Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 | // SPDX-License-Identifier: GPL-2.0-only /* * tools/testing/selftests/kvm/lib/x86_64/processor.c * * Copyright (C) 2018, Google LLC. */ #include "test_util.h" #include "kvm_util.h" #include "processor.h" #ifndef NUM_INTERRUPTS #define NUM_INTERRUPTS 256 #endif #define DEFAULT_CODE_SELECTOR 0x8 #define DEFAULT_DATA_SELECTOR 0x10 #define MAX_NR_CPUID_ENTRIES 100 vm_vaddr_t exception_handlers; static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent) { fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " "rcx: 0x%.16llx rdx: 0x%.16llx\n", indent, "", regs->rax, regs->rbx, regs->rcx, regs->rdx); fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " "rsp: 0x%.16llx rbp: 0x%.16llx\n", indent, "", regs->rsi, regs->rdi, regs->rsp, regs->rbp); fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " "r10: 0x%.16llx r11: 0x%.16llx\n", indent, "", regs->r8, regs->r9, regs->r10, regs->r11); fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " "r14: 0x%.16llx r15: 0x%.16llx\n", indent, "", regs->r12, regs->r13, regs->r14, regs->r15); fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", indent, "", regs->rip, regs->rflags); } static void segment_dump(FILE *stream, struct kvm_segment *segment, uint8_t indent) { fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " "selector: 0x%.4x type: 0x%.2x\n", indent, "", segment->base, segment->limit, segment->selector, segment->type); fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", indent, "", segment->present, segment->dpl, segment->db, segment->s, segment->l); fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " "unusable: 0x%.2x padding: 0x%.2x\n", indent, "", segment->g, segment->avl, segment->unusable, segment->padding); } static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, uint8_t indent) { fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " "padding: 0x%.4x 0x%.4x 0x%.4x\n", indent, "", dtable->base, dtable->limit, dtable->padding[0], dtable->padding[1], dtable->padding[2]); } static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent) { unsigned int i; fprintf(stream, "%*scs:\n", indent, ""); segment_dump(stream, &sregs->cs, indent + 2); fprintf(stream, "%*sds:\n", indent, ""); segment_dump(stream, &sregs->ds, indent + 2); fprintf(stream, "%*ses:\n", indent, ""); segment_dump(stream, &sregs->es, indent + 2); fprintf(stream, "%*sfs:\n", indent, ""); segment_dump(stream, &sregs->fs, indent + 2); fprintf(stream, "%*sgs:\n", indent, ""); segment_dump(stream, &sregs->gs, indent + 2); fprintf(stream, "%*sss:\n", indent, ""); segment_dump(stream, &sregs->ss, indent + 2); fprintf(stream, "%*str:\n", indent, ""); segment_dump(stream, &sregs->tr, indent + 2); fprintf(stream, "%*sldt:\n", indent, ""); segment_dump(stream, &sregs->ldt, indent + 2); fprintf(stream, "%*sgdt:\n", indent, ""); dtable_dump(stream, &sregs->gdt, indent + 2); fprintf(stream, "%*sidt:\n", indent, ""); dtable_dump(stream, &sregs->idt, indent + 2); fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " "cr3: 0x%.16llx cr4: 0x%.16llx\n", indent, "", sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " "apic_base: 0x%.16llx\n", indent, "", sregs->cr8, sregs->efer, sregs->apic_base); fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { fprintf(stream, "%*s%.16llx\n", indent + 2, "", sregs->interrupt_bitmap[i]); } } bool kvm_is_tdp_enabled(void) { if (is_intel_cpu()) return get_kvm_intel_param_bool("ept"); else return get_kvm_amd_param_bool("npt"); } void virt_arch_pgd_alloc(struct kvm_vm *vm) { TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); /* If needed, create page map l4 table. */ if (!vm->pgd_created) { vm->pgd = vm_alloc_page_table(vm); vm->pgd_created = true; } } static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte, uint64_t vaddr, int level) { uint64_t pt_gpa = PTE_GET_PA(*parent_pte); uint64_t *page_table = addr_gpa2hva(vm, pt_gpa); int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu; TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd, "Parent PTE (level %d) not PRESENT for gva: 0x%08lx", level + 1, vaddr); return &page_table[index]; } static uint64_t *virt_create_upper_pte(struct kvm_vm *vm, uint64_t *parent_pte, uint64_t vaddr, uint64_t paddr, int current_level, int target_level) { uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level); if (!(*pte & PTE_PRESENT_MASK)) { *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK; if (current_level == target_level) *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK); else *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK; } else { /* * Entry already present. Assert that the caller doesn't want * a hugepage at this level, and that there isn't a hugepage at * this level. */ TEST_ASSERT(current_level != target_level, "Cannot create hugepage at level: %u, vaddr: 0x%lx\n", current_level, vaddr); TEST_ASSERT(!(*pte & PTE_LARGE_MASK), "Cannot create page table at level: %u, vaddr: 0x%lx\n", current_level, vaddr); } return pte; } void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level) { const uint64_t pg_size = PG_LEVEL_SIZE(level); uint64_t *pml4e, *pdpe, *pde; uint64_t *pte; TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); TEST_ASSERT((vaddr % pg_size) == 0, "Virtual address not aligned,\n" "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), "Invalid virtual address, vaddr: 0x%lx", vaddr); TEST_ASSERT((paddr % pg_size) == 0, "Physical address not aligned,\n" " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, "Physical address beyond maximum supported,\n" " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", paddr, vm->max_gfn, vm->page_size); /* * Allocate upper level page tables, if not already present. Return * early if a hugepage was created. */ pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level); if (*pml4e & PTE_LARGE_MASK) return; pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level); if (*pdpe & PTE_LARGE_MASK) return; pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level); if (*pde & PTE_LARGE_MASK) return; /* Fill in page table entry. */ pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); TEST_ASSERT(!(*pte & PTE_PRESENT_MASK), "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr); *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK); } void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) { __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K); } void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, uint64_t nr_bytes, int level) { uint64_t pg_size = PG_LEVEL_SIZE(level); uint64_t nr_pages = nr_bytes / pg_size; int i; TEST_ASSERT(nr_bytes % pg_size == 0, "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx", nr_bytes, pg_size); for (i = 0; i < nr_pages; i++) { __virt_pg_map(vm, vaddr, paddr, level); vaddr += pg_size; paddr += pg_size; } } static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level) { if (*pte & PTE_LARGE_MASK) { TEST_ASSERT(*level == PG_LEVEL_NONE || *level == current_level, "Unexpected hugepage at level %d\n", current_level); *level = current_level; } return *level == current_level; } uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, int *level) { uint64_t *pml4e, *pdpe, *pde; TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM, "Invalid PG_LEVEL_* '%d'", *level); TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), "Invalid virtual address, vaddr: 0x%lx", vaddr); /* * Based on the mode check above there are 48 bits in the vaddr, so * shift 16 to sign extend the last bit (bit-47), */ TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), "Canonical check failed. The virtual address is invalid."); pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G); if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G)) return pml4e; pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G); if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G)) return pdpe; pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M); if (vm_is_target_pte(pde, level, PG_LEVEL_2M)) return pde; return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); } uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr) { int level = PG_LEVEL_4K; return __vm_get_page_table_entry(vm, vaddr, &level); } void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) { uint64_t *pml4e, *pml4e_start; uint64_t *pdpe, *pdpe_start; uint64_t *pde, *pde_start; uint64_t *pte, *pte_start; if (!vm->pgd_created) return; fprintf(stream, "%*s " " no\n", indent, ""); fprintf(stream, "%*s index hvaddr gpaddr " "addr w exec dirty\n", indent, ""); pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd); for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { pml4e = &pml4e_start[n1]; if (!(*pml4e & PTE_PRESENT_MASK)) continue; fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u " " %u\n", indent, "", pml4e - pml4e_start, pml4e, addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e), !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK)); pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK); for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { pdpe = &pdpe_start[n2]; if (!(*pdpe & PTE_PRESENT_MASK)) continue; fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx " "%u %u\n", indent, "", pdpe - pdpe_start, pdpe, addr_hva2gpa(vm, pdpe), PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK), !!(*pdpe & PTE_NX_MASK)); pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK); for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { pde = &pde_start[n3]; if (!(*pde & PTE_PRESENT_MASK)) continue; fprintf(stream, "%*spde 0x%-3zx %p " "0x%-12lx 0x%-10llx %u %u\n", indent, "", pde - pde_start, pde, addr_hva2gpa(vm, pde), PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK), !!(*pde & PTE_NX_MASK)); pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK); for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { pte = &pte_start[n4]; if (!(*pte & PTE_PRESENT_MASK)) continue; fprintf(stream, "%*spte 0x%-3zx %p " "0x%-12lx 0x%-10llx %u %u " " %u 0x%-10lx\n", indent, "", pte - pte_start, pte, addr_hva2gpa(vm, pte), PTE_GET_PFN(*pte), !!(*pte & PTE_WRITABLE_MASK), !!(*pte & PTE_NX_MASK), !!(*pte & PTE_DIRTY_MASK), ((uint64_t) n1 << 27) | ((uint64_t) n2 << 18) | ((uint64_t) n3 << 9) | ((uint64_t) n4)); } } } } } /* * Set Unusable Segment * * Input Args: None * * Output Args: * segp - Pointer to segment register * * Return: None * * Sets the segment register pointed to by @segp to an unusable state. */ static void kvm_seg_set_unusable(struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->unusable = true; } static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) { void *gdt = addr_gva2hva(vm, vm->gdt); struct desc64 *desc = gdt + (segp->selector >> 3) * 8; desc->limit0 = segp->limit & 0xFFFF; desc->base0 = segp->base & 0xFFFF; desc->base1 = segp->base >> 16; desc->type = segp->type; desc->s = segp->s; desc->dpl = segp->dpl; desc->p = segp->present; desc->limit1 = segp->limit >> 16; desc->avl = segp->avl; desc->l = segp->l; desc->db = segp->db; desc->g = segp->g; desc->base2 = segp->base >> 24; if (!segp->s) desc->base3 = segp->base >> 32; } /* * Set Long Mode Flat Kernel Code Segment * * Input Args: * vm - VM whose GDT is being filled, or NULL to only write segp * selector - selector value * * Output Args: * segp - Pointer to KVM segment * * Return: None * * Sets up the KVM segment pointed to by @segp, to be a code segment * with the selector value given by @selector. */ static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->selector = selector; segp->limit = 0xFFFFFFFFu; segp->s = 0x1; /* kTypeCodeData */ segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed * | kFlagCodeReadable */ segp->g = true; segp->l = true; segp->present = 1; if (vm) kvm_seg_fill_gdt_64bit(vm, segp); } /* * Set Long Mode Flat Kernel Data Segment * * Input Args: * vm - VM whose GDT is being filled, or NULL to only write segp * selector - selector value * * Output Args: * segp - Pointer to KVM segment * * Return: None * * Sets up the KVM segment pointed to by @segp, to be a data segment * with the selector value given by @selector. */ static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->selector = selector; segp->limit = 0xFFFFFFFFu; segp->s = 0x1; /* kTypeCodeData */ segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed * | kFlagDataWritable */ segp->g = true; segp->present = true; if (vm) kvm_seg_fill_gdt_64bit(vm, segp); } vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) { int level = PG_LEVEL_NONE; uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level); TEST_ASSERT(*pte & PTE_PRESENT_MASK, "Leaf PTE not PRESENT for gva: 0x%08lx", gva); /* * No need for a hugepage mask on the PTE, x86-64 requires the "unused" * address bits to be zero. */ return PTE_GET_PA(*pte) | (gva & ~HUGEPAGE_MASK(level)); } static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt) { if (!vm->gdt) vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); dt->base = vm->gdt; dt->limit = getpagesize(); } static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, int selector) { if (!vm->tss) vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); memset(segp, 0, sizeof(*segp)); segp->base = vm->tss; segp->limit = 0x67; segp->selector = selector; segp->type = 0xb; segp->present = 1; kvm_seg_fill_gdt_64bit(vm, segp); } static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu) { struct kvm_sregs sregs; /* Set mode specific system register values. */ vcpu_sregs_get(vcpu, &sregs); sregs.idt.limit = 0; kvm_setup_gdt(vm, &sregs.gdt); switch (vm->mode) { case VM_MODE_PXXV48_4K: sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); kvm_seg_set_unusable(&sregs.ldt); kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); kvm_setup_tss_64bit(vm, &sregs.tr, 0x18); break; default: TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); } sregs.cr3 = vm->pgd; vcpu_sregs_set(vcpu, &sregs); } void kvm_arch_vm_post_create(struct kvm_vm *vm) { vm_create_irqchip(vm); } struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, void *guest_code) { struct kvm_mp_state mp_state; struct kvm_regs regs; vm_vaddr_t stack_vaddr; struct kvm_vcpu *vcpu; stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), DEFAULT_GUEST_STACK_VADDR_MIN, MEM_REGION_DATA); vcpu = __vm_vcpu_add(vm, vcpu_id); vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); vcpu_setup(vm, vcpu); /* Setup guest general purpose registers */ vcpu_regs_get(vcpu, ®s); regs.rflags = regs.rflags | 0x2; regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); regs.rip = (unsigned long) guest_code; vcpu_regs_set(vcpu, ®s); /* Setup the MP state */ mp_state.mp_state = 0; vcpu_mp_state_set(vcpu, &mp_state); return vcpu; } struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id) { struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id); vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); return vcpu; } void vcpu_arch_free(struct kvm_vcpu *vcpu) { if (vcpu->cpuid) free(vcpu->cpuid); } /* Do not use kvm_supported_cpuid directly except for validity checks. */ static void *kvm_supported_cpuid; const struct kvm_cpuid2 *kvm_get_supported_cpuid(void) { int kvm_fd; if (kvm_supported_cpuid) return kvm_supported_cpuid; kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); kvm_fd = open_kvm_dev_path_or_exit(); kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, (struct kvm_cpuid2 *)kvm_supported_cpuid); close(kvm_fd); return kvm_supported_cpuid; } static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid, uint32_t function, uint32_t index, uint8_t reg, uint8_t lo, uint8_t hi) { const struct kvm_cpuid_entry2 *entry; int i; for (i = 0; i < cpuid->nent; i++) { entry = &cpuid->entries[i]; /* * The output registers in kvm_cpuid_entry2 are in alphabetical * order, but kvm_x86_cpu_feature matches that mess, so yay * pointer shenanigans! */ if (entry->function == function && entry->index == index) return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo; } return 0; } bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, struct kvm_x86_cpu_feature feature) { return __kvm_cpu_has(cpuid, feature.function, feature.index, feature.reg, feature.bit, feature.bit); } uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, struct kvm_x86_cpu_property property) { return __kvm_cpu_has(cpuid, property.function, property.index, property.reg, property.lo_bit, property.hi_bit); } uint64_t kvm_get_feature_msr(uint64_t msr_index) { struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; int r, kvm_fd; buffer.header.nmsrs = 1; buffer.entry.index = msr_index; kvm_fd = open_kvm_dev_path_or_exit(); r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r)); close(kvm_fd); return buffer.entry.data; } void __vm_xsave_require_permission(int bit, const char *name) { int kvm_fd; u64 bitmask; long rc; struct kvm_device_attr attr = { .group = 0, .attr = KVM_X86_XCOMP_GUEST_SUPP, .addr = (unsigned long) &bitmask }; TEST_ASSERT(!kvm_supported_cpuid, "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM"); kvm_fd = open_kvm_dev_path_or_exit(); rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr); close(kvm_fd); if (rc == -1 && (errno == ENXIO || errno == EINVAL)) __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported"); TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc); __TEST_REQUIRE(bitmask & (1ULL << bit), "Required XSAVE feature '%s' not supported", name); TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit)); rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); TEST_ASSERT(bitmask & (1ULL << bit), "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx", bitmask); } void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid) { TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID"); /* Allow overriding the default CPUID. */ if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) { free(vcpu->cpuid); vcpu->cpuid = NULL; } if (!vcpu->cpuid) vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent); memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent)); vcpu_set_cpuid(vcpu); } void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr) { struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008); entry->eax = (entry->eax & ~0xff) | maxphyaddr; vcpu_set_cpuid(vcpu); } void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function) { struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function); entry->eax = 0; entry->ebx = 0; entry->ecx = 0; entry->edx = 0; vcpu_set_cpuid(vcpu); } void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, struct kvm_x86_cpu_feature feature, bool set) { struct kvm_cpuid_entry2 *entry; u32 *reg; entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); reg = (&entry->eax) + feature.reg; if (set) *reg |= BIT(feature.bit); else *reg &= ~BIT(feature.bit); vcpu_set_cpuid(vcpu); } uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index) { struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; buffer.header.nmsrs = 1; buffer.entry.index = msr_index; vcpu_msrs_get(vcpu, &buffer.header); return buffer.entry.data; } int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value) { struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; memset(&buffer, 0, sizeof(buffer)); buffer.header.nmsrs = 1; buffer.entry.index = msr_index; buffer.entry.data = msr_value; return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header); } void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) { va_list ap; struct kvm_regs regs; TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" " num: %u\n", num); va_start(ap, num); vcpu_regs_get(vcpu, ®s); if (num >= 1) regs.rdi = va_arg(ap, uint64_t); if (num >= 2) regs.rsi = va_arg(ap, uint64_t); if (num >= 3) regs.rdx = va_arg(ap, uint64_t); if (num >= 4) regs.rcx = va_arg(ap, uint64_t); if (num >= 5) regs.r8 = va_arg(ap, uint64_t); if (num >= 6) regs.r9 = va_arg(ap, uint64_t); vcpu_regs_set(vcpu, ®s); va_end(ap); } void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) { struct kvm_regs regs; struct kvm_sregs sregs; fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id); fprintf(stream, "%*sregs:\n", indent + 2, ""); vcpu_regs_get(vcpu, ®s); regs_dump(stream, ®s, indent + 4); fprintf(stream, "%*ssregs:\n", indent + 2, ""); vcpu_sregs_get(vcpu, &sregs); sregs_dump(stream, &sregs, indent + 4); } static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs) { struct kvm_msr_list *list; struct kvm_msr_list nmsrs; int kvm_fd, r; kvm_fd = open_kvm_dev_path_or_exit(); nmsrs.nmsrs = 0; if (!feature_msrs) r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); else r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs); TEST_ASSERT(r == -1 && errno == E2BIG, "Expected -E2BIG, got rc: %i errno: %i (%s)", r, errno, strerror(errno)); list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0])); TEST_ASSERT(list, "-ENOMEM when allocating MSR index list"); list->nmsrs = nmsrs.nmsrs; if (!feature_msrs) kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); else kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list); close(kvm_fd); TEST_ASSERT(list->nmsrs == nmsrs.nmsrs, "Number of MSRs in list changed, was %d, now %d", nmsrs.nmsrs, list->nmsrs); return list; } const struct kvm_msr_list *kvm_get_msr_index_list(void) { static const struct kvm_msr_list *list; if (!list) list = __kvm_get_msr_index_list(false); return list; } const struct kvm_msr_list *kvm_get_feature_msr_index_list(void) { static const struct kvm_msr_list *list; if (!list) list = __kvm_get_msr_index_list(true); return list; } bool kvm_msr_is_in_save_restore_list(uint32_t msr_index) { const struct kvm_msr_list *list = kvm_get_msr_index_list(); int i; for (i = 0; i < list->nmsrs; ++i) { if (list->indices[i] == msr_index) return true; } return false; } static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state) { int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2); if (size) { state->xsave = malloc(size); vcpu_xsave2_get(vcpu, state->xsave); } else { state->xsave = malloc(sizeof(struct kvm_xsave)); vcpu_xsave_get(vcpu, state->xsave); } } struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu) { const struct kvm_msr_list *msr_list = kvm_get_msr_index_list(); struct kvm_x86_state *state; int i; static int nested_size = -1; if (nested_size == -1) { nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); TEST_ASSERT(nested_size <= sizeof(state->nested_), "Nested state size too big, %i > %zi", nested_size, sizeof(state->nested_)); } /* * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees * guest state is consistent only after userspace re-enters the * kernel with KVM_RUN. Complete IO prior to migrating state * to a new VM. */ vcpu_run_complete_io(vcpu); state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0])); vcpu_events_get(vcpu, &state->events); vcpu_mp_state_get(vcpu, &state->mp_state); vcpu_regs_get(vcpu, &state->regs); vcpu_save_xsave_state(vcpu, state); if (kvm_has_cap(KVM_CAP_XCRS)) vcpu_xcrs_get(vcpu, &state->xcrs); vcpu_sregs_get(vcpu, &state->sregs); if (nested_size) { state->nested.size = sizeof(state->nested_); vcpu_nested_state_get(vcpu, &state->nested); TEST_ASSERT(state->nested.size <= nested_size, "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", state->nested.size, nested_size); } else { state->nested.size = 0; } state->msrs.nmsrs = msr_list->nmsrs; for (i = 0; i < msr_list->nmsrs; i++) state->msrs.entries[i].index = msr_list->indices[i]; vcpu_msrs_get(vcpu, &state->msrs); vcpu_debugregs_get(vcpu, &state->debugregs); return state; } void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state) { vcpu_sregs_set(vcpu, &state->sregs); vcpu_msrs_set(vcpu, &state->msrs); if (kvm_has_cap(KVM_CAP_XCRS)) vcpu_xcrs_set(vcpu, &state->xcrs); vcpu_xsave_set(vcpu, state->xsave); vcpu_events_set(vcpu, &state->events); vcpu_mp_state_set(vcpu, &state->mp_state); vcpu_debugregs_set(vcpu, &state->debugregs); vcpu_regs_set(vcpu, &state->regs); if (state->nested.size) vcpu_nested_state_set(vcpu, &state->nested); } void kvm_x86_state_cleanup(struct kvm_x86_state *state) { free(state->xsave); free(state); } static bool cpu_vendor_string_is(const char *vendor) { const uint32_t *chunk = (const uint32_t *)vendor; uint32_t eax, ebx, ecx, edx; cpuid(0, &eax, &ebx, &ecx, &edx); return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); } bool is_intel_cpu(void) { return cpu_vendor_string_is("GenuineIntel"); } /* * Exclude early K5 samples with a vendor string of "AMDisbetter!" */ bool is_amd_cpu(void) { return cpu_vendor_string_is("AuthenticAMD"); } void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) { if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) { *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32; *va_bits = 32; } else { *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR); } } static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, int dpl, unsigned short selector) { struct idt_entry *base = (struct idt_entry *)addr_gva2hva(vm, vm->idt); struct idt_entry *e = &base[vector]; memset(e, 0, sizeof(*e)); e->offset0 = addr; e->selector = selector; e->ist = 0; e->type = 14; e->dpl = dpl; e->p = 1; e->offset1 = addr >> 16; e->offset2 = addr >> 32; } static bool kvm_fixup_exception(struct ex_regs *regs) { if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10) return false; if (regs->vector == DE_VECTOR) return false; regs->rip = regs->r11; regs->r9 = regs->vector; regs->r10 = regs->error_code; return true; } void kvm_exit_unexpected_vector(uint32_t value) { ucall(UCALL_UNHANDLED, 1, value); } void route_exception(struct ex_regs *regs) { typedef void(*handler)(struct ex_regs *); handler *handlers = (handler *)exception_handlers; if (handlers && handlers[regs->vector]) { handlers[regs->vector](regs); return; } if (kvm_fixup_exception(regs)) return; kvm_exit_unexpected_vector(regs->vector); } void vm_init_descriptor_tables(struct kvm_vm *vm) { extern void *idt_handlers; int i; vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); /* Handlers have the same address in both address spaces.*/ for (i = 0; i < NUM_INTERRUPTS; i++) set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, DEFAULT_CODE_SELECTOR); } void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu) { struct kvm_vm *vm = vcpu->vm; struct kvm_sregs sregs; vcpu_sregs_get(vcpu, &sregs); sregs.idt.base = vm->idt; sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; sregs.gdt.base = vm->gdt; sregs.gdt.limit = getpagesize() - 1; kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); vcpu_sregs_set(vcpu, &sregs); *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; } void vm_install_exception_handler(struct kvm_vm *vm, int vector, void (*handler)(struct ex_regs *)) { vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); handlers[vector] = (vm_vaddr_t)handler; } void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) { struct ucall uc; if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) { uint64_t vector = uc.args[0]; TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)", vector); } } const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, uint32_t function, uint32_t index) { int i; for (i = 0; i < cpuid->nent; i++) { if (cpuid->entries[i].function == function && cpuid->entries[i].index == index) return &cpuid->entries[i]; } TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index); return NULL; } uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, uint64_t a3) { uint64_t r; asm volatile("vmcall" : "=a"(r) : "a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3)); return r; } const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) { static struct kvm_cpuid2 *cpuid; int kvm_fd; if (cpuid) return cpuid; cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); kvm_fd = open_kvm_dev_path_or_exit(); kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); close(kvm_fd); return cpuid; } void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu) { static struct kvm_cpuid2 *cpuid_full; const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; int i, nent = 0; if (!cpuid_full) { cpuid_sys = kvm_get_supported_cpuid(); cpuid_hv = kvm_get_supported_hv_cpuid(); cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent); if (!cpuid_full) { perror("malloc"); abort(); } /* Need to skip KVM CPUID leaves 0x400000xx */ for (i = 0; i < cpuid_sys->nent; i++) { if (cpuid_sys->entries[i].function >= 0x40000000 && cpuid_sys->entries[i].function < 0x40000100) continue; cpuid_full->entries[nent] = cpuid_sys->entries[i]; nent++; } memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); cpuid_full->nent = nent + cpuid_hv->nent; } vcpu_init_cpuid(vcpu, cpuid_full); } const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu) { struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid); return cpuid; } unsigned long vm_compute_max_gfn(struct kvm_vm *vm) { const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ unsigned long ht_gfn, max_gfn, max_pfn; uint8_t maxphyaddr; max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1; /* Avoid reserved HyperTransport region on AMD processors. */ if (!is_amd_cpu()) return max_gfn; /* On parts with <40 physical address bits, the area is fully hidden */ if (vm->pa_bits < 40) return max_gfn; /* Before family 17h, the HyperTransport area is just below 1T. */ ht_gfn = (1 << 28) - num_ht_pages; if (this_cpu_family() < 0x17) goto done; /* * Otherwise it's at the top of the physical address space, possibly * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use * the old conservative value if MAXPHYADDR is not enumerated. */ if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) goto done; maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1; if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION)) max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION); ht_gfn = max_pfn - num_ht_pages; done: return min(max_gfn, ht_gfn - 1); } /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */ bool vm_is_unrestricted_guest(struct kvm_vm *vm) { /* Ensure that a KVM vendor-specific module is loaded. */ if (vm == NULL) close(open_kvm_dev_path_or_exit()); return get_kvm_intel_param_bool("unrestricted_guest"); } |