/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*/
#include "dm_services.h"
#include "dc.h"
#include "core_status.h"
#include "core_types.h"
#include "hw_sequencer.h"
#include "dce/dce_hwseq.h"
#include "resource.h"
#include "clk_mgr.h"
#include "clock_source.h"
#include "dc_bios_types.h"
#include "bios_parser_interface.h"
#include "bios/bios_parser_helper.h"
#include "include/irq_service_interface.h"
#include "transform.h"
#include "dmcu.h"
#include "dpp.h"
#include "timing_generator.h"
#include "abm.h"
#include "virtual/virtual_link_encoder.h"
#include "hubp.h"
#include "link_hwss.h"
#include "link_encoder.h"
#include "link_enc_cfg.h"
#include "dc_link.h"
#include "dc_link_ddc.h"
#include "dm_helpers.h"
#include "mem_input.h"
#include "dc_link_dp.h"
#include "dc_dmub_srv.h"
#include "dsc.h"
#include "vm_helper.h"
#include "dce/dce_i2c.h"
#include "dmub/dmub_srv.h"
#include "i2caux_interface.h"
#include "dce/dmub_psr.h"
#include "dce/dmub_hw_lock_mgr.h"
#include "dc_trace.h"
#include "dce/dmub_outbox.h"
#define CTX \
dc->ctx
#define DC_LOGGER \
dc->ctx->logger
static const char DC_BUILD_ID[] = "production-build";
/**
* DOC: Overview
*
* DC is the OS-agnostic component of the amdgpu DC driver.
*
* DC maintains and validates a set of structs representing the state of the
* driver and writes that state to AMD hardware
*
* Main DC HW structs:
*
* struct dc - The central struct. One per driver. Created on driver load,
* destroyed on driver unload.
*
* struct dc_context - One per driver.
* Used as a backpointer by most other structs in dc.
*
* struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
* plugpoints). Created on driver load, destroyed on driver unload.
*
* struct dc_sink - One per display. Created on boot or hotplug.
* Destroyed on shutdown or hotunplug. A dc_link can have a local sink
* (the display directly attached). It may also have one or more remote
* sinks (in the Multi-Stream Transport case)
*
* struct resource_pool - One per driver. Represents the hw blocks not in the
* main pipeline. Not directly accessible by dm.
*
* Main dc state structs:
*
* These structs can be created and destroyed as needed. There is a full set of
* these structs in dc->current_state representing the currently programmed state.
*
* struct dc_state - The global DC state to track global state information,
* such as bandwidth values.
*
* struct dc_stream_state - Represents the hw configuration for the pipeline from
* a framebuffer to a display. Maps one-to-one with dc_sink.
*
* struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
* and may have more in the Multi-Plane Overlay case.
*
* struct resource_context - Represents the programmable state of everything in
* the resource_pool. Not directly accessible by dm.
*
* struct pipe_ctx - A member of struct resource_context. Represents the
* internal hardware pipeline components. Each dc_plane_state has either
* one or two (in the pipe-split case).
*/
/* Private functions */
static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
{
if (new > *original)
*original = new;
}
static void destroy_links(struct dc *dc)
{
uint32_t i;
for (i = 0; i < dc->link_count; i++) {
if (NULL != dc->links[i])
link_destroy(&dc->links[i]);
}
}
static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
{
int i;
uint32_t count = 0;
for (i = 0; i < num_links; i++) {
if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
links[i]->is_internal_display)
count++;
}
return count;
}
static int get_seamless_boot_stream_count(struct dc_state *ctx)
{
uint8_t i;
uint8_t seamless_boot_stream_count = 0;
for (i = 0; i < ctx->stream_count; i++)
if (ctx->streams[i]->apply_seamless_boot_optimization)
seamless_boot_stream_count++;
return seamless_boot_stream_count;
}
static bool create_links(
struct dc *dc,
uint32_t num_virtual_links)
{
int i;
int connectors_num;
struct dc_bios *bios = dc->ctx->dc_bios;
dc->link_count = 0;
connectors_num = bios->funcs->get_connectors_number(bios);
DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
if (connectors_num > ENUM_ID_COUNT) {
dm_error(
"DC: Number of connectors %d exceeds maximum of %d!\n",
connectors_num,
ENUM_ID_COUNT);
return false;
}
dm_output_to_console(
"DC: %s: connectors_num: physical:%d, virtual:%d\n",
__func__,
connectors_num,
num_virtual_links);
for (i = 0; i < connectors_num; i++) {
struct link_init_data link_init_params = {0};
struct dc_link *link;
DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
link_init_params.ctx = dc->ctx;
/* next BIOS object table connector */
link_init_params.connector_index = i;
link_init_params.link_index = dc->link_count;
link_init_params.dc = dc;
link = link_create(&link_init_params);
if (link) {
dc->links[dc->link_count] = link;
link->dc = dc;
++dc->link_count;
}
}
DC_LOG_DC("BIOS object table - end");
/* Create a link for each usb4 dpia port */
for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
struct link_init_data link_init_params = {0};
struct dc_link *link;
link_init_params.ctx = dc->ctx;
link_init_params.connector_index = i;
link_init_params.link_index = dc->link_count;
link_init_params.dc = dc;
link_init_params.is_dpia_link = true;
link = link_create(&link_init_params);
if (link) {
dc->links[dc->link_count] = link;
link->dc = dc;
++dc->link_count;
}
}
for (i = 0; i < num_virtual_links; i++) {
struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
struct encoder_init_data enc_init = {0};
if (link == NULL) {
BREAK_TO_DEBUGGER();
goto failed_alloc;
}
link->link_index = dc->link_count;
dc->links[dc->link_count] = link;
dc->link_count++;
link->ctx = dc->ctx;
link->dc = dc;
link->connector_signal = SIGNAL_TYPE_VIRTUAL;
link->link_id.type = OBJECT_TYPE_CONNECTOR;
link->link_id.id = CONNECTOR_ID_VIRTUAL;
link->link_id.enum_id = ENUM_ID_1;
link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
if (!link->link_enc) {
BREAK_TO_DEBUGGER();
goto failed_alloc;
}
link->link_status.dpcd_caps = &link->dpcd_caps;
enc_init.ctx = dc->ctx;
enc_init.channel = CHANNEL_ID_UNKNOWN;
enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
enc_init.transmitter = TRANSMITTER_UNKNOWN;
enc_init.connector = link->link_id;
enc_init.encoder.type = OBJECT_TYPE_ENCODER;
enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
enc_init.encoder.enum_id = ENUM_ID_1;
virtual_link_encoder_construct(link->link_enc, &enc_init);
}
dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
return true;
failed_alloc:
return false;
}
/* Create additional DIG link encoder objects if fewer than the platform
* supports were created during link construction. This can happen if the
* number of physical connectors is less than the number of DIGs.
*/
static bool create_link_encoders(struct dc *dc)
{
bool res = true;
unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
int i;
/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
* link encoders and physical display endpoints and does not require
* additional link encoder objects.
*/
if (num_usb4_dpia == 0)
return res;
/* Create as many link encoder objects as the platform supports. DPIA
* endpoints can be programmably mapped to any DIG.
*/
if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
for (i = 0; i < num_dig_link_enc; i++) {
struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
(enum engine_id)(ENGINE_ID_DIGA + i));
if (link_enc) {
dc->res_pool->link_encoders[i] = link_enc;
dc->res_pool->dig_link_enc_count++;
} else {
res = false;
}
}
}
}
return res;
}
/* Destroy any additional DIG link encoder objects created by
* create_link_encoders().
* NB: Must only be called after destroy_links().
*/
static void destroy_link_encoders(struct dc *dc)
{
unsigned int num_usb4_dpia;
unsigned int num_dig_link_enc;
int i;
if (!dc->res_pool)
return;
num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
* link encoders and physical display endpoints and does not require
* additional link encoder objects.
*/
if (num_usb4_dpia == 0)
return;
for (i = 0; i < num_dig_link_enc; i++) {
struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
if (link_enc) {
link_enc->funcs->destroy(&link_enc);
dc->res_pool->link_encoders[i] = NULL;
dc->res_pool->dig_link_enc_count--;
}
}
}
static struct dc_perf_trace *dc_perf_trace_create(void)
{
return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
}
static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
{
kfree(*perf_trace);
*perf_trace = NULL;
}
/**
* dc_stream_adjust_vmin_vmax:
*
* Looks up the pipe context of dc_stream_state and updates the
* vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
* Rate, which is a power-saving feature that targets reducing panel
* refresh rate while the screen is static
*
* @dc: dc reference
* @stream: Initial dc stream state
* @adjust: Updated parameters for vertical_total_min and vertical_total_max
*/
bool dc_stream_adjust_vmin_vmax(struct dc *dc,
struct dc_stream_state *stream,
struct dc_crtc_timing_adjust *adjust)
{
int i;
stream->adjust.v_total_max = adjust->v_total_max;
stream->adjust.v_total_mid = adjust->v_total_mid;
stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
stream->adjust.v_total_min = adjust->v_total_min;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream && pipe->stream_res.tg) {
dc->hwss.set_drr(&pipe,
1,
*adjust);
return true;
}
}
return false;
}
/**
* dc_stream_get_last_used_drr_vtotal - dc_stream_get_last_vrr_vtotal
*
* @dc: [in] dc reference
* @stream: [in] Initial dc stream state
* @adjust: [in] Updated parameters for vertical_total_min and
*
* Looks up the pipe context of dc_stream_state and gets the last VTOTAL used
* by DRR (Dynamic Refresh Rate)
*/
bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
struct dc_stream_state *stream,
uint32_t *refresh_rate)
{
bool status = false;
int i = 0;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream && pipe->stream_res.tg) {
/* Only execute if a function pointer has been defined for
* the DC version in question
*/
if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
status = true;
break;
}
}
}
return status;
}
bool dc_stream_get_crtc_position(struct dc *dc,
struct dc_stream_state **streams, int num_streams,
unsigned int *v_pos, unsigned int *nom_v_pos)
{
/* TODO: Support multiple streams */
const struct dc_stream_state *stream = streams[0];
int i;
bool ret = false;
struct crtc_position position;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe =
&dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream && pipe->stream_res.stream_enc) {
dc->hwss.get_position(&pipe, 1, &position);
*v_pos = position.vertical_count;
*nom_v_pos = position.nominal_vcount;
ret = true;
}
}
return ret;
}
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
{
union dmub_rb_cmd cmd = {0};
cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
if (is_stop) {
cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
} else {
cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
cmd.secure_display.roi_info.x_start = rect->x;
cmd.secure_display.roi_info.y_start = rect->y;
cmd.secure_display.roi_info.x_end = rect->x + rect->width;
cmd.secure_display.roi_info.y_end = rect->y + rect->height;
}
dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dmub_srv);
}
static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
{
if (is_stop)
dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
else
dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
}
bool
dc_stream_forward_crc_window(struct dc *dc,
struct rect *rect, struct dc_stream_state *stream, bool is_stop)
{
struct dmcu *dmcu;
struct dc_dmub_srv *dmub_srv;
struct otg_phy_mux mux_mapping;
struct pipe_ctx *pipe;
int i;
for (i = 0; i < MAX_PIPES; i++) {
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
break;
}
/* Stream not found */
if (i == MAX_PIPES)
return false;
mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
dmcu = dc->res_pool->dmcu;
dmub_srv = dc->ctx->dmub_srv;
/* forward to dmub */
if (dmub_srv)
dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
/* forward to dmcu */
else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
else
return false;
return true;
}
#endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
/**
* dc_stream_configure_crc() - Configure CRC capture for the given stream.
* @dc: DC Object
* @stream: The stream to configure CRC on.
* @enable: Enable CRC if true, disable otherwise.
* @crc_window: CRC window (x/y start/end) information
* @continuous: Capture CRC on every frame if true. Otherwise, only capture
* once.
*
* By default, only CRC0 is configured, and the entire frame is used to
* calculate the crc.
*/
bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
struct crc_params *crc_window, bool enable, bool continuous)
{
int i;
struct pipe_ctx *pipe;
struct crc_params param;
struct timing_generator *tg;
for (i = 0; i < MAX_PIPES; i++) {
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
break;
}
/* Stream not found */
if (i == MAX_PIPES)
return false;
/* By default, capture the full frame */
param.windowa_x_start = 0;
param.windowa_y_start = 0;
param.windowa_x_end = pipe->stream->timing.h_addressable;
param.windowa_y_end = pipe->stream->timing.v_addressable;
param.windowb_x_start = 0;
param.windowb_y_start = 0;
param.windowb_x_end = pipe->stream->timing.h_addressable;
param.windowb_y_end = pipe->stream->timing.v_addressable;
if (crc_window) {
param.windowa_x_start = crc_window->windowa_x_start;
param.windowa_y_start = crc_window->windowa_y_start;
param.windowa_x_end = crc_window->windowa_x_end;
param.windowa_y_end = crc_window->windowa_y_end;
param.windowb_x_start = crc_window->windowb_x_start;
param.windowb_y_start = crc_window->windowb_y_start;
param.windowb_x_end = crc_window->windowb_x_end;
param.windowb_y_end = crc_window->windowb_y_end;
}
param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
param.odm_mode = pipe->next_odm_pipe ? 1:0;
/* Default to the union of both windows */
param.selection = UNION_WINDOW_A_B;
param.continuous_mode = continuous;
param.enable = enable;
tg = pipe->stream_res.tg;
/* Only call if supported */
if (tg->funcs->configure_crc)
return tg->funcs->configure_crc(tg, ¶m);
DC_LOG_WARNING("CRC capture not supported.");
return false;
}
/**
* dc_stream_get_crc() - Get CRC values for the given stream.
*
* @dc: DC object.
* @stream: The DC stream state of the stream to get CRCs from.
* @r_cr: CRC value for the red component.
* @g_y: CRC value for the green component.
* @b_cb: CRC value for the blue component.
*
* dc_stream_configure_crc needs to be called beforehand to enable CRCs.
*
* Return:
* false if stream is not found, or if CRCs are not enabled.
*/
bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
{
int i;
struct pipe_ctx *pipe;
struct timing_generator *tg;
for (i = 0; i < MAX_PIPES; i++) {
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream)
break;
}
/* Stream not found */
if (i == MAX_PIPES)
return false;
tg = pipe->stream_res.tg;
if (tg->funcs->get_crc)
return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
DC_LOG_WARNING("CRC capture not supported.");
return false;
}
void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
enum dc_dynamic_expansion option)
{
/* OPP FMT dyn expansion updates*/
int i;
struct pipe_ctx *pipe_ctx;
for (i = 0; i < MAX_PIPES; i++) {
if (dc->current_state->res_ctx.pipe_ctx[i].stream
== stream) {
pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
pipe_ctx->stream_res.opp->dyn_expansion = option;
pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
pipe_ctx->stream_res.opp,
COLOR_SPACE_YCBCR601,
stream->timing.display_color_depth,
stream->signal);
}
}
}
void dc_stream_set_dither_option(struct dc_stream_state *stream,
enum dc_dither_option option)
{
struct bit_depth_reduction_params params;
struct dc_link *link = stream->link;
struct pipe_ctx *pipes = NULL;
int i;
for (i = 0; i < MAX_PIPES; i++) {
if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
stream) {
pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
break;
}
}
if (!pipes)
return;
if (option > DITHER_OPTION_MAX)
return;
stream->dither_option = option;
memset(¶ms, 0, sizeof(params));
resource_build_bit_depth_reduction_params(stream, ¶ms);
stream->bit_depth_params = params;
if (pipes->plane_res.xfm &&
pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
pipes->plane_res.xfm,
pipes->plane_res.scl_data.lb_params.depth,
&stream->bit_depth_params);
}
pipes->stream_res.opp->funcs->
opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
}
bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
{
int i;
bool ret = false;
struct pipe_ctx *pipes;
for (i = 0; i < MAX_PIPES; i++) {
if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
pipes = &dc->current_state->res_ctx.pipe_ctx[i];
dc->hwss.program_gamut_remap(pipes);
ret = true;
}
}
return ret;
}
bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
{
int i;
bool ret = false;
struct pipe_ctx *pipes;
for (i = 0; i < MAX_PIPES; i++) {
if (dc->current_state->res_ctx.pipe_ctx[i].stream
== stream) {
pipes = &dc->current_state->res_ctx.pipe_ctx[i];
dc->hwss.program_output_csc(dc,
pipes,
stream->output_color_space,
stream->csc_color_matrix.matrix,
pipes->stream_res.opp->inst);
ret = true;
}
}
return ret;
}
void dc_stream_set_static_screen_params(struct dc *dc,
struct dc_stream_state **streams,
int num_streams,
const struct dc_static_screen_params *params)
{
int i, j;
struct pipe_ctx *pipes_affected[MAX_PIPES];
int num_pipes_affected = 0;
for (i = 0; i < num_streams; i++) {
struct dc_stream_state *stream = streams[i];
for (j = 0; j < MAX_PIPES; j++) {
if (dc->current_state->res_ctx.pipe_ctx[j].stream
== stream) {
pipes_affected[num_pipes_affected++] =
&dc->current_state->res_ctx.pipe_ctx[j];
}
}
}
dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
}
static void dc_destruct(struct dc *dc)
{
// reset link encoder assignment table on destruct
if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
link_enc_cfg_init(dc, dc->current_state);
if (dc->current_state) {
dc_release_state(dc->current_state);
dc->current_state = NULL;
}
destroy_links(dc);
destroy_link_encoders(dc);
if (dc->clk_mgr) {
dc_destroy_clk_mgr(dc->clk_mgr);
dc->clk_mgr = NULL;
}
dc_destroy_resource_pool(dc);
if (dc->ctx->gpio_service)
dal_gpio_service_destroy(&dc->ctx->gpio_service);
if (dc->ctx->created_bios)
dal_bios_parser_destroy(&dc->ctx->dc_bios);
dc_perf_trace_destroy(&dc->ctx->perf_trace);
kfree(dc->ctx);
dc->ctx = NULL;
kfree(dc->bw_vbios);
dc->bw_vbios = NULL;
kfree(dc->bw_dceip);
dc->bw_dceip = NULL;
kfree(dc->dcn_soc);
dc->dcn_soc = NULL;
kfree(dc->dcn_ip);
dc->dcn_ip = NULL;
kfree(dc->vm_helper);
dc->vm_helper = NULL;
}
static bool dc_construct_ctx(struct dc *dc,
const struct dc_init_data *init_params)
{
struct dc_context *dc_ctx;
enum dce_version dc_version = DCE_VERSION_UNKNOWN;
dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
if (!dc_ctx)
return false;
dc_ctx->cgs_device = init_params->cgs_device;
dc_ctx->driver_context = init_params->driver;
dc_ctx->dc = dc;
dc_ctx->asic_id = init_params->asic_id;
dc_ctx->dc_sink_id_count = 0;
dc_ctx->dc_stream_id_count = 0;
dc_ctx->dce_environment = init_params->dce_environment;
dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
/* Create logger */
dc_version = resource_parse_asic_id(init_params->asic_id);
dc_ctx->dce_version = dc_version;
dc_ctx->perf_trace = dc_perf_trace_create();
if (!dc_ctx->perf_trace) {
kfree(dc_ctx);
ASSERT_CRITICAL(false);
return false;
}
dc->ctx = dc_ctx;
return true;
}
static bool dc_construct(struct dc *dc,
const struct dc_init_data *init_params)
{
struct dc_context *dc_ctx;
struct bw_calcs_dceip *dc_dceip;
struct bw_calcs_vbios *dc_vbios;
struct dcn_soc_bounding_box *dcn_soc;
struct dcn_ip_params *dcn_ip;
dc->config = init_params->flags;
// Allocate memory for the vm_helper
dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
if (!dc->vm_helper) {
dm_error("%s: failed to create dc->vm_helper\n", __func__);
goto fail;
}
memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
if (!dc_dceip) {
dm_error("%s: failed to create dceip\n", __func__);
goto fail;
}
dc->bw_dceip = dc_dceip;
dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
if (!dc_vbios) {
dm_error("%s: failed to create vbios\n", __func__);
goto fail;
}
dc->bw_vbios = dc_vbios;
dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
if (!dcn_soc) {
dm_error("%s: failed to create dcn_soc\n", __func__);
goto fail;
}
dc->dcn_soc = dcn_soc;
dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
if (!dcn_ip) {
dm_error("%s: failed to create dcn_ip\n", __func__);
goto fail;
}
dc->dcn_ip = dcn_ip;
if (!dc_construct_ctx(dc, init_params)) {
dm_error("%s: failed to create ctx\n", __func__);
goto fail;
}
dc_ctx = dc->ctx;
/* Resource should construct all asic specific resources.
* This should be the only place where we need to parse the asic id
*/
if (init_params->vbios_override)
dc_ctx->dc_bios = init_params->vbios_override;
else {
/* Create BIOS parser */
struct bp_init_data bp_init_data;
bp_init_data.ctx = dc_ctx;
bp_init_data.bios = init_params->asic_id.atombios_base_address;
dc_ctx->dc_bios = dal_bios_parser_create(
&bp_init_data, dc_ctx->dce_version);
if (!dc_ctx->dc_bios) {
ASSERT_CRITICAL(false);
goto fail;
}
dc_ctx->created_bios = true;
}
dc->vendor_signature = init_params->vendor_signature;
/* Create GPIO service */
dc_ctx->gpio_service = dal_gpio_service_create(
dc_ctx->dce_version,
dc_ctx->dce_environment,
dc_ctx);
if (!dc_ctx->gpio_service) {
ASSERT_CRITICAL(false);
goto fail;
}
dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
if (!dc->res_pool)
goto fail;
/* set i2c speed if not done by the respective dcnxxx__resource.c */
if (dc->caps.i2c_speed_in_khz_hdcp == 0)
dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
if (!dc->clk_mgr)
goto fail;
#ifdef CONFIG_DRM_AMD_DC_DCN
dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
if (dc->res_pool->funcs->update_bw_bounding_box) {
DC_FP_START();
dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
DC_FP_END();
}
#endif
/* Creation of current_state must occur after dc->dml
* is initialized in dc_create_resource_pool because
* on creation it copies the contents of dc->dml
*/
dc->current_state = dc_create_state(dc);
if (!dc->current_state) {
dm_error("%s: failed to create validate ctx\n", __func__);
goto fail;
}
if (!create_links(dc, init_params->num_virtual_links))
goto fail;
/* Create additional DIG link encoder objects if fewer than the platform
* supports were created during link construction.
*/
if (!create_link_encoders(dc))
goto fail;
dc_resource_state_construct(dc, dc->current_state);
return true;
fail:
return false;
}
static void disable_all_writeback_pipes_for_stream(
const struct dc *dc,
struct dc_stream_state *stream,
struct dc_state *context)
{
int i;
for (i = 0; i < stream->num_wb_info; i++)
stream->writeback_info[i].wb_enabled = false;
}
static void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context,
struct dc_stream_state *stream, bool lock)
{
int i;
/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
if (dc->hwss.interdependent_update_lock)
dc->hwss.interdependent_update_lock(dc, context, lock);
else {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
// Copied conditions that were previously in dce110_apply_ctx_for_surface
if (stream == pipe_ctx->stream) {
if (!pipe_ctx->top_pipe &&
(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
}
}
}
}
static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
{
int i, j;
struct dc_state *dangling_context = dc_create_state(dc);
struct dc_state *current_ctx;
struct pipe_ctx *pipe;
struct timing_generator *tg;
if (dangling_context == NULL)
return;
dc_resource_state_copy_construct(dc->current_state, dangling_context);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct dc_stream_state *old_stream =
dc->current_state->res_ctx.pipe_ctx[i].stream;
bool should_disable = true;
bool pipe_split_change = false;
if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
else
pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
for (j = 0; j < context->stream_count; j++) {
if (old_stream == context->streams[j]) {
should_disable = false;
break;
}
}
if (!should_disable && pipe_split_change &&
dc->current_state->stream_count != context->stream_count)
should_disable = true;
if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
struct pipe_ctx *old_pipe, *new_pipe;
old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
new_pipe = &context->res_ctx.pipe_ctx[i];
if (old_pipe->plane_state && !new_pipe->plane_state)
should_disable = true;
}
if (should_disable && old_stream) {
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
tg = pipe->stream_res.tg;
/* When disabling plane for a phantom pipe, we must turn on the
* phantom OTG so the disable programming gets the double buffer
* update. Otherwise the pipe will be left in a partially disabled
* state that can result in underflow or hang when enabling it
* again for different use.
*/
if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
if (tg->funcs->enable_crtc)
tg->funcs->enable_crtc(tg);
}
dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
if (dc->hwss.apply_ctx_for_surface) {
apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
dc->hwss.post_unlock_program_front_end(dc, dangling_context);
}
if (dc->hwss.program_front_end_for_ctx) {
dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
dc->hwss.program_front_end_for_ctx(dc, dangling_context);
dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
dc->hwss.post_unlock_program_front_end(dc, dangling_context);
}
/* We need to put the phantom OTG back into it's default (disabled) state or we
* can get corruption when transition from one SubVP config to a different one.
* The OTG is set to disable on falling edge of VUPDATE so the plane disable
* will still get it's double buffer update.
*/
if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
if (tg->funcs->disable_phantom_crtc)
tg->funcs->disable_phantom_crtc(tg);
}
}
}
current_ctx = dc->current_state;
dc->current_state = dangling_context;
dc_release_state(current_ctx);
}
static void disable_vbios_mode_if_required(
struct dc *dc,
struct dc_state *context)
{
unsigned int i, j;
/* check if timing_changed, disable stream*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct dc_stream_state *stream = NULL;
struct dc_link *link = NULL;
struct pipe_ctx *pipe = NULL;
pipe = &context->res_ctx.pipe_ctx[i];
stream = pipe->stream;
if (stream == NULL)
continue;
// only looking for first odm pipe
if (pipe->prev_odm_pipe)
continue;
if (stream->link->local_sink &&
stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
link = stream->link;
}
if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
unsigned int enc_inst, tg_inst = 0;
unsigned int pix_clk_100hz;
enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
if (enc_inst != ENGINE_ID_UNKNOWN) {
for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
if (dc->res_pool->stream_enc[j]->id == enc_inst) {
tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
dc->res_pool->stream_enc[j]);
break;
}
}
dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
dc->res_pool->dp_clock_source,
tg_inst, &pix_clk_100hz);
if (link->link_status.link_active) {
uint32_t requested_pix_clk_100hz =
pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
if (pix_clk_100hz != requested_pix_clk_100hz) {
core_link_disable_stream(pipe);
pipe->stream->dpms_off = false;
}
}
}
}
}
}
static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
{
int i;
PERF_TRACE();
for (i = 0; i < MAX_PIPES; i++) {
int count = 0;
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
continue;
/* Timeout 100 ms */
while (count < 100000) {
/* Must set to false to start with, due to OR in update function */
pipe->plane_state->status.is_flip_pending = false;
dc->hwss.update_pending_status(pipe);
if (!pipe->plane_state->status.is_flip_pending)
break;
udelay(1);
count++;
}
ASSERT(!pipe->plane_state->status.is_flip_pending);
}
PERF_TRACE();
}
/* Public functions */
struct dc *dc_create(const struct dc_init_data *init_params)
{
struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
unsigned int full_pipe_count;
if (!dc)
return NULL;
if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
if (!dc_construct_ctx(dc, init_params))
goto destruct_dc;
} else {
if (!dc_construct(dc, init_params))
goto destruct_dc;
full_pipe_count = dc->res_pool->pipe_count;
if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
full_pipe_count--;
dc->caps.max_streams = min(
full_pipe_count,
dc->res_pool->stream_enc_count);
dc->caps.max_links = dc->link_count;
dc->caps.max_audios = dc->res_pool->audio_count;
dc->caps.linear_pitch_alignment = 64;
dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
if (dc->res_pool->dmcu != NULL)
dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
}
dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
/* Populate versioning information */
dc->versions.dc_ver = DC_VER;
dc->build_id = DC_BUILD_ID;
DC_LOG_DC("Display Core initialized\n");
return dc;
destruct_dc:
dc_destruct(dc);
kfree(dc);
return NULL;
}
static void detect_edp_presence(struct dc *dc)
{
struct dc_link *edp_links[MAX_NUM_EDP];
struct dc_link *edp_link = NULL;
enum dc_connection_type type;
int i;
int edp_num;
get_edp_links(dc, edp_links, &edp_num);
if (!edp_num)
return;
for (i = 0; i < edp_num; i++) {
edp_link = edp_links[i];
if (dc->config.edp_not_connected) {
edp_link->edp_sink_present = false;
} else {
dc_link_detect_sink(edp_link, &type);
edp_link->edp_sink_present = (type != dc_connection_none);
}
}
}
void dc_hardware_init(struct dc *dc)
{
detect_edp_presence(dc);
if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
dc->hwss.init_hw(dc);
}
void dc_init_callbacks(struct dc *dc,
const struct dc_callback_init *init_params)
{
#ifdef CONFIG_DRM_AMD_DC_HDCP
dc->ctx->cp_psp = init_params->cp_psp;
#endif
}
void dc_deinit_callbacks(struct dc *dc)
{
#ifdef CONFIG_DRM_AMD_DC_HDCP
memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
#endif
}
void dc_destroy(struct dc **dc)
{
dc_destruct(*dc);
kfree(*dc);
*dc = NULL;
}
static void enable_timing_multisync(
struct dc *dc,
struct dc_state *ctx)
{
int i, multisync_count = 0;
int pipe_count = dc->res_pool->pipe_count;
struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
for (i = 0; i < pipe_count; i++) {
if (!ctx->res_ctx.pipe_ctx[i].stream ||
!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
continue;
if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
continue;
multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
multisync_count++;
}
if (multisync_count > 0) {
dc->hwss.enable_per_frame_crtc_position_reset(
dc, multisync_count, multisync_pipes);
}
}
static void program_timing_sync(
struct dc *dc,
struct dc_state *ctx)
{
int i, j, k;
int group_index = 0;
int num_group = 0;
int pipe_count = dc->res_pool->pipe_count;
struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
for (i = 0; i < pipe_count; i++) {
if (!ctx->res_ctx.pipe_ctx[i].stream
|| ctx->res_ctx.pipe_ctx[i].top_pipe
|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
continue;
unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
}
for (i = 0; i < pipe_count; i++) {
int group_size = 1;
enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
struct pipe_ctx *pipe_set[MAX_PIPES];
if (!unsynced_pipes[i])
continue;
pipe_set[0] = unsynced_pipes[i];
unsynced_pipes[i] = NULL;
/* Add tg to the set, search rest of the tg's for ones with
* same timing, add all tgs with same timing to the group
*/
for (j = i + 1; j < pipe_count; j++) {
if (!unsynced_pipes[j])
continue;
if (sync_type != TIMING_SYNCHRONIZABLE &&
dc->hwss.enable_vblanks_synchronization &&
unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
resource_are_vblanks_synchronizable(
unsynced_pipes[j]->stream,
pipe_set[0]->stream)) {
sync_type = VBLANK_SYNCHRONIZABLE;
pipe_set[group_size] = unsynced_pipes[j];
unsynced_pipes[j] = NULL;
group_size++;
} else
if (sync_type != VBLANK_SYNCHRONIZABLE &&
resource_are_streams_timing_synchronizable(
unsynced_pipes[j]->stream,
pipe_set[0]->stream)) {
sync_type = TIMING_SYNCHRONIZABLE;
pipe_set[group_size] = unsynced_pipes[j];
unsynced_pipes[j] = NULL;
group_size++;
}
}
/* set first unblanked pipe as master */
for (j = 0; j < group_size; j++) {
bool is_blanked;
if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
is_blanked =
pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
else
is_blanked =
pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
if (!is_blanked) {
if (j == 0)
break;
swap(pipe_set[0], pipe_set[j]);
break;
}
}
for (k = 0; k < group_size; k++) {
struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
status->timing_sync_info.group_id = num_group;
status->timing_sync_info.group_size = group_size;
if (k == 0)
status->timing_sync_info.master = true;
else
status->timing_sync_info.master = false;
}
/* remove any other pipes that are already been synced */
if (dc->config.use_pipe_ctx_sync_logic) {
/* check pipe's syncd to decide which pipe to be removed */
for (j = 1; j < group_size; j++) {
if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
group_size--;
pipe_set[j] = pipe_set[group_size];
j--;
} else
/* link slave pipe's syncd with master pipe */
pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
}
} else {
for (j = j + 1; j < group_size; j++) {
bool is_blanked;
if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
is_blanked =
pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
else
is_blanked =
pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
if (!is_blanked) {
group_size--;
pipe_set[j] = pipe_set[group_size];
j--;
}
}
}
if (group_size > 1) {
if (sync_type == TIMING_SYNCHRONIZABLE) {
dc->hwss.enable_timing_synchronization(
dc, group_index, group_size, pipe_set);
} else
if (sync_type == VBLANK_SYNCHRONIZABLE) {
dc->hwss.enable_vblanks_synchronization(
dc, group_index, group_size, pipe_set);
}
group_index++;
}
num_group++;
}
}
static bool streams_changed(struct dc *dc,
struct dc_stream_state *streams[],
uint8_t stream_count)
{
uint8_t i;
if (stream_count != dc->current_state->stream_count)
return true;
for (i = 0; i < dc->current_state->stream_count; i++) {
if (dc->current_state->streams[i] != streams[i])
return true;
if (!streams[i]->link->link_state_valid)
return true;
}
return false;
}
bool dc_validate_boot_timing(const struct dc *dc,
const struct dc_sink *sink,
struct dc_crtc_timing *crtc_timing)
{
struct timing_generator *tg;
struct stream_encoder *se = NULL;
struct dc_crtc_timing hw_crtc_timing = {0};
struct dc_link *link = sink->link;
unsigned int i, enc_inst, tg_inst = 0;
/* Support seamless boot on EDP displays only */
if (sink->sink_signal != SIGNAL_TYPE_EDP) {
return false;
}
/* Check for enabled DIG to identify enabled display */
if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
return false;
enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
if (enc_inst == ENGINE_ID_UNKNOWN)
return false;
for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
if (dc->res_pool->stream_enc[i]->id == enc_inst) {
se = dc->res_pool->stream_enc[i];
tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
dc->res_pool->stream_enc[i]);
break;
}
}
// tg_inst not found
if (i == dc->res_pool->stream_enc_count)
return false;
if (tg_inst >= dc->res_pool->timing_generator_count)
return false;
if (tg_inst != link->link_enc->preferred_engine)
return false;
tg = dc->res_pool->timing_generators[tg_inst];
if (!tg->funcs->get_hw_timing)
return false;
if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
return false;
if (crtc_timing->h_total != hw_crtc_timing.h_total)
return false;
if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
return false;
if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
return false;
if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
return false;
if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
return false;
if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
return false;
if (crtc_timing->v_total != hw_crtc_timing.v_total)
return false;
if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
return false;
if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
return false;
if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
return false;
if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
return false;
if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
return false;
/* block DSC for now, as VBIOS does not currently support DSC timings */
if (crtc_timing->flags.DSC)
return false;
if (dc_is_dp_signal(link->connector_signal)) {
unsigned int pix_clk_100hz;
uint32_t numOdmPipes = 1;
uint32_t id_src[4] = {0};
dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
dc->res_pool->dp_clock_source,
tg_inst, &pix_clk_100hz);
if (tg->funcs->get_optc_source)
tg->funcs->get_optc_source(tg,
&numOdmPipes, &id_src[0], &id_src[1]);
if (numOdmPipes == 2)
pix_clk_100hz *= 2;
if (numOdmPipes == 4)
pix_clk_100hz *= 4;
// Note: In rare cases, HW pixclk may differ from crtc's pixclk
// slightly due to rounding issues in 10 kHz units.
if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
return false;
if (!se->funcs->dp_get_pixel_format)
return false;
if (!se->funcs->dp_get_pixel_format(
se,
&hw_crtc_timing.pixel_encoding,
&hw_crtc_timing.display_color_depth))
return false;
if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
return false;
if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
return false;
}
if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
return false;
}
if (is_edp_ilr_optimization_required(link, crtc_timing)) {
DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
return false;
}
return true;
}
static inline bool should_update_pipe_for_stream(
struct dc_state *context,
struct pipe_ctx *pipe_ctx,
struct dc_stream_state *stream)
{
return (pipe_ctx->stream && pipe_ctx->stream == stream);
}
static inline bool should_update_pipe_for_plane(
struct dc_state *context,
struct pipe_ctx *pipe_ctx,
struct dc_plane_state *plane_state)
{
return (pipe_ctx->plane_state == plane_state);
}
void dc_enable_stereo(
struct dc *dc,
struct dc_state *context,
struct dc_stream_state *streams[],
uint8_t stream_count)
{
int i, j;
struct pipe_ctx *pipe;
for (i = 0; i < MAX_PIPES; i++) {
if (context != NULL) {
pipe = &context->res_ctx.pipe_ctx[i];
} else {
context = dc->current_state;
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
}
for (j = 0; pipe && j < stream_count; j++) {
if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
dc->hwss.setup_stereo)
dc->hwss.setup_stereo(pipe, dc);
}
}
}
void dc_trigger_sync(struct dc *dc, struct dc_state *context)
{
if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
enable_timing_multisync(dc, context);
program_timing_sync(dc, context);
}
}
static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
{
int i;
unsigned int stream_mask = 0;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (context->res_ctx.pipe_ctx[i].stream)
stream_mask |= 1 << i;
}
return stream_mask;
}
void dc_z10_restore(const struct dc *dc)
{
if (dc->hwss.z10_restore)
dc->hwss.z10_restore(dc);
}
void dc_z10_save_init(struct dc *dc)
{
if (dc->hwss.z10_save_init)
dc->hwss.z10_save_init(dc);
}
/**
* dc_commit_state_no_check - Apply context to the hardware
*
* @dc: DC object with the current status to be updated
* @context: New state that will become the current status at the end of this function
*
* Applies given context to the hardware and copy it into current context.
* It's up to the user to release the src context afterwards.
*/
static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
{
struct dc_bios *dcb = dc->ctx->dc_bios;
enum dc_status result = DC_ERROR_UNEXPECTED;
struct pipe_ctx *pipe;
int i, k, l;
struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
struct dc_state *old_state;
bool subvp_prev_use = false;
dc_z10_restore(dc);
dc_allow_idle_optimizations(dc, false);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
/* Check old context for SubVP */
subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
if (subvp_prev_use)
break;
}
for (i = 0; i < context->stream_count; i++)
dc_streams[i] = context->streams[i];
if (!dcb->funcs->is_accelerated_mode(dcb)) {
disable_vbios_mode_if_required(dc, context);
dc->hwss.enable_accelerated_mode(dc, context);
}
if (context->stream_count > get_seamless_boot_stream_count(context) ||
context->stream_count == 0)
dc->hwss.prepare_bandwidth(dc, context);
/* When SubVP is active, all HW programming must be done while
* SubVP lock is acquired
*/
if (dc->hwss.subvp_pipe_control_lock)
dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
if (dc->debug.enable_double_buffered_dsc_pg_support)
dc->hwss.update_dsc_pg(dc, context, false);
disable_dangling_plane(dc, context);
/* re-program planes for existing stream, in case we need to
* free up plane resource for later use
*/
if (dc->hwss.apply_ctx_for_surface) {
for (i = 0; i < context->stream_count; i++) {
if (context->streams[i]->mode_changed)
continue;
apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
dc->hwss.apply_ctx_for_surface(
dc, context->streams[i],
context->stream_status[i].plane_count,
context); /* use new pipe config in new context */
apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
dc->hwss.post_unlock_program_front_end(dc, context);
}
}
/* Program hardware */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
}
result = dc->hwss.apply_ctx_to_hw(dc, context);
if (result != DC_OK) {
/* Application of dc_state to hardware stopped. */
dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
return result;
}
dc_trigger_sync(dc, context);
/* Program all planes within new context*/
if (dc->hwss.program_front_end_for_ctx) {
dc->hwss.interdependent_update_lock(dc, context, true);
dc->hwss.program_front_end_for_ctx(dc, context);
dc->hwss.interdependent_update_lock(dc, context, false);
dc->hwss.post_unlock_program_front_end(dc, context);
}
if (dc->hwss.commit_subvp_config)
dc->hwss.commit_subvp_config(dc, context);
if (dc->hwss.subvp_pipe_control_lock)
dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
for (i = 0; i < context->stream_count; i++) {
const struct dc_link *link = context->streams[i]->link;
if (!context->streams[i]->mode_changed)
continue;
if (dc->hwss.apply_ctx_for_surface) {
apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
dc->hwss.apply_ctx_for_surface(
dc, context->streams[i],
context->stream_status[i].plane_count,
context);
apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
dc->hwss.post_unlock_program_front_end(dc, context);
}
/*
* enable stereo
* TODO rework dc_enable_stereo call to work with validation sets?
*/
for (k = 0; k < MAX_PIPES; k++) {
pipe = &context->res_ctx.pipe_ctx[k];
for (l = 0 ; pipe && l < context->stream_count; l++) {
if (context->streams[l] &&
context->streams[l] == pipe->stream &&
dc->hwss.setup_stereo)
dc->hwss.setup_stereo(pipe, dc);
}
}
CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
context->streams[i]->timing.h_addressable,
context->streams[i]->timing.v_addressable,
context->streams[i]->timing.h_total,
context->streams[i]->timing.v_total,
context->streams[i]->timing.pix_clk_100hz / 10);
}
dc_enable_stereo(dc, context, dc_streams, context->stream_count);
if (context->stream_count > get_seamless_boot_stream_count(context) ||
context->stream_count == 0) {
/* Must wait for no flips to be pending before doing optimize bw */
wait_for_no_pipes_pending(dc, context);
/* pplib is notified if disp_num changed */
dc->hwss.optimize_bandwidth(dc, context);
}
if (dc->debug.enable_double_buffered_dsc_pg_support)
dc->hwss.update_dsc_pg(dc, context, true);
if (dc->ctx->dce_version >= DCE_VERSION_MAX)
TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
else
TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
context->stream_mask = get_stream_mask(dc, context);
if (context->stream_mask != dc->current_state->stream_mask)
dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
for (i = 0; i < context->stream_count; i++)
context->streams[i]->mode_changed = false;
old_state = dc->current_state;
dc->current_state = context;
dc_release_state(old_state);
dc_retain_state(dc->current_state);
return result;
}
/**
* dc_commit_streams - Commit current stream state
*
* @dc: DC object with the commit state to be configured in the hardware
* @streams: Array with a list of stream state
* @stream_count: Total of streams
*
* Function responsible for commit streams change to the hardware.
*
* Return:
* Return DC_OK if everything work as expected, otherwise, return a dc_status
* code.
*/
enum dc_status dc_commit_streams(struct dc *dc,
struct dc_stream_state *streams[],
uint8_t stream_count)
{
int i, j;
struct dc_state *context;
enum dc_status res = DC_OK;
struct dc_validation_set set[MAX_STREAMS] = {0};
if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
return res;
if (!streams_changed(dc, streams, stream_count))
return res;
DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
for (i = 0; i < stream_count; i++) {
struct dc_stream_state *stream = streams[i];
struct dc_stream_status *status = dc_stream_get_status(stream);
dc_stream_log(dc, stream);
set[i].stream = stream;
if (status) {
set[i].plane_count = status->plane_count;
for (j = 0; j < status->plane_count; j++)
set[i].plane_states[j] = status->plane_states[j];
}
}
context = dc_create_state(dc);
if (!context)
goto context_alloc_fail;
dc_resource_state_copy_construct_current(dc, context);
res = dc_validate_with_context(dc, set, stream_count, context, false);
if (res != DC_OK) {
BREAK_TO_DEBUGGER();
goto fail;
}
res = dc_commit_state_no_check(dc, context);
for (i = 0; i < stream_count; i++) {
for (j = 0; j < context->stream_count; j++) {
if (streams[i]->stream_id == context->streams[j]->stream_id)
streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
if (dc_is_embedded_signal(streams[i]->signal)) {
struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
if (dc->hwss.is_abm_supported)
status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
else
status->is_abm_supported = true;
}
}
}
fail:
dc_release_state(context);
context_alloc_fail:
DC_LOG_DC("%s Finished.\n", __func__);
return res;
}
/* TODO: When the transition to the new commit sequence is done, remove this
* function in favor of dc_commit_streams. */
bool dc_commit_state(struct dc *dc, struct dc_state *context)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
int i;
/* TODO: Since change commit sequence can have a huge impact,
* we decided to only enable it for DCN3x. However, as soon as
* we get more confident about this change we'll need to enable
* the new sequence for all ASICs. */
if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
result = dc_commit_streams(dc, context->streams, context->stream_count);
return result == DC_OK;
}
if (!streams_changed(dc, context->streams, context->stream_count))
return DC_OK;
DC_LOG_DC("%s: %d streams\n",
__func__, context->stream_count);
for (i = 0; i < context->stream_count; i++) {
struct dc_stream_state *stream = context->streams[i];
dc_stream_log(dc, stream);
}
/*
* Previous validation was perfomred with fast_validation = true and
* the full DML state required for hardware programming was skipped.
*
* Re-validate here to calculate these parameters / watermarks.
*/
result = dc_validate_global_state(dc, context, false);
if (result != DC_OK) {
DC_LOG_ERROR("DC commit global validation failure: %s (%d)",
dc_status_to_str(result), result);
return result;
}
result = dc_commit_state_no_check(dc, context);
return (result == DC_OK);
}
bool dc_acquire_release_mpc_3dlut(
struct dc *dc, bool acquire,
struct dc_stream_state *stream,
struct dc_3dlut **lut,
struct dc_transfer_func **shaper)
{
int pipe_idx;
bool ret = false;
bool found_pipe_idx = false;
const struct resource_pool *pool = dc->res_pool;
struct resource_context *res_ctx = &dc->current_state->res_ctx;
int mpcc_id = 0;
if (pool && res_ctx) {
if (acquire) {
/*find pipe idx for the given stream*/
for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
found_pipe_idx = true;
mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
break;
}
}
} else
found_pipe_idx = true;/*for release pipe_idx is not required*/
if (found_pipe_idx) {
if (acquire && pool->funcs->acquire_post_bldn_3dlut)
ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
else if (!acquire && pool->funcs->release_post_bldn_3dlut)
ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
}
}
return ret;
}
static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
{
int i;
struct pipe_ctx *pipe;
for (i = 0; i < MAX_PIPES; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
// Don't check flip pending on phantom pipes
if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
continue;
/* Must set to false to start with, due to OR in update function */
pipe->plane_state->status.is_flip_pending = false;
dc->hwss.update_pending_status(pipe);
if (pipe->plane_state->status.is_flip_pending)
return true;
}
return false;
}
/* Perform updates here which need to be deferred until next vupdate
*
* i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
* but forcing lut memory to shutdown state is immediate. This causes
* single frame corruption as lut gets disabled mid-frame unless shutdown
* is deferred until after entering bypass.
*/
static void process_deferred_updates(struct dc *dc)
{
int i = 0;
if (dc->debug.enable_mem_low_power.bits.cm) {
ASSERT(dc->dcn_ip->max_num_dpp);
for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
}
}
void dc_post_update_surfaces_to_stream(struct dc *dc)
{
int i;
struct dc_state *context = dc->current_state;
if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
return;
post_surface_trace(dc);
if (dc->ctx->dce_version >= DCE_VERSION_MAX)
TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
else
TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
if (is_flip_pending_in_pipes(dc, context))
return;
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (context->res_ctx.pipe_ctx[i].stream == NULL ||
context->res_ctx.pipe_ctx[i].plane_state == NULL) {
context->res_ctx.pipe_ctx[i].pipe_idx = i;
dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
}
process_deferred_updates(dc);
dc->hwss.optimize_bandwidth(dc, context);
if (dc->debug.enable_double_buffered_dsc_pg_support)
dc->hwss.update_dsc_pg(dc, context, true);
dc->optimized_required = false;
dc->wm_optimized_required = false;
}
static void init_state(struct dc *dc, struct dc_state *context)
{
/* Each context must have their own instance of VBA and in order to
* initialize and obtain IP and SOC the base DML instance from DC is
* initially copied into every context
*/
memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
}
struct dc_state *dc_create_state(struct dc *dc)
{
struct dc_state *context = kvzalloc(sizeof(struct dc_state),
GFP_KERNEL);
if (!context)
return NULL;
init_state(dc, context);
kref_init(&context->refcount);
return context;
}
struct dc_state *dc_copy_state(struct dc_state *src_ctx)
{
int i, j;
struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
if (!new_ctx)
return NULL;
memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
if (cur_pipe->top_pipe)
cur_pipe->top_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
if (cur_pipe->bottom_pipe)
cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
if (cur_pipe->prev_odm_pipe)
cur_pipe->prev_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
if (cur_pipe->next_odm_pipe)
cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
}
for (i = 0; i < new_ctx->stream_count; i++) {
dc_stream_retain(new_ctx->streams[i]);
for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
dc_plane_state_retain(
new_ctx->stream_status[i].plane_states[j]);
}
kref_init(&new_ctx->refcount);
return new_ctx;
}
void dc_retain_state(struct dc_state *context)
{
kref_get(&context->refcount);
}
static void dc_state_free(struct kref *kref)
{
struct dc_state *context = container_of(kref, struct dc_state, refcount);
dc_resource_state_destruct(context);
kvfree(context);
}
void dc_release_state(struct dc_state *context)
{
kref_put(&context->refcount, dc_state_free);
}
bool dc_set_generic_gpio_for_stereo(bool enable,
struct gpio_service *gpio_service)
{
enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
struct gpio_pin_info pin_info;
struct gpio *generic;
struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
GFP_KERNEL);
if (!config)
return false;
pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
kfree(config);
return false;
} else {
generic = dal_gpio_service_create_generic_mux(
gpio_service,
pin_info.offset,
pin_info.mask);
}
if (!generic) {
kfree(config);
return false;
}
gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
config->enable_output_from_mux = enable;
config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
if (gpio_result == GPIO_RESULT_OK)
gpio_result = dal_mux_setup_config(generic, config);
if (gpio_result == GPIO_RESULT_OK) {
dal_gpio_close(generic);
dal_gpio_destroy_generic_mux(&generic);
kfree(config);
return true;
} else {
dal_gpio_close(generic);
dal_gpio_destroy_generic_mux(&generic);
kfree(config);
return false;
}
}
static bool is_surface_in_context(
const struct dc_state *context,
const struct dc_plane_state *plane_state)
{
int j;
for (j = 0; j < MAX_PIPES; j++) {
const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (plane_state == pipe_ctx->plane_state) {
return true;
}
}
return false;
}
static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
{
union surface_update_flags *update_flags = &u->surface->update_flags;
enum surface_update_type update_type = UPDATE_TYPE_FAST;
if (!u->plane_info)
return UPDATE_TYPE_FAST;
if (u->plane_info->color_space != u->surface->color_space) {
update_flags->bits.color_space_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_MED);
}
if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
update_flags->bits.horizontal_mirror_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_MED);
}
if (u->plane_info->rotation != u->surface->rotation) {
update_flags->bits.rotation_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_FULL);
}
if (u->plane_info->format != u->surface->format) {
update_flags->bits.pixel_format_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_FULL);
}
if (u->plane_info->stereo_format != u->surface->stereo_format) {
update_flags->bits.stereo_format_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_FULL);
}
if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
update_flags->bits.per_pixel_alpha_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_MED);
}
if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
update_flags->bits.global_alpha_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_MED);
}
if (u->plane_info->dcc.enable != u->surface->dcc.enable
|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
/* During DCC on/off, stutter period is calculated before
* DCC has fully transitioned. This results in incorrect
* stutter period calculation. Triggering a full update will
* recalculate stutter period.
*/
update_flags->bits.dcc_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_FULL);
}
if (resource_pixel_format_to_bpp(u->plane_info->format) !=
resource_pixel_format_to_bpp(u->surface->format)) {
/* different bytes per element will require full bandwidth
* and DML calculation
*/
update_flags->bits.bpp_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_FULL);
}
if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
update_flags->bits.plane_size_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_MED);
}
if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
sizeof(union dc_tiling_info)) != 0) {
update_flags->bits.swizzle_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_MED);
/* todo: below are HW dependent, we should add a hook to
* DCE/N resource and validated there.
*/
if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
/* swizzled mode requires RQ to be setup properly,
* thus need to run DML to calculate RQ settings
*/
update_flags->bits.bandwidth_change = 1;
elevate_update_type(&update_type, UPDATE_TYPE_FULL);
}
}
/* This should be UPDATE_TYPE_FAST if nothing has changed. */
return update_type;
}
static enum surface_update_type get_scaling_info_update_type(
const struct dc_surface_update *u)
{
union surface_update_flags *update_flags = &u->surface->update_flags;
if (!u->scaling_info)
return UPDATE_TYPE_FAST;
if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
|| u->scaling_info->clip_rect.height != u->surface->clip_rect.height
|| u->scaling_info->dst_rect.width != u->surface->dst_rect.width
|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
|| u->scaling_info->scaling_quality.integer_scaling !=
u->surface->scaling_quality.integer_scaling
) {
update_flags->bits.scaling_change = 1;
if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
/* Making dst rect smaller requires a bandwidth change */
update_flags->bits.bandwidth_change = 1;
}
if (u->scaling_info->src_rect.width != u->surface->src_rect.width
|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
update_flags->bits.scaling_change = 1;
if (u->scaling_info->src_rect.width > u->surface->src_rect.width
|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
/* Making src rect bigger requires a bandwidth change */
update_flags->bits.clock_change = 1;
}
if (u->scaling_info->src_rect.x != u->surface->src_rect.x
|| u->scaling_info->src_rect.y != u->surface->src_rect.y
|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
update_flags->bits.position_change = 1;
if (update_flags->bits.clock_change
|| update_flags->bits.bandwidth_change
|| update_flags->bits.scaling_change)
return UPDATE_TYPE_FULL;
if (update_flags->bits.position_change)
return UPDATE_TYPE_MED;
return UPDATE_TYPE_FAST;
}
static enum surface_update_type det_surface_update(const struct dc *dc,
const struct dc_surface_update *u)
{
const struct dc_state *context = dc->current_state;
enum surface_update_type type;
enum surface_update_type overall_type = UPDATE_TYPE_FAST;
union surface_update_flags *update_flags = &u->surface->update_flags;
if (u->flip_addr)
update_flags->bits.addr_update = 1;
if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
update_flags->raw = 0xFFFFFFFF;
return UPDATE_TYPE_FULL;
}
update_flags->raw = 0; // Reset all flags
type = get_plane_info_update_type(u);
elevate_update_type(&overall_type, type);
type = get_scaling_info_update_type(u);
elevate_update_type(&overall_type, type);
if (u->flip_addr) {
update_flags->bits.addr_update = 1;
if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
update_flags->bits.tmz_changed = 1;
elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
}
}
if (u->in_transfer_func)
update_flags->bits.in_transfer_func_change = 1;
if (u->input_csc_color_matrix)
update_flags->bits.input_csc_change = 1;
if (u->coeff_reduction_factor)
update_flags->bits.coeff_reduction_change = 1;
if (u->gamut_remap_matrix)
update_flags->bits.gamut_remap_change = 1;
if (u->gamma) {
enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
if (u->plane_info)
format = u->plane_info->format;
else if (u->surface)
format = u->surface->format;
if (dce_use_lut(format))
update_flags->bits.gamma_change = 1;
}
if (u->lut3d_func || u->func_shaper)
update_flags->bits.lut_3d = 1;
if (u->hdr_mult.value)
if (u->hdr_mult.value != u->surface->hdr_mult.value) {
update_flags->bits.hdr_mult = 1;
elevate_update_type(&overall_type, UPDATE_TYPE_MED);
}
if (update_flags->bits.in_transfer_func_change) {
type = UPDATE_TYPE_MED;
elevate_update_type(&overall_type, type);
}
if (update_flags->bits.input_csc_change
|| update_flags->bits.coeff_reduction_change
|| update_flags->bits.lut_3d
|| update_flags->bits.gamma_change
|| update_flags->bits.gamut_remap_change) {
type = UPDATE_TYPE_FULL;
elevate_update_type(&overall_type, type);
}
return overall_type;
}
static enum surface_update_type check_update_surfaces_for_stream(
struct dc *dc,
struct dc_surface_update *updates,
int surface_count,
struct dc_stream_update *stream_update,
const struct dc_stream_status *stream_status)
{
int i;
enum surface_update_type overall_type = UPDATE_TYPE_FAST;
if (dc->idle_optimizations_allowed)
overall_type = UPDATE_TYPE_FULL;
if (stream_status == NULL || stream_status->plane_count != surface_count)
overall_type = UPDATE_TYPE_FULL;
if (stream_update && stream_update->pending_test_pattern) {
overall_type = UPDATE_TYPE_FULL;
}
/* some stream updates require passive update */
if (stream_update) {
union stream_update_flags *su_flags = &stream_update->stream->update_flags;
if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
stream_update->integer_scaling_update)
su_flags->bits.scaling = 1;
if (stream_update->out_transfer_func)
su_flags->bits.out_tf = 1;
if (stream_update->abm_level)
su_flags->bits.abm_level = 1;
if (stream_update->dpms_off)
su_flags->bits.dpms_off = 1;
if (stream_update->gamut_remap)
su_flags->bits.gamut_remap = 1;
if (stream_update->wb_update)
su_flags->bits.wb_update = 1;
if (stream_update->dsc_config)
su_flags->bits.dsc_changed = 1;
if (stream_update->mst_bw_update)
su_flags->bits.mst_bw = 1;
if (stream_update->crtc_timing_adjust && dc_extended_blank_supported(dc))
su_flags->bits.crtc_timing_adjust = 1;
if (su_flags->raw != 0)
overall_type = UPDATE_TYPE_FULL;
if (stream_update->output_csc_transform || stream_update->output_color_space)
su_flags->bits.out_csc = 1;
}
for (i = 0 ; i < surface_count; i++) {
enum surface_update_type type =
det_surface_update(dc, &updates[i]);
elevate_update_type(&overall_type, type);
}
return overall_type;
}
static bool dc_check_is_fullscreen_video(struct rect src, struct rect clip_rect)
{
int view_height, view_width, clip_x, clip_y, clip_width, clip_height;
view_height = src.height;
view_width = src.width;
clip_x = clip_rect.x;
clip_y = clip_rect.y;
clip_width = clip_rect.width;
clip_height = clip_rect.height;
/* check for centered video accounting for off by 1 scaling truncation */
if ((view_height - clip_y - clip_height <= clip_y + 1) &&
(view_width - clip_x - clip_width <= clip_x + 1) &&
(view_height - clip_y - clip_height >= clip_y - 1) &&
(view_width - clip_x - clip_width >= clip_x - 1)) {
/* when OS scales up/down to letter box, it may end up
* with few blank pixels on the border due to truncating.
* Add offset margin to account for this
*/
if (clip_x <= 4 || clip_y <= 4)
return true;
}
return false;
}
static enum surface_update_type check_boundary_crossing_for_windowed_mpo_with_odm(struct dc *dc,
struct dc_surface_update *srf_updates, int surface_count,
enum surface_update_type update_type)
{
enum surface_update_type new_update_type = update_type;
int i, j;
struct pipe_ctx *pipe = NULL;
struct dc_stream_state *stream;
/* Check that we are in windowed MPO with ODM
* - look for MPO pipe by scanning pipes for first pipe matching
* surface that has moved ( position change )
* - MPO pipe will have top pipe
* - check that top pipe has ODM pointer
*/
if ((surface_count > 1) && dc->config.enable_windowed_mpo_odm) {
for (i = 0; i < surface_count; i++) {
if (srf_updates[i].surface && srf_updates[i].scaling_info
&& srf_updates[i].surface->update_flags.bits.position_change) {
for (j = 0; j < dc->res_pool->pipe_count; j++) {
if (srf_updates[i].surface == dc->current_state->res_ctx.pipe_ctx[j].plane_state) {
pipe = &dc->current_state->res_ctx.pipe_ctx[j];
stream = pipe->stream;
break;
}
}
if (pipe && pipe->top_pipe && (get_num_odm_splits(pipe->top_pipe) > 0) && stream
&& !dc_check_is_fullscreen_video(stream->src, srf_updates[i].scaling_info->clip_rect)) {
struct rect old_clip_rect, new_clip_rect;
bool old_clip_rect_left, old_clip_rect_right, old_clip_rect_middle;
bool new_clip_rect_left, new_clip_rect_right, new_clip_rect_middle;
old_clip_rect = srf_updates[i].surface->clip_rect;
new_clip_rect = srf_updates[i].scaling_info->clip_rect;
old_clip_rect_left = ((old_clip_rect.x + old_clip_rect.width) <= (stream->src.x + (stream->src.width/2)));
old_clip_rect_right = (old_clip_rect.x >= (stream->src.x + (stream->src.width/2)));
old_clip_rect_middle = !old_clip_rect_left && !old_clip_rect_right;
new_clip_rect_left = ((new_clip_rect.x + new_clip_rect.width) <= (stream->src.x + (stream->src.width/2)));
new_clip_rect_right = (new_clip_rect.x >= (stream->src.x + (stream->src.width/2)));
new_clip_rect_middle = !new_clip_rect_left && !new_clip_rect_right;
if (old_clip_rect_left && new_clip_rect_middle)
new_update_type = UPDATE_TYPE_FULL;
else if (old_clip_rect_middle && new_clip_rect_right)
new_update_type = UPDATE_TYPE_FULL;
else if (old_clip_rect_right && new_clip_rect_middle)
new_update_type = UPDATE_TYPE_FULL;
else if (old_clip_rect_middle && new_clip_rect_left)
new_update_type = UPDATE_TYPE_FULL;
}
}
}
}
return new_update_type;
}
/*
* dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
*
* See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
*/
enum surface_update_type dc_check_update_surfaces_for_stream(
struct dc *dc,
struct dc_surface_update *updates,
int surface_count,
struct dc_stream_update *stream_update,
const struct dc_stream_status *stream_status)
{
int i;
enum surface_update_type type;
if (stream_update)
stream_update->stream->update_flags.raw = 0;
for (i = 0; i < surface_count; i++)
updates[i].surface->update_flags.raw = 0;
type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
if (type == UPDATE_TYPE_FULL) {
if (stream_update) {
uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
stream_update->stream->update_flags.raw = 0xFFFFFFFF;
stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
}
for (i = 0; i < surface_count; i++)
updates[i].surface->update_flags.raw = 0xFFFFFFFF;
}
if (type == UPDATE_TYPE_MED)
type = check_boundary_crossing_for_windowed_mpo_with_odm(dc,
updates, surface_count, type);
if (type == UPDATE_TYPE_FAST) {
// If there's an available clock comparator, we use that.
if (dc->clk_mgr->funcs->are_clock_states_equal) {
if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
dc->optimized_required = true;
// Else we fallback to mem compare.
} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
dc->optimized_required = true;
}
dc->optimized_required |= dc->wm_optimized_required;
}
return type;
}
static struct dc_stream_status *stream_get_status(
struct dc_state *ctx,
struct dc_stream_state *stream)
{
uint8_t i;
for (i = 0; i < ctx->stream_count; i++) {
if (stream == ctx->streams[i]) {
return &ctx->stream_status[i];
}
}
return NULL;
}
static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
static void copy_surface_update_to_plane(
struct dc_plane_state *surface,
struct dc_surface_update *srf_update)
{
if (srf_update->flip_addr) {
surface->address = srf_update->flip_addr->address;
surface->flip_immediate =
srf_update->flip_addr->flip_immediate;
surface->time.time_elapsed_in_us[surface->time.index] =
srf_update->flip_addr->flip_timestamp_in_us -
surface->time.prev_update_time_in_us;
surface->time.prev_update_time_in_us =
srf_update->flip_addr->flip_timestamp_in_us;
surface->time.index++;
if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
surface->time.index = 0;
surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
}
if (srf_update->scaling_info) {
surface->scaling_quality =
srf_update->scaling_info->scaling_quality;
surface->dst_rect =
srf_update->scaling_info->dst_rect;
surface->src_rect =
srf_update->scaling_info->src_rect;
surface->clip_rect =
srf_update->scaling_info->clip_rect;
}
if (srf_update->plane_info) {
surface->color_space =
srf_update->plane_info->color_space;
surface->format =
srf_update->plane_info->format;
surface->plane_size =
srf_update->plane_info->plane_size;
surface->rotation =
srf_update->plane_info->rotation;
surface->horizontal_mirror =
srf_update->plane_info->horizontal_mirror;
surface->stereo_format =
srf_update->plane_info->stereo_format;
surface->tiling_info =
srf_update->plane_info->tiling_info;
surface->visible =
srf_update->plane_info->visible;
surface->per_pixel_alpha =
srf_update->plane_info->per_pixel_alpha;
surface->global_alpha =
srf_update->plane_info->global_alpha;
surface->global_alpha_value =
srf_update->plane_info->global_alpha_value;
surface->dcc =
srf_update->plane_info->dcc;
surface->layer_index =
srf_update->plane_info->layer_index;
}
if (srf_update->gamma &&
(surface->gamma_correction !=
srf_update->gamma)) {
memcpy(&surface->gamma_correction->entries,
&srf_update->gamma->entries,
sizeof(struct dc_gamma_entries));
surface->gamma_correction->is_identity =
srf_update->gamma->is_identity;
surface->gamma_correction->num_entries =
srf_update->gamma->num_entries;
surface->gamma_correction->type =
srf_update->gamma->type;
}
if (srf_update->in_transfer_func &&
(surface->in_transfer_func !=
srf_update->in_transfer_func)) {
surface->in_transfer_func->sdr_ref_white_level =
srf_update->in_transfer_func->sdr_ref_white_level;
surface->in_transfer_func->tf =
srf_update->in_transfer_func->tf;
surface->in_transfer_func->type =
srf_update->in_transfer_func->type;
memcpy(&surface->in_transfer_func->tf_pts,
&srf_update->in_transfer_func->tf_pts,
sizeof(struct dc_transfer_func_distributed_points));
}
if (srf_update->func_shaper &&
(surface->in_shaper_func !=
srf_update->func_shaper))
memcpy(surface->in_shaper_func, srf_update->func_shaper,
sizeof(*surface->in_shaper_func));
if (srf_update->lut3d_func &&
(surface->lut3d_func !=
srf_update->lut3d_func))
memcpy(surface->lut3d_func, srf_update->lut3d_func,
sizeof(*surface->lut3d_func));
if (srf_update->hdr_mult.value)
surface->hdr_mult =
srf_update->hdr_mult;
if (srf_update->blend_tf &&
(surface->blend_tf !=
srf_update->blend_tf))
memcpy(surface->blend_tf, srf_update->blend_tf,
sizeof(*surface->blend_tf));
if (srf_update->input_csc_color_matrix)
surface->input_csc_color_matrix =
*srf_update->input_csc_color_matrix;
if (srf_update->coeff_reduction_factor)
surface->coeff_reduction_factor =
*srf_update->coeff_reduction_factor;
if (srf_update->gamut_remap_matrix)
surface->gamut_remap_matrix =
*srf_update->gamut_remap_matrix;
}
static void copy_stream_update_to_stream(struct dc *dc,
struct dc_state *context,
struct dc_stream_state *stream,
struct dc_stream_update *update)
{
struct dc_context *dc_ctx = dc->ctx;
if (update == NULL || stream == NULL)
return;
if (update->src.height && update->src.width)
stream->src = update->src;
if (update->dst.height && update->dst.width)
stream->dst = update->dst;
if (update->out_transfer_func &&
stream->out_transfer_func != update->out_transfer_func) {
stream->out_transfer_func->sdr_ref_white_level =
update->out_transfer_func->sdr_ref_white_level;
stream->out_transfer_func->tf = update->out_transfer_func->tf;
stream->out_transfer_func->type =
update->out_transfer_func->type;
memcpy(&stream->out_transfer_func->tf_pts,
&update->out_transfer_func->tf_pts,
sizeof(struct dc_transfer_func_distributed_points));
}
if (update->hdr_static_metadata)
stream->hdr_static_metadata = *update->hdr_static_metadata;
if (update->abm_level)
stream->abm_level = *update->abm_level;
if (update->periodic_interrupt)
stream->periodic_interrupt = *update->periodic_interrupt;
if (update->gamut_remap)
stream->gamut_remap_matrix = *update->gamut_remap;
/* Note: this being updated after mode set is currently not a use case
* however if it arises OCSC would need to be reprogrammed at the
* minimum
*/
if (update->output_color_space)
stream->output_color_space = *update->output_color_space;
if (update->output_csc_transform)
stream->csc_color_matrix = *update->output_csc_transform;
if (update->vrr_infopacket)
stream->vrr_infopacket = *update->vrr_infopacket;
if (update->allow_freesync)
stream->allow_freesync = *update->allow_freesync;
if (update->vrr_active_variable)
stream->vrr_active_variable = *update->vrr_active_variable;
if (update->crtc_timing_adjust)
stream->adjust = *update->crtc_timing_adjust;
if (update->dpms_off)
stream->dpms_off = *update->dpms_off;
if (update->hfvsif_infopacket)
stream->hfvsif_infopacket = *update->hfvsif_infopacket;
if (update->vtem_infopacket)
stream->vtem_infopacket = *update->vtem_infopacket;
if (update->vsc_infopacket)
stream->vsc_infopacket = *update->vsc_infopacket;
if (update->vsp_infopacket)
stream->vsp_infopacket = *update->vsp_infopacket;
if (update->dither_option)
stream->dither_option = *update->dither_option;
if (update->pending_test_pattern)
stream->test_pattern = *update->pending_test_pattern;
/* update current stream with writeback info */
if (update->wb_update) {
int i;
stream->num_wb_info = update->wb_update->num_wb_info;
ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
for (i = 0; i < stream->num_wb_info; i++)
stream->writeback_info[i] =
update->wb_update->writeback_info[i];
}
if (update->dsc_config) {
struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
uint32_t old_dsc_enabled = stream->timing.flags.DSC;
uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
update->dsc_config->num_slices_v != 0);
/* Use temporarry context for validating new DSC config */
struct dc_state *dsc_validate_context = dc_create_state(dc);
if (dsc_validate_context) {
dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
stream->timing.dsc_cfg = *update->dsc_config;
stream->timing.flags.DSC = enable_dsc;
if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
stream->timing.dsc_cfg = old_dsc_cfg;
stream->timing.flags.DSC = old_dsc_enabled;
update->dsc_config = NULL;
}
dc_release_state(dsc_validate_context);
} else {
DC_ERROR("Failed to allocate new validate context for DSC change\n");
update->dsc_config = NULL;
}
}
}
static bool update_planes_and_stream_state(struct dc *dc,
struct dc_surface_update *srf_updates, int surface_count,
struct dc_stream_state *stream,
struct dc_stream_update *stream_update,
enum surface_update_type *new_update_type,
struct dc_state **new_context)
{
struct dc_state *context;
int i, j;
enum surface_update_type update_type;
const struct dc_stream_status *stream_status;
struct dc_context *dc_ctx = dc->ctx;
stream_status = dc_stream_get_status(stream);
if (!stream_status) {
if (surface_count) /* Only an error condition if surf_count non-zero*/
ASSERT(false);
return false; /* Cannot commit surface to stream that is not committed */
}
context = dc->current_state;
update_type = dc_check_update_surfaces_for_stream(
dc, srf_updates, surface_count, stream_update, stream_status);
/* update current stream with the new updates */
copy_stream_update_to_stream(dc, context, stream, stream_update);
/* do not perform surface update if surface has invalid dimensions
* (all zero) and no scaling_info is provided
*/
if (surface_count > 0) {
for (i = 0; i < surface_count; i++) {
if ((srf_updates[i].surface->src_rect.width == 0 ||
srf_updates[i].surface->src_rect.height == 0 ||
srf_updates[i].surface->dst_rect.width == 0 ||
srf_updates[i].surface->dst_rect.height == 0) &&
(!srf_updates[i].scaling_info ||
srf_updates[i].scaling_info->src_rect.width == 0 ||
srf_updates[i].scaling_info->src_rect.height == 0 ||
srf_updates[i].scaling_info->dst_rect.width == 0 ||
srf_updates[i].scaling_info->dst_rect.height == 0)) {
DC_ERROR("Invalid src/dst rects in surface update!\n");
return false;
}
}
}
if (update_type >= update_surface_trace_level)
update_surface_trace(dc, srf_updates, surface_count);
if (update_type >= UPDATE_TYPE_FULL) {
struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
for (i = 0; i < surface_count; i++)
new_planes[i] = srf_updates[i].surface;
/* initialize scratch memory for building context */
context = dc_create_state(dc);
if (context == NULL) {
DC_ERROR("Failed to allocate new validate context!\n");
return false;
}
dc_resource_state_copy_construct(
dc->current_state, context);
/* For each full update, remove all existing phantom pipes first.
* Ensures that we have enough pipes for newly added MPO planes
*/
if (dc->res_pool->funcs->remove_phantom_pipes)
dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
/*remove old surfaces from context */
if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
BREAK_TO_DEBUGGER();
goto fail;
}
/* add surface to context */
if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
BREAK_TO_DEBUGGER();
goto fail;
}
}
/* save update parameters into surface */
for (i = 0; i < surface_count; i++) {
struct dc_plane_state *surface = srf_updates[i].surface;
copy_surface_update_to_plane(surface, &srf_updates[i]);
if (update_type >= UPDATE_TYPE_MED) {
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (pipe_ctx->plane_state != surface)
continue;
resource_build_scaling_params(pipe_ctx);
}
}
}
if (update_type == UPDATE_TYPE_FULL) {
if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
/* For phantom pipes we remove and create a new set of phantom pipes
* for each full update (because we don't know if we'll need phantom
* pipes until after the first round of validation). However, if validation
* fails we need to keep the existing phantom pipes (because we don't update
* the dc->current_state).
*
* The phantom stream/plane refcount is decremented for validation because
* we assume it'll be removed (the free comes when the dc_state is freed),
* but if validation fails we have to increment back the refcount so it's
* consistent.
*/
if (dc->res_pool->funcs->retain_phantom_pipes)
dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
BREAK_TO_DEBUGGER();
goto fail;
}
}
*new_context = context;
*new_update_type = update_type;
return true;
fail:
dc_release_state(context);
return false;
}
static void commit_planes_do_stream_update(struct dc *dc,
struct dc_stream_state *stream,
struct dc_stream_update *stream_update,
enum surface_update_type update_type,
struct dc_state *context)
{
int j;
// Stream updates
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
stream_update->vrr_infopacket ||
stream_update->vsc_infopacket ||
stream_update->vsp_infopacket ||
stream_update->hfvsif_infopacket ||
stream_update->vtem_infopacket) {
resource_build_info_frame(pipe_ctx);
dc->hwss.update_info_frame(pipe_ctx);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
}
if (stream_update->hdr_static_metadata &&
stream->use_dynamic_meta &&
dc->hwss.set_dmdata_attributes &&
pipe_ctx->stream->dmdata_address.quad_part != 0)
dc->hwss.set_dmdata_attributes(pipe_ctx);
if (stream_update->gamut_remap)
dc_stream_set_gamut_remap(dc, stream);
if (stream_update->output_csc_transform)
dc_stream_program_csc_matrix(dc, stream);
if (stream_update->dither_option) {
struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
resource_build_bit_depth_reduction_params(pipe_ctx->stream,
&pipe_ctx->stream->bit_depth_params);
pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
&stream->bit_depth_params,
&stream->clamping);
while (odm_pipe) {
odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
&stream->bit_depth_params,
&stream->clamping);
odm_pipe = odm_pipe->next_odm_pipe;
}
}
/* Full fe update*/
if (update_type == UPDATE_TYPE_FAST)
continue;
if (stream_update->dsc_config)
dp_update_dsc_config(pipe_ctx);
if (stream_update->mst_bw_update) {
if (stream_update->mst_bw_update->is_increase)
dc_link_increase_mst_payload(pipe_ctx, stream_update->mst_bw_update->mst_stream_bw);
else
dc_link_reduce_mst_payload(pipe_ctx, stream_update->mst_bw_update->mst_stream_bw);
}
if (stream_update->pending_test_pattern) {
dc_link_dp_set_test_pattern(stream->link,
stream->test_pattern.type,
stream->test_pattern.color_space,
stream->test_pattern.p_link_settings,
stream->test_pattern.p_custom_pattern,
stream->test_pattern.cust_pattern_size);
}
if (stream_update->dpms_off) {
if (*stream_update->dpms_off) {
core_link_disable_stream(pipe_ctx);
/* for dpms, keep acquired resources*/
if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
dc->optimized_required = true;
} else {
if (get_seamless_boot_stream_count(context) == 0)
dc->hwss.prepare_bandwidth(dc, dc->current_state);
core_link_enable_stream(dc->current_state, pipe_ctx);
}
}
if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
bool should_program_abm = true;
// if otg funcs defined check if blanked before programming
if (pipe_ctx->stream_res.tg->funcs->is_blanked)
if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
should_program_abm = false;
if (should_program_abm) {
if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
dc->hwss.set_abm_immediate_disable(pipe_ctx);
} else {
pipe_ctx->stream_res.abm->funcs->set_abm_level(
pipe_ctx->stream_res.abm, stream->abm_level);
}
}
}
}
}
}
static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
{
if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
&& stream->ctx->dce_version >= DCN_VERSION_3_1)
return true;
return false;
}
void dc_dmub_update_dirty_rect(struct dc *dc,
int surface_count,
struct dc_stream_state *stream,
struct dc_surface_update *srf_updates,
struct dc_state *context)
{
union dmub_rb_cmd cmd;
struct dc_context *dc_ctx = dc->ctx;
struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
unsigned int i, j;
unsigned int panel_inst = 0;
if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
return;
if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
return;
memset(&cmd, 0x0, sizeof(cmd));
cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
cmd.update_dirty_rect.header.sub_type = 0;
cmd.update_dirty_rect.header.payload_bytes =
sizeof(cmd.update_dirty_rect) -
sizeof(cmd.update_dirty_rect.header);
update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
for (i = 0; i < surface_count; i++) {
struct dc_plane_state *plane_state = srf_updates[i].surface;
const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
if (!srf_updates[i].surface || !flip_addr)
continue;
/* Do not send in immediate flip mode */
if (srf_updates[i].surface->flip_immediate)
continue;
update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
sizeof(flip_addr->dirty_rects));
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (pipe_ctx->stream != stream)
continue;
if (pipe_ctx->plane_state != plane_state)
continue;
update_dirty_rect->panel_inst = panel_inst;
update_dirty_rect->pipe_idx = j;
dc_dmub_srv_cmd_queue(dc_ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc_ctx->dmub_srv);
}
}
}
static void commit_planes_for_stream(struct dc *dc,
struct dc_surface_update *srf_updates,
int surface_count,
struct dc_stream_state *stream,
struct dc_stream_update *stream_update,
enum surface_update_type update_type,
struct dc_state *context)
{
int i, j;
struct pipe_ctx *top_pipe_to_program = NULL;
bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
bool subvp_prev_use = false;
// Once we apply the new subvp context to hardware it won't be in the
// dc->current_state anymore, so we have to cache it before we apply
// the new SubVP context
subvp_prev_use = false;
dc_z10_restore(dc);
if (update_type == UPDATE_TYPE_FULL) {
/* wait for all double-buffer activity to clear on all pipes */
int pipe_idx;
for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
if (!pipe_ctx->stream)
continue;
if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
}
}
if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
/* Optimize seamless boot flag keeps clocks and watermarks high until
* first flip. After first flip, optimization is required to lower
* bandwidth. Important to note that it is expected UEFI will
* only light up a single display on POST, therefore we only expect
* one stream with seamless boot flag set.
*/
if (stream->apply_seamless_boot_optimization) {
stream->apply_seamless_boot_optimization = false;
if (get_seamless_boot_stream_count(context) == 0)
dc->optimized_required = true;
}
}
if (update_type == UPDATE_TYPE_FULL) {
dc_allow_idle_optimizations(dc, false);
if (get_seamless_boot_stream_count(context) == 0)
dc->hwss.prepare_bandwidth(dc, context);
if (dc->debug.enable_double_buffered_dsc_pg_support)
dc->hwss.update_dsc_pg(dc, context, false);
context_clock_trace(dc, context);
}
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (!pipe_ctx->top_pipe &&
!pipe_ctx->prev_odm_pipe &&
pipe_ctx->stream &&
pipe_ctx->stream == stream) {
top_pipe_to_program = pipe_ctx;
}
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
// Check old context for SubVP
subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
if (subvp_prev_use)
break;
}
if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
struct pipe_ctx *mpcc_pipe;
struct pipe_ctx *odm_pipe;
for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
}
if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
if (top_pipe_to_program &&
top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
if (should_use_dmub_lock(stream->link)) {
union dmub_hw_lock_flags hw_locks = { 0 };
struct dmub_hw_lock_inst_flags inst_flags = { 0 };
hw_locks.bits.lock_dig = 1;
inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
true,
&hw_locks,
&inst_flags);
} else
top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
top_pipe_to_program->stream_res.tg);
}
if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
if (dc->hwss.subvp_pipe_control_lock)
dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
dc->hwss.interdependent_update_lock(dc, context, true);
} else {
if (dc->hwss.subvp_pipe_control_lock)
dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
/* Lock the top pipe while updating plane addrs, since freesync requires
* plane addr update event triggers to be synchronized.
* top_pipe_to_program is expected to never be NULL
*/
dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
}
dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
if (update_type != UPDATE_TYPE_FAST) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
if ((new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) ||
subvp_prev_use) {
// If old context or new context has phantom pipes, apply
// the phantom timings now. We can't change the phantom
// pipe configuration safely without driver acquiring
// the DMCUB lock first.
dc->hwss.apply_ctx_to_hw(dc, context);
break;
}
}
}
// Stream updates
if (stream_update)
commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
if (surface_count == 0) {
/*
* In case of turning off screen, no need to program front end a second time.
* just return after program blank.
*/
if (dc->hwss.apply_ctx_for_surface)
dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
if (dc->hwss.program_front_end_for_ctx)
dc->hwss.program_front_end_for_ctx(dc, context);
if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
dc->hwss.interdependent_update_lock(dc, context, false);
} else {
dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
}
dc->hwss.post_unlock_program_front_end(dc, context);
if (update_type != UPDATE_TYPE_FAST)
if (dc->hwss.commit_subvp_config)
dc->hwss.commit_subvp_config(dc, context);
/* Since phantom pipe programming is moved to post_unlock_program_front_end,
* move the SubVP lock to after the phantom pipes have been setup
*/
if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
if (dc->hwss.subvp_pipe_control_lock)
dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
} else {
if (dc->hwss.subvp_pipe_control_lock)
dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
}
return;
}
if (update_type != UPDATE_TYPE_FAST) {
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP &&
pipe_ctx->stream && pipe_ctx->plane_state) {
/* Only update visual confirm for SUBVP here.
* The bar appears on all pipes, so we need to update the bar on all displays,
* so the information doesn't get stale.
*/
struct mpcc_blnd_cfg blnd_cfg = { 0 };
dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color,
pipe_ctx->plane_res.hubp->inst);
}
}
}
if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
for (i = 0; i < surface_count; i++) {
struct dc_plane_state *plane_state = srf_updates[i].surface;
/*set logical flag for lock/unlock use*/
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (!pipe_ctx->plane_state)
continue;
if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
continue;
pipe_ctx->plane_state->triplebuffer_flips = false;
if (update_type == UPDATE_TYPE_FAST &&
dc->hwss.program_triplebuffer != NULL &&
!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
/*triple buffer for VUpdate only*/
pipe_ctx->plane_state->triplebuffer_flips = true;
}
}
if (update_type == UPDATE_TYPE_FULL) {
/* force vsync flip when reconfiguring pipes to prevent underflow */
plane_state->flip_immediate = false;
}
}
}
// Update Type FULL, Surface updates
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (!pipe_ctx->top_pipe &&
!pipe_ctx->prev_odm_pipe &&
should_update_pipe_for_stream(context, pipe_ctx, stream)) {
struct dc_stream_status *stream_status = NULL;
if (!pipe_ctx->plane_state)
continue;
/* Full fe update*/
if (update_type == UPDATE_TYPE_FAST)
continue;
ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
/*turn off triple buffer for full update*/
dc->hwss.program_triplebuffer(
dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
}
stream_status =
stream_get_status(context, pipe_ctx->stream);
if (dc->hwss.apply_ctx_for_surface)
dc->hwss.apply_ctx_for_surface(
dc, pipe_ctx->stream, stream_status->plane_count, context);
}
}
if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
dc->hwss.program_front_end_for_ctx(dc, context);
if (dc->debug.validate_dml_output) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
if (cur_pipe->stream == NULL)
continue;
cur_pipe->plane_res.hubp->funcs->validate_dml_output(
cur_pipe->plane_res.hubp, dc->ctx,
&context->res_ctx.pipe_ctx[i].rq_regs,
&context->res_ctx.pipe_ctx[i].dlg_regs,
&context->res_ctx.pipe_ctx[i].ttu_regs);
}
}
}
// Update Type FAST, Surface updates
if (update_type == UPDATE_TYPE_FAST) {
if (dc->hwss.set_flip_control_gsl)
for (i = 0; i < surface_count; i++) {
struct dc_plane_state *plane_state = srf_updates[i].surface;
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
continue;
if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
continue;
// GSL has to be used for flip immediate
dc->hwss.set_flip_control_gsl(pipe_ctx,
pipe_ctx->plane_state->flip_immediate);
}
}
/* Perform requested Updates */
for (i = 0; i < surface_count; i++) {
struct dc_plane_state *plane_state = srf_updates[i].surface;
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
continue;
if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
continue;
/*program triple buffer after lock based on flip type*/
if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
/*only enable triplebuffer for fast_update*/
dc->hwss.program_triplebuffer(
dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
}
if (pipe_ctx->plane_state->update_flags.bits.addr_update)
dc->hwss.update_plane_addr(dc, pipe_ctx);
}
}
}
if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
dc->hwss.interdependent_update_lock(dc, context, false);
} else {
dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
}
if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
top_pipe_to_program->stream_res.tg,
CRTC_STATE_VACTIVE);
top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
top_pipe_to_program->stream_res.tg,
CRTC_STATE_VBLANK);
top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
top_pipe_to_program->stream_res.tg,
CRTC_STATE_VACTIVE);
if (should_use_dmub_lock(stream->link)) {
union dmub_hw_lock_flags hw_locks = { 0 };
struct dmub_hw_lock_inst_flags inst_flags = { 0 };
hw_locks.bits.lock_dig = 1;
inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
false,
&hw_locks,
&inst_flags);
} else
top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
top_pipe_to_program->stream_res.tg);
}
/* For phantom pipe OTG enable, it has to be done after any previous pipe
* that was in use has already been programmed at gotten its double buffer
* update for "disable".
*/
if (update_type != UPDATE_TYPE_FAST) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
/* If an active, non-phantom pipe is being transitioned into a phantom
* pipe, wait for the double buffer update to complete first before we do
* ANY phantom pipe programming.
*/
if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM &&
old_pipe->stream && old_pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) {
old_pipe->stream_res.tg->funcs->wait_for_state(
old_pipe->stream_res.tg,
CRTC_STATE_VBLANK);
old_pipe->stream_res.tg->funcs->wait_for_state(
old_pipe->stream_res.tg,
CRTC_STATE_VACTIVE);
}
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
if ((new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) ||
subvp_prev_use) {
// If old context or new context has phantom pipes, apply
// the phantom timings now. We can't change the phantom
// pipe configuration safely without driver acquiring
// the DMCUB lock first.
dc->hwss.apply_ctx_to_hw(dc, context);
break;
}
}
}
if (update_type != UPDATE_TYPE_FAST)
dc->hwss.post_unlock_program_front_end(dc, context);
if (update_type != UPDATE_TYPE_FAST)
if (dc->hwss.commit_subvp_config)
dc->hwss.commit_subvp_config(dc, context);
if (update_type != UPDATE_TYPE_FAST)
if (dc->hwss.commit_subvp_config)
dc->hwss.commit_subvp_config(dc, context);
/* Since phantom pipe programming is moved to post_unlock_program_front_end,
* move the SubVP lock to after the phantom pipes have been setup
*/
if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
if (dc->hwss.subvp_pipe_control_lock)
dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
} else {
if (dc->hwss.subvp_pipe_control_lock)
dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
}
// Fire manual trigger only when bottom plane is flipped
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
if (!pipe_ctx->plane_state)
continue;
if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
!pipe_ctx->plane_state->update_flags.bits.addr_update ||
pipe_ctx->plane_state->skip_manual_trigger)
continue;
if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
}
}
/**
* could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
*
* @dc: Used to get the current state status
* @stream: Target stream, which we want to remove the attached planes
* @surface_count: Number of surface update
* @is_plane_addition: [in] Fill out with true if it is a plane addition case
*
* DCN32x and newer support a feature named Dynamic ODM which can conflict with
* the MPO if used simultaneously in some specific configurations (e.g.,
* 4k@144). This function checks if the incoming context requires applying a
* transition state with unnecessary pipe splitting and ODM disabled to
* circumvent our hardware limitations to prevent this edge case. If the OPP
* associated with an MPCC might change due to plane additions, this function
* returns true.
*
* Return:
* Return true if OPP and MPCC might change, otherwise, return false.
*/
static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
struct dc_stream_state *stream,
int surface_count,
bool *is_plane_addition)
{
struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
bool force_minimal_pipe_splitting = false;
bool subvp_active = false;
uint32_t i;
*is_plane_addition = false;
if (cur_stream_status &&
dc->current_state->stream_count > 0 &&
dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
/* determine if minimal transition is required due to MPC*/
if (surface_count > 0) {
if (cur_stream_status->plane_count > surface_count) {
force_minimal_pipe_splitting = true;
} else if (cur_stream_status->plane_count < surface_count) {
force_minimal_pipe_splitting = true;
*is_plane_addition = true;
}
}
}
if (cur_stream_status &&
dc->current_state->stream_count == 1 &&
dc->debug.enable_single_display_2to1_odm_policy) {
/* determine if minimal transition is required due to dynamic ODM*/
if (surface_count > 0) {
if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
force_minimal_pipe_splitting = true;
} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
force_minimal_pipe_splitting = true;
*is_plane_addition = true;
}
}
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
subvp_active = true;
break;
}
}
/* For SubVP when adding or removing planes we need to add a minimal transition
* (even when disabling all planes). Whenever disabling a phantom pipe, we
* must use the minimal transition path to disable the pipe correctly.
*
* We want to use the minimal transition whenever subvp is active, not only if
* a plane is being added / removed from a subvp stream (MPO plane can be added
* to a DRR pipe of SubVP + DRR config, in which case we still want to run through
* a min transition to disable subvp.
*/
if (cur_stream_status && subvp_active) {
/* determine if minimal transition is required due to SubVP*/
if (cur_stream_status->plane_count > surface_count) {
force_minimal_pipe_splitting = true;
} else if (cur_stream_status->plane_count < surface_count) {
force_minimal_pipe_splitting = true;
*is_plane_addition = true;
}
}
return force_minimal_pipe_splitting;
}
/**
* commit_minimal_transition_state - Create a transition pipe split state
*
* @dc: Used to get the current state status
* @transition_base_context: New transition state
*
* In some specific configurations, such as pipe split on multi-display with
* MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
* programming when moving to new planes. To mitigate those types of problems,
* this function adds a transition state that minimizes pipe usage before
* programming the new configuration. When adding a new plane, the current
* state requires the least pipes, so it is applied without splitting. When
* removing a plane, the new state requires the least pipes, so it is applied
* without splitting.
*
* Return:
* Return false if something is wrong in the transition state.
*/
static bool commit_minimal_transition_state(struct dc *dc,
struct dc_state *transition_base_context)
{
struct dc_state *transition_context = dc_create_state(dc);
enum pipe_split_policy tmp_mpc_policy;
bool temp_dynamic_odm_policy;
bool temp_subvp_policy;
enum dc_status ret = DC_ERROR_UNEXPECTED;
unsigned int i, j;
unsigned int pipe_in_use = 0;
bool subvp_in_use = false;
if (!transition_context)
return false;
/* Setup:
* Store the current ODM and MPC config in some temp variables to be
* restored after we commit the transition state.
*/
/* check current pipes in use*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
if (pipe->plane_state)
pipe_in_use++;
}
/* If SubVP is enabled and we are adding or removing planes from any main subvp
* pipe, we must use the minimal transition.
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
subvp_in_use = true;
break;
}
}
/* When the OS add a new surface if we have been used all of pipes with odm combine
* and mpc split feature, it need use commit_minimal_transition_state to transition safely.
* After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
* call it again. Otherwise return true to skip.
*
* Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
* enter/exit MPO when DCN still have enough resources.
*/
if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use) {
dc_release_state(transition_context);
return true;
}
if (!dc->config.is_vmin_only_asic) {
tmp_mpc_policy = dc->debug.pipe_split_policy;
dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
}
temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
dc->debug.enable_single_display_2to1_odm_policy = false;
temp_subvp_policy = dc->debug.force_disable_subvp;
dc->debug.force_disable_subvp = true;
dc_resource_state_copy_construct(transition_base_context, transition_context);
/* commit minimal state */
if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
for (i = 0; i < transition_context->stream_count; i++) {
struct dc_stream_status *stream_status = &transition_context->stream_status[i];
for (j = 0; j < stream_status->plane_count; j++) {
struct dc_plane_state *plane_state = stream_status->plane_states[j];
/* force vsync flip when reconfiguring pipes to prevent underflow
* and corruption
*/
plane_state->flip_immediate = false;
}
}
ret = dc_commit_state_no_check(dc, transition_context);
}
/* always release as dc_commit_state_no_check retains in good case */
dc_release_state(transition_context);
/* TearDown:
* Restore original configuration for ODM and MPO.
*/
if (!dc->config.is_vmin_only_asic)
dc->debug.pipe_split_policy = tmp_mpc_policy;
dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
dc->debug.force_disable_subvp = temp_subvp_policy;
if (ret != DC_OK) {
/* this should never happen */
BREAK_TO_DEBUGGER();
return false;
}
/* force full surface update */
for (i = 0; i < dc->current_state->stream_count; i++) {
for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
}
}
return true;
}
bool dc_update_planes_and_stream(struct dc *dc,
struct dc_surface_update *srf_updates, int surface_count,
struct dc_stream_state *stream,
struct dc_stream_update *stream_update)
{
struct dc_state *context;
enum surface_update_type update_type;
int i;
struct mall_temp_config mall_temp_config;
/* In cases where MPO and split or ODM are used transitions can
* cause underflow. Apply stream configuration with minimal pipe
* split first to avoid unsupported transitions for active pipes.
*/
bool force_minimal_pipe_splitting;
bool is_plane_addition;
force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
dc,
stream,
surface_count,
&is_plane_addition);
/* on plane addition, minimal state is the current one */
if (force_minimal_pipe_splitting && is_plane_addition &&
!commit_minimal_transition_state(dc, dc->current_state))
return false;
if (!update_planes_and_stream_state(
dc,
srf_updates,
surface_count,
stream,
stream_update,
&update_type,
&context))
return false;
/* on plane removal, minimal state is the new one */
if (force_minimal_pipe_splitting && !is_plane_addition) {
/* Since all phantom pipes are removed in full validation,
* we have to save and restore the subvp/mall config when
* we do a minimal transition since the flags marking the
* pipe as subvp/phantom will be cleared (dc copy constructor
* creates a shallow copy).
*/
if (dc->res_pool->funcs->save_mall_state)
dc->res_pool->funcs->save_mall_state(dc, context, &mall_temp_config);
if (!commit_minimal_transition_state(dc, context)) {
dc_release_state(context);
return false;
}
if (dc->res_pool->funcs->restore_mall_state)
dc->res_pool->funcs->restore_mall_state(dc, context, &mall_temp_config);
/* If we do a minimal transition with plane removal and the context
* has subvp we also have to retain back the phantom stream / planes
* since the refcount is decremented as part of the min transition
* (we commit a state with no subvp, so the phantom streams / planes
* had to be removed).
*/
if (dc->res_pool->funcs->retain_phantom_pipes)
dc->res_pool->funcs->retain_phantom_pipes(dc, context);
update_type = UPDATE_TYPE_FULL;
}
commit_planes_for_stream(
dc,
srf_updates,
surface_count,
stream,
stream_update,
update_type,
context);
if (dc->current_state != context) {
/* Since memory free requires elevated IRQL, an interrupt
* request is generated by mem free. If this happens
* between freeing and reassigning the context, our vsync
* interrupt will call into dc and cause a memory
* corruption BSOD. Hence, we first reassign the context,
* then free the old context.
*/
struct dc_state *old = dc->current_state;
dc->current_state = context;
dc_release_state(old);
// clear any forced full updates
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
pipe_ctx->plane_state->force_full_update = false;
}
}
return true;
}
void dc_commit_updates_for_stream(struct dc *dc,
struct dc_surface_update *srf_updates,
int surface_count,
struct dc_stream_state *stream,
struct dc_stream_update *stream_update,
struct dc_state *state)
{
const struct dc_stream_status *stream_status;
enum surface_update_type update_type;
struct dc_state *context;
struct dc_context *dc_ctx = dc->ctx;
int i, j;
/* TODO: Since change commit sequence can have a huge impact,
* we decided to only enable it for DCN3x. However, as soon as
* we get more confident about this change we'll need to enable
* the new sequence for all ASICs.
*/
if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
dc_update_planes_and_stream(dc, srf_updates,
surface_count, stream,
stream_update);
return;
}
stream_status = dc_stream_get_status(stream);
context = dc->current_state;
update_type = dc_check_update_surfaces_for_stream(
dc, srf_updates, surface_count, stream_update, stream_status);
if (update_type >= update_surface_trace_level)
update_surface_trace(dc, srf_updates, surface_count);
if (update_type >= UPDATE_TYPE_FULL) {
/* initialize scratch memory for building context */
context = dc_create_state(dc);
if (context == NULL) {
DC_ERROR("Failed to allocate new validate context!\n");
return;
}
dc_resource_state_copy_construct(state, context);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
new_pipe->plane_state->force_full_update = true;
}
} else if (update_type == UPDATE_TYPE_FAST && dc_ctx->dce_version >= DCE_VERSION_MAX) {
/*
* Previous frame finished and HW is ready for optimization.
*
* Only relevant for DCN behavior where we can guarantee the optimization
* is safe to apply - retain the legacy behavior for DCE.
*/
dc_post_update_surfaces_to_stream(dc);
}
for (i = 0; i < surface_count; i++) {
struct dc_plane_state *surface = srf_updates[i].surface;
copy_surface_update_to_plane(surface, &srf_updates[i]);
if (update_type >= UPDATE_TYPE_MED) {
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx =
&context->res_ctx.pipe_ctx[j];
if (pipe_ctx->plane_state != surface)
continue;
resource_build_scaling_params(pipe_ctx);
}
}
}
copy_stream_update_to_stream(dc, context, stream, stream_update);
if (update_type >= UPDATE_TYPE_FULL) {
if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
DC_ERROR("Mode validation failed for stream update!\n");
dc_release_state(context);
return;
}
}
TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
commit_planes_for_stream(
dc,
srf_updates,
surface_count,
stream,
stream_update,
update_type,
context);
/*update current_State*/
if (dc->current_state != context) {
struct dc_state *old = dc->current_state;
dc->current_state = context;
dc_release_state(old);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
pipe_ctx->plane_state->force_full_update = false;
}
}
/* Legacy optimization path for DCE. */
if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
dc_post_update_surfaces_to_stream(dc);
TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
}
return;
}
uint8_t dc_get_current_stream_count(struct dc *dc)
{
return dc->current_state->stream_count;
}
struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
{
if (i < dc->current_state->stream_count)
return dc->current_state->streams[i];
return NULL;
}
enum dc_irq_source dc_interrupt_to_irq_source(
struct dc *dc,
uint32_t src_id,
uint32_t ext_id)
{
return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
}
/*
* dc_interrupt_set() - Enable/disable an AMD hw interrupt source
*/
bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
{
if (dc == NULL)
return false;
return dal_irq_service_set(dc->res_pool->irqs, src, enable);
}
void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
{
dal_irq_service_ack(dc->res_pool->irqs, src);
}
void dc_power_down_on_boot(struct dc *dc)
{
if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
dc->hwss.power_down_on_boot)
dc->hwss.power_down_on_boot(dc);
}
void dc_set_power_state(
struct dc *dc,
enum dc_acpi_cm_power_state power_state)
{
struct kref refcount;
struct display_mode_lib *dml;
if (!dc->current_state)
return;
switch (power_state) {
case DC_ACPI_CM_POWER_STATE_D0:
dc_resource_state_construct(dc, dc->current_state);
dc_z10_restore(dc);
if (dc->ctx->dmub_srv)
dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
dc->hwss.init_hw(dc);
if (dc->hwss.init_sys_ctx != NULL &&
dc->vm_pa_config.valid) {
dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
}
break;
default:
ASSERT(dc->current_state->stream_count == 0);
/* Zero out the current context so that on resume we start with
* clean state, and dc hw programming optimizations will not
* cause any trouble.
*/
dml = kzalloc(sizeof(struct display_mode_lib),
GFP_KERNEL);
ASSERT(dml);
if (!dml)
return;
/* Preserve refcount */
refcount = dc->current_state->refcount;
/* Preserve display mode lib */
memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
dc_resource_state_destruct(dc->current_state);
memset(dc->current_state, 0,
sizeof(*dc->current_state));
dc->current_state->refcount = refcount;
dc->current_state->bw_ctx.dml = *dml;
kfree(dml);
break;
}
}
void dc_resume(struct dc *dc)
{
uint32_t i;
for (i = 0; i < dc->link_count; i++)
core_link_resume(dc->links[i]);
}
bool dc_is_dmcu_initialized(struct dc *dc)
{
struct dmcu *dmcu = dc->res_pool->dmcu;
if (dmcu)
return dmcu->funcs->is_dmcu_initialized(dmcu);
return false;
}
bool dc_is_oem_i2c_device_present(
struct dc *dc,
size_t slave_address)
{
if (dc->res_pool->oem_device)
return dce_i2c_oem_device_present(
dc->res_pool,
dc->res_pool->oem_device,
slave_address);
return false;
}
bool dc_submit_i2c(
struct dc *dc,
uint32_t link_index,
struct i2c_command *cmd)
{
struct dc_link *link = dc->links[link_index];
struct ddc_service *ddc = link->ddc;
return dce_i2c_submit_command(
dc->res_pool,
ddc->ddc_pin,
cmd);
}
bool dc_submit_i2c_oem(
struct dc *dc,
struct i2c_command *cmd)
{
struct ddc_service *ddc = dc->res_pool->oem_device;
if (ddc)
return dce_i2c_submit_command(
dc->res_pool,
ddc->ddc_pin,
cmd);
return false;
}
static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
{
if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
BREAK_TO_DEBUGGER();
return false;
}
dc_sink_retain(sink);
dc_link->remote_sinks[dc_link->sink_count] = sink;
dc_link->sink_count++;
return true;
}
/*
* dc_link_add_remote_sink() - Create a sink and attach it to an existing link
*
* EDID length is in bytes
*/
struct dc_sink *dc_link_add_remote_sink(
struct dc_link *link,
const uint8_t *edid,
int len,
struct dc_sink_init_data *init_data)
{
struct dc_sink *dc_sink;
enum dc_edid_status edid_status;
if (len > DC_MAX_EDID_BUFFER_SIZE) {
dm_error("Max EDID buffer size breached!\n");
return NULL;
}
if (!init_data) {
BREAK_TO_DEBUGGER();
return NULL;
}
if (!init_data->link) {
BREAK_TO_DEBUGGER();
return NULL;
}
dc_sink = dc_sink_create(init_data);
if (!dc_sink)
return NULL;
memmove(dc_sink->dc_edid.raw_edid, edid, len);
dc_sink->dc_edid.length = len;
if (!link_add_remote_sink_helper(
link,
dc_sink))
goto fail_add_sink;
edid_status = dm_helpers_parse_edid_caps(
link,
&dc_sink->dc_edid,
&dc_sink->edid_caps);
/*
* Treat device as no EDID device if EDID
* parsing fails
*/
if (edid_status != EDID_OK && edid_status != EDID_PARTIAL_VALID) {
dc_sink->dc_edid.length = 0;
dm_error("Bad EDID, status%d!\n", edid_status);
}
return dc_sink;
fail_add_sink:
dc_sink_release(dc_sink);
return NULL;
}
/*
* dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
*
* Note that this just removes the struct dc_sink - it doesn't
* program hardware or alter other members of dc_link
*/
void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
{
int i;
if (!link->sink_count) {
BREAK_TO_DEBUGGER();
return;
}
for (i = 0; i < link->sink_count; i++) {
if (link->remote_sinks[i] == sink) {
dc_sink_release(sink);
link->remote_sinks[i] = NULL;
/* shrink array to remove empty place */
while (i < link->sink_count - 1) {
link->remote_sinks[i] = link->remote_sinks[i+1];
i++;
}
link->remote_sinks[i] = NULL;
link->sink_count--;
return;
}
}
}
void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
{
info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
}
enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
{
if (dc->hwss.set_clock)
return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
return DC_ERROR_UNEXPECTED;
}
void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
{
if (dc->hwss.get_clock)
dc->hwss.get_clock(dc, clock_type, clock_cfg);
}
/* enable/disable eDP PSR without specify stream for eDP */
bool dc_set_psr_allow_active(struct dc *dc, bool enable)
{
int i;
bool allow_active;
for (i = 0; i < dc->current_state->stream_count ; i++) {
struct dc_link *link;
struct dc_stream_state *stream = dc->current_state->streams[i];
link = stream->link;
if (!link)
continue;
if (link->psr_settings.psr_feature_enabled) {
if (enable && !link->psr_settings.psr_allow_active) {
allow_active = true;
if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
return false;
} else if (!enable && link->psr_settings.psr_allow_active) {
allow_active = false;
if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
return false;
}
}
}
return true;
}
void dc_allow_idle_optimizations(struct dc *dc, bool allow)
{
if (dc->debug.disable_idle_power_optimizations)
return;
if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
return;
if (allow == dc->idle_optimizations_allowed)
return;
if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
dc->idle_optimizations_allowed = allow;
}
/* set min and max memory clock to lowest and highest DPM level, respectively */
void dc_unlock_memory_clock_frequency(struct dc *dc)
{
if (dc->clk_mgr->funcs->set_hard_min_memclk)
dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
if (dc->clk_mgr->funcs->set_hard_max_memclk)
dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
}
/* set min memory clock to the min required for current mode, max to maxDPM */
void dc_lock_memory_clock_frequency(struct dc *dc)
{
if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
if (dc->clk_mgr->funcs->set_hard_min_memclk)
dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
if (dc->clk_mgr->funcs->set_hard_max_memclk)
dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
}
static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
{
struct dc_state *context = dc->current_state;
struct hubp *hubp;
struct pipe_ctx *pipe;
int i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream != NULL) {
dc->hwss.disable_pixel_data(dc, pipe, true);
// wait for double buffer
pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
hubp = pipe->plane_res.hubp;
hubp->funcs->set_blank_regs(hubp, true);
}
}
dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream != NULL) {
dc->hwss.disable_pixel_data(dc, pipe, false);
hubp = pipe->plane_res.hubp;
hubp->funcs->set_blank_regs(hubp, false);
}
}
}
/**
* dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
* @dc: pointer to dc of the dm calling this
* @enable: True = transition to DC mode, false = transition back to AC mode
*
* Some SoCs define additional clock limits when in DC mode, DM should
* invoke this function when the platform undergoes a power source transition
* so DC can apply/unapply the limit. This interface may be disruptive to
* the onscreen content.
*
* Context: Triggered by OS through DM interface, or manually by escape calls.
* Need to hold a dclock when doing so.
*
* Return: none (void function)
*
*/
void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
{
uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
unsigned int softMax, maxDPM, funcMin;
bool p_state_change_support;
if (!ASICREV_IS_BEIGE_GOBY_P(hw_internal_rev))
return;
softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
maxDPM = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz;
funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
if (p_state_change_support) {
if (funcMin <= softMax)
dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
// else: No-Op
} else {
if (funcMin <= softMax)
blank_and_force_memclk(dc, true, softMax);
// else: No-Op
}
} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
if (p_state_change_support) {
if (funcMin <= softMax)
dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
// else: No-Op
} else {
if (funcMin <= softMax)
blank_and_force_memclk(dc, true, maxDPM);
// else: No-Op
}
}
dc->clk_mgr->dc_mode_softmax_enabled = enable;
}
bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
struct dc_cursor_attributes *cursor_attr)
{
if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
return true;
return false;
}
/* cleanup on driver unload */
void dc_hardware_release(struct dc *dc)
{
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
if (dc->hwss.hardware_release)
dc->hwss.hardware_release(dc);
}
void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
{
if (dc->current_state)
dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
}
/**
* dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
*
* @dc: [in] dc structure
*
* Checks whether DMUB FW supports outbox notifications, if supported DM
* should register outbox interrupt prior to actually enabling interrupts
* via dc_enable_dmub_outbox
*
* Return:
* True if DMUB FW supports outbox notifications, False otherwise
*/
bool dc_is_dmub_outbox_supported(struct dc *dc)
{
/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
if (dc->ctx->asic_id.chip_family == FAMILY_YELLOW_CARP &&
dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
!dc->debug.dpia_debug.bits.disable_dpia)
return true;
if (dc->ctx->asic_id.chip_family == AMDGPU_FAMILY_GC_11_0_1 &&
!dc->debug.dpia_debug.bits.disable_dpia)
return true;
/* dmub aux needs dmub notifications to be enabled */
return dc->debug.enable_dmub_aux_for_legacy_ddc;
}
/**
* dc_enable_dmub_notifications - Check if dmub fw supports outbox
*
* @dc: [in] dc structure
*
* Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
* notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
* API shall be removed after switching.
*
* Return:
* True if DMUB FW supports outbox notifications, False otherwise
*/
bool dc_enable_dmub_notifications(struct dc *dc)
{
return dc_is_dmub_outbox_supported(dc);
}
/**
* dc_enable_dmub_outbox - Enables DMUB unsolicited notification
*
* dc: [in] dc structure
*
* Enables DMUB unsolicited notifications to x86 via outbox.
*/
void dc_enable_dmub_outbox(struct dc *dc)
{
struct dc_context *dc_ctx = dc->ctx;
dmub_enable_outbox_notification(dc_ctx->dmub_srv);
DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
}
/**
* dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
* Sets port index appropriately for legacy DDC
* @dc: dc structure
* @link_index: link index
* @payload: aux payload
*
* Returns: True if successful, False if failure
*/
bool dc_process_dmub_aux_transfer_async(struct dc *dc,
uint32_t link_index,
struct aux_payload *payload)
{
uint8_t action;
union dmub_rb_cmd cmd = {0};
struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
ASSERT(payload->length <= 16);
cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
cmd.dp_aux_access.header.payload_bytes = 0;
/* For dpia, ddc_pin is set to NULL */
if (!dc->links[link_index]->ddc->ddc_pin)
cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
else
cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
cmd.dp_aux_access.aux_control.timeout = 0;
cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
/* set aux action */
if (payload->i2c_over_aux) {
if (payload->write) {
if (payload->mot)
action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
else
action = DP_AUX_REQ_ACTION_I2C_WRITE;
} else {
if (payload->mot)
action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
else
action = DP_AUX_REQ_ACTION_I2C_READ;
}
} else {
if (payload->write)
action = DP_AUX_REQ_ACTION_DPCD_WRITE;
else
action = DP_AUX_REQ_ACTION_DPCD_READ;
}
cmd.dp_aux_access.aux_control.dpaux.action = action;
if (payload->length && payload->write) {
memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
payload->data,
payload->length
);
}
dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dmub_srv);
dc_dmub_srv_wait_idle(dmub_srv);
return true;
}
uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
uint8_t dpia_port_index)
{
uint8_t index, link_index = 0xFF;
for (index = 0; index < dc->link_count; index++) {
/* ddc_hw_inst has dpia port index for dpia links
* and ddc instance for legacy links
*/
if (!dc->links[index]->ddc->ddc_pin) {
if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
link_index = index;
break;
}
}
}
ASSERT(link_index != 0xFF);
return link_index;
}
/**
* dc_process_dmub_set_config_async - Submits set_config command
*
* @dc: [in] dc structure
* @link_index: [in] link_index: link index
* @payload: [in] aux payload
* @notify: [out] set_config immediate reply
*
* Submits set_config command to dmub via inbox message.
*
* Return:
* True if successful, False if failure
*/
bool dc_process_dmub_set_config_async(struct dc *dc,
uint32_t link_index,
struct set_config_cmd_payload *payload,
struct dmub_notification *notify)
{
union dmub_rb_cmd cmd = {0};
struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
bool is_cmd_complete = true;
/* prepare SET_CONFIG command */
cmd.set_config_access.header.type = DMUB_CMD__DPIA;
cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
if (!dc_dmub_srv_cmd_with_reply_data(dmub_srv, &cmd)) {
/* command is not processed by dmub */
notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
return is_cmd_complete;
}
/* command processed by dmub, if ret_status is 1, it is completed instantly */
if (cmd.set_config_access.header.ret_status == 1)
notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
else
/* cmd pending, will receive notification via outbox */
is_cmd_complete = false;
return is_cmd_complete;
}
/**
* dc_process_dmub_set_mst_slots - Submits MST solt allocation
*
* @dc: [in] dc structure
* @link_index: [in] link index
* @mst_alloc_slots: [in] mst slots to be allotted
* @mst_slots_in_use: [out] mst slots in use returned in failure case
*
* Submits mst slot allocation command to dmub via inbox message
*
* Return:
* DC_OK if successful, DC_ERROR if failure
*/
enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
uint32_t link_index,
uint8_t mst_alloc_slots,
uint8_t *mst_slots_in_use)
{
union dmub_rb_cmd cmd = {0};
struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
/* prepare MST_ALLOC_SLOTS command */
cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
if (!dc_dmub_srv_cmd_with_reply_data(dmub_srv, &cmd))
/* command is not processed by dmub */
return DC_ERROR_UNEXPECTED;
/* command processed by dmub, if ret_status is 1 */
if (cmd.set_config_access.header.ret_status != 1)
/* command processing error */
return DC_ERROR_UNEXPECTED;
/* command processed and we have a status of 2, mst not enabled in dpia */
if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
return DC_FAIL_UNSUPPORTED_1;
/* previously configured mst alloc and used slots did not match */
if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
return DC_NOT_SUPPORTED;
}
return DC_OK;
}
/**
* dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
*
* @dc [in]: dc structure
* @hpd_int_enable [in]: 1 for hpd int enable, 0 to disable
*
* Submits dpia hpd int enable command to dmub via inbox message
*/
void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
uint32_t hpd_int_enable)
{
union dmub_rb_cmd cmd = {0};
struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dmub_srv);
dc_dmub_srv_wait_idle(dmub_srv);
DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
}
/**
* dc_disable_accelerated_mode - disable accelerated mode
* @dc: dc structure
*/
void dc_disable_accelerated_mode(struct dc *dc)
{
bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
}
/**
* dc_notify_vsync_int_state - notifies vsync enable/disable state
* @dc: dc structure
* @stream: stream where vsync int state changed
* @enable: whether vsync is enabled or disabled
*
* Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
* interrupts after steady state is reached.
*/
void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
{
int i;
int edp_num;
struct pipe_ctx *pipe = NULL;
struct dc_link *link = stream->sink->link;
struct dc_link *edp_links[MAX_NUM_EDP];
if (link->psr_settings.psr_feature_enabled)
return;
/*find primary pipe associated with stream*/
for (i = 0; i < MAX_PIPES; i++) {
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream && pipe->stream_res.tg)
break;
}
if (i == MAX_PIPES) {
ASSERT(0);
return;
}
get_edp_links(dc, edp_links, &edp_num);
/* Determine panel inst */
for (i = 0; i < edp_num; i++) {
if (edp_links[i] == link)
break;
}
if (i == edp_num) {
return;
}
if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
}
/**
* dc_extended_blank_supported 0 Decide whether extended blank is supported
*
* @dc: [in] Current DC state
*
* Extended blank is a freesync optimization feature to be enabled in the
* future. During the extra vblank period gained from freesync, we have the
* ability to enter z9/z10.
*
* Return:
* Indicate whether extended blank is supported (true or false)
*/
bool dc_extended_blank_supported(struct dc *dc)
{
return dc->debug.extended_blank_optimization && !dc->debug.disable_z10
&& dc->caps.zstate_support && dc->caps.is_apu;
}