK); } static int keystone_shutdown(struct clock_event_device *evt) { keystone_timer_disable(); return 0; } static int keystone_set_periodic(struct clock_event_device *evt) { keystone_timer_config(timer.hz_period, TCR_ENAMODE_PERIODIC_MASK); return 0; } static int __init keystone_timer_init(struct device_node *np) { struct clock_event_device *event_dev = &timer.event_dev; unsigned long rate; struct clk *clk; int irq, error; irq = irq_of_parse_and_map(np, 0); if (!irq) { pr_err("%s: failed to map interrupts\n", __func__); return -EINVAL; } timer.base = of_iomap(np, 0); if (!timer.base) { pr_err("%s: failed to map registers\n", __func__); return -ENXIO; } clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_err("%s: failed to get clock\n", __func__); iounmap(timer.base); return PTR_ERR(clk); } error = clk_prepare_enable(clk); if (error) { pr_err("%s: failed to enable clock\n", __func__); goto err; } rate = clk_get_rate(clk); /* disable, use internal clock source */ keystone_timer_writel(0, TCR); /* here we have to be sure the timer has been disabled */ keystone_timer_barrier(); /* reset timer as 64-bit, no pre-scaler, plus features are disabled */ keystone_timer_writel(0, TGCR); /* unreset timer */ keystone_timer_writel(TGCR_TIM_UNRESET_MASK, TGCR); /* init counter to zero */ keystone_timer_writel(0, TIM12); keystone_timer_writel(0, TIM34); timer.hz_period = DIV_ROUND_UP(rate, HZ); /* enable timer interrupts */ keystone_timer_writel(INTCTLSTAT_ENINT_MASK, INTCTLSTAT); error = request_irq(irq, keystone_timer_interrupt, IRQF_TIMER, TIMER_NAME, event_dev); if (error) { pr_err("%s: failed to setup irq\n", __func__); goto err; } /* setup clockevent */ event_dev->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; event_dev->set_next_event = keystone_set_next_event; event_dev->set_state_shutdown = keystone_shutdown; event_dev->set_state_periodic = keystone_set_periodic; event_dev->set_state_oneshot = keystone_shutdown; event_dev->cpumask = cpu_possible_mask; event_dev->owner = THIS_MODULE; event_dev->name = TIMER_NAME; event_dev->irq = irq; clockevents_config_and_register(event_dev, rate, 1, ULONG_MAX); pr_info("keystone timer clock @%lu Hz\n", rate); return 0; err: clk_put(clk); iounmap(timer.base); return error; } TIMER_OF_DECLARE(keystone_timer, "ti,keystone-timer", keystone_timer_init); |