Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2001 Momchil Velikov
 * Portions Copyright (C) 2001 Christoph Hellwig
 * Copyright (C) 2005 SGI, Christoph Lameter
 * Copyright (C) 2006 Nick Piggin
 * Copyright (C) 2012 Konstantin Khlebnikov
 * Copyright (C) 2016 Intel, Matthew Wilcox
 * Copyright (C) 2016 Intel, Ross Zwisler
 */

#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/percpu.h>
#include <linux/preempt.h>		/* in_interrupt() */
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/xarray.h>

/*
 * Radix tree node cache.
 */
struct kmem_cache *radix_tree_node_cachep;

/*
 * The radix tree is variable-height, so an insert operation not only has
 * to build the branch to its corresponding item, it also has to build the
 * branch to existing items if the size has to be increased (by
 * radix_tree_extend).
 *
 * The worst case is a zero height tree with just a single item at index 0,
 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
 * Hence:
 */
#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)

/*
 * The IDR does not have to be as high as the radix tree since it uses
 * signed integers, not unsigned longs.
 */
#define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
#define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
						RADIX_TREE_MAP_SHIFT))
#define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)

/*
 * Per-cpu pool of preloaded nodes
 */
DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
	.lock = INIT_LOCAL_LOCK(lock),
};
EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);

static inline struct radix_tree_node *entry_to_node(void *ptr)
{
	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
}

static inline void *node_to_entry(void *ptr)
{
	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
}

#define RADIX_TREE_RETRY	XA_RETRY_ENTRY

static inline unsigned long
get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
{
	return parent ? slot - parent->slots : 0;
}

static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
			struct radix_tree_node **nodep, unsigned long index)
{
	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);

	*nodep = (void *)entry;
	return offset;
}

static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
{
	return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
}

static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
		int offset)
{
	__set_bit(offset, node->tags[tag]);
}

static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
		int offset)
{
	__clear_bit(offset, node->tags[tag]);
}

static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
		int offset)
{
	return test_bit(offset, node->tags[tag]);
}

static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
{
	root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
}

static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
{
	root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
}

static inline void root_tag_clear_all(struct radix_tree_root *root)
{
	root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
}

static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
{
	return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
}

static inline unsigned root_tags_get(const struct radix_tree_root *root)
{
	return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
}

static inline bool is_idr(const struct radix_tree_root *root)
{
	return !!(root->xa_flags & ROOT_IS_IDR);
}

/*
 * Returns 1 if any slot in the node has this tag set.
 * Otherwise returns 0.
 */
static inline int any_tag_set(const struct radix_tree_node *node,
							unsigned int tag)
{
	unsigned idx;
	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
		if (node->tags[tag][idx])
			return 1;
	}
	return 0;
}

static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
{
	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
}

/**
 * radix_tree_find_next_bit - find the next set bit in a memory region
 *
 * @node: where to begin the search
 * @tag: the tag index
 * @offset: the bitnumber to start searching at
 *
 * Unrollable variant of find_next_bit() for constant size arrays.
 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 * Returns next bit offset, or size if nothing found.
 */
static __always_inline unsigned long
radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
			 unsigned long offset)
{
	const unsigned long *addr = node->tags[tag];

	if (offset < RADIX_TREE_MAP_SIZE) {
		unsigned long tmp;

		addr += offset / BITS_PER_LONG;
		tmp = *addr >> (offset % BITS_PER_LONG);
		if (tmp)
			return __ffs(tmp) + offset;
		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
		while (offset < RADIX_TREE_MAP_SIZE) {
			tmp = *++addr;
			if (tmp)
				return __ffs(tmp) + offset;
			offset += BITS_PER_LONG;
		}
	}
	return RADIX_TREE_MAP_SIZE;
}

static unsigned int iter_offset(const struct radix_tree_iter *iter)
{
	return iter->index & RADIX_TREE_MAP_MASK;
}

/*
 * The maximum index which can be stored in a radix tree
 */
static inline unsigned long shift_maxindex(unsigned int shift)
{
	return (RADIX_TREE_MAP_SIZE << shift) - 1;
}

static inline unsigned long node_maxindex(const struct radix_tree_node *node)
{
	return shift_maxindex(node->shift);
}

static unsigned long next_index(unsigned long index,
				const struct radix_tree_node *node,
				unsigned long offset)
{
	return (index & ~node_maxindex(node)) + (offset << node->shift);
}

/*
 * This assumes that the caller has performed appropriate preallocation, and
 * that the caller has pinned this thread of control to the current CPU.
 */
static struct radix_tree_node *
radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
			struct radix_tree_root *root,
			unsigned int shift, unsigned int offset,
			unsigned int count, unsigned int nr_values)
{
	struct radix_tree_node *ret = NULL;

	/*
	 * Preload code isn't irq safe and it doesn't make sense to use
	 * preloading during an interrupt anyway as all the allocations have
	 * to be atomic. So just do normal allocation when in interrupt.
	 */
	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
		struct radix_tree_preload *rtp;

		/*
		 * Even if the caller has preloaded, try to allocate from the
		 * cache first for the new node to get accounted to the memory
		 * cgroup.
		 */
		ret = kmem_cache_alloc(radix_tree_node_cachep,
				       gfp_mask | __GFP_NOWARN);
		if (ret)
			goto out;

		/*
		 * Provided the caller has preloaded here, we will always
		 * succeed in getting a node here (and never reach
		 * kmem_cache_alloc)
		 */
		rtp = this_cpu_ptr(&radix_tree_preloads);
		if (rtp->nr) {
			ret = rtp->nodes;
			rtp->nodes = ret->parent;
			rtp->nr--;
		}
		/*
		 * Update the allocation stack trace as this is more useful
		 * for debugging.
		 */
		kmemleak_update_trace(ret);
		goto out;
	}
	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
out:
	BUG_ON(radix_tree_is_internal_node(ret));
	if (ret) {
		ret->shift = shift;
		ret->offset = offset;
		ret->count = count;
		ret->nr_values = nr_values;
		ret->parent = parent;
		ret->array = root;
	}
	return ret;
}

void radix_tree_node_rcu_free(struct rcu_head *head)
{
	struct radix_tree_node *node =
			container_of(head, struct radix_tree_node, rcu_head);

	/*
	 * Must only free zeroed nodes into the slab.  We can be left with
	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
	 * and tags here.
	 */
	memset(node->slots, 0, sizeof(node->slots));
	memset(node->tags, 0, sizeof(node->tags));
	INIT_LIST_HEAD(&node->private_list);

	kmem_cache_free(radix_tree_node_cachep, node);
}

static inline void
radix_tree_node_free(struct radix_tree_node *node)
{
	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
}

/*
 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 * ensure that the addition of a single element in the tree cannot fail.  On
 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 * with preemption not disabled.
 *
 * To make use of this facility, the radix tree must be initialised without
 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 */
static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
{
	struct radix_tree_preload *rtp;
	struct radix_tree_node *node;
	int ret = -ENOMEM;

	/*
	 * Nodes preloaded by one cgroup can be used by another cgroup, so
	 * they should never be accounted to any particular memory cgroup.
	 */
	gfp_mask &= ~__GFP_ACCOUNT;

	local_lock(&radix_tree_preloads.lock);
	rtp = this_cpu_ptr(&radix_tree_preloads);
	while (rtp->nr < nr) {
		local_unlock(&radix_tree_preloads.lock);
		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
		if (node == NULL)
			goto out;
		local_lock(&radix_tree_preloads.lock);
		rtp = this_cpu_ptr(&radix_tree_preloads);
		if (rtp->nr < nr) {
			node->parent = rtp->nodes;
			rtp->nodes = node;
			rtp->nr++;
		} else {
			kmem_cache_free(radix_tree_node_cachep, node);
		}
	}
	ret = 0;
out:
	return ret;
}

/*
 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 * ensure that the addition of a single element in the tree cannot fail.  On
 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 * with preemption not disabled.
 *
 * To make use of this facility, the radix tree must be initialised without
 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 */
int radix_tree_preload(gfp_t gfp_mask)
{
	/* Warn on non-sensical use... */
	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
}
EXPORT_SYMBOL(radix_tree_preload);

/*
 * The same as above function, except we don't guarantee preloading happens.
 * We do it, if we decide it helps. On success, return zero with preemption
 * disabled. On error, return -ENOMEM with preemption not disabled.
 */
int radix_tree_maybe_preload(gfp_t gfp_mask)
{
	if (gfpflags_allow_blocking(gfp_mask))
		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
	/* Preloading doesn't help anything with this gfp mask, skip it */
	local_lock(&radix_tree_preloads.lock);
	return 0;
}
EXPORT_SYMBOL(radix_tree_maybe_preload);

static unsigned radix_tree_load_root(const struct radix_tree_root *root,
		struct radix_tree_node **nodep, unsigned long *maxindex)
{
	struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);

	*nodep = node;

	if (likely(radix_tree_is_internal_node(node))) {
		node = entry_to_node(node);
		*maxindex = node_maxindex(node);
		return node->shift + RADIX_TREE_MAP_SHIFT;
	}

	*maxindex = 0;
	return 0;
}

/*
 *	Extend a radix tree so it can store key @index.
 */
static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
				unsigned long index, unsigned int shift)
{
	void *entry;
	unsigned int maxshift;
	int tag;

	/* Figure out what the shift should be.  */
	maxshift = shift;
	while (index > shift_maxindex(maxshift))
		maxshift += RADIX_TREE_MAP_SHIFT;

	entry = rcu_dereference_raw(root->xa_head);
	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
		goto out;

	do {
		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
							root, shift, 0, 1, 0);
		if (!node)
			return -ENOMEM;

		if (is_idr(root)) {
			all_tag_set(node, IDR_FREE);
			if (!root_tag_get(root, IDR_FREE)) {
				tag_clear(node, IDR_FREE, 0);
				root_tag_set(root, IDR_FREE);
			}
		} else {
			/* Propagate the aggregated tag info to the new child */
			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
				if (root_tag_get(root, tag))
					tag_set(node, tag, 0);
			}
		}

		BUG_ON(shift > BITS_PER_LONG);
		if (radix_tree_is_internal_node(entry)) {
			entry_to_node(entry)->parent = node;
		} else if (xa_is_value(entry)) {
			/* Moving a value entry root->xa_head to a node */
			node->nr_values = 1;
		}
		/*
		 * entry was already in the radix tree, so we do not need
		 * rcu_assign_pointer here
		 */
		node->slots[0] = (void __rcu *)entry;
		entry = node_to_entry(node);
		rcu_assign_pointer(root->xa_head, entry);
		shift += RADIX_TREE_MAP_SHIFT;
	} while (shift <= maxshift);
out:
	return maxshift + RADIX_TREE_MAP_SHIFT;
}

/**
 *	radix_tree_shrink    -    shrink radix tree to minimum height
 *	@root:		radix tree root
 */
static inline bool radix_tree_shrink(struct radix_tree_root *root)
{
	bool shrunk = false;

	for (;;) {
		struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
		struct radix_tree_node *child;

		if (!radix_tree_is_internal_node(node))
			break;
		node = entry_to_node(node);

		/*
		 * The candidate node has more than one child, or its child
		 * is not at the leftmost slot, we cannot shrink.
		 */
		if (node->count != 1)
			break;
		child = rcu_dereference_raw(node->slots[0]);
		if (!child)
			break;

		/*
		 * For an IDR, we must not shrink entry 0 into the root in
		 * case somebody calls idr_replace() with a pointer that
		 * appears to be an internal entry
		 */
		if (!node->shift && is_idr(root))
			break;

		if (radix_tree_is_internal_node(child))
			entry_to_node(child)->parent = NULL;

		/*
		 * We don't need rcu_assign_pointer(), since we are simply
		 * moving the node from one part of the tree to another: if it
		 * was safe to dereference the old pointer to it
		 * (node->slots[0]), it will be safe to dereference the new
		 * one (root->xa_head) as far as dependent read barriers go.
		 */
		root->xa_head = (void __rcu *)child;
		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
			root_tag_clear(root, IDR_FREE);

		/*
		 * We have a dilemma here. The node's slot[0] must not be
		 * NULLed in case there are concurrent lookups expecting to
		 * find the item. However if this was a bottom-level node,
		 * then it may be subject to the slot pointer being visible
		 * to callers dereferencing it. If item corresponding to
		 * slot[0] is subsequently deleted, these callers would expect
		 * their slot to become empty sooner or later.
		 *
		 * For example, lockless pagecache will look up a slot, deref
		 * the page pointer, and if the page has 0 refcount it means it
		 * was concurrently deleted from pagecache so try the deref
		 * again. Fortunately there is already a requirement for logic
		 * to retry the entire slot lookup -- the indirect pointer
		 * problem (replacing direct root node with an indirect pointer
		 * also results in a stale slot). So tag the slot as indirect
		 * to force callers to retry.
		 */
		node->count = 0;
		if (!radix_tree_is_internal_node(child)) {
			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
		}

		WARN_ON_ONCE(!list_empty(&node->private_list));
		radix_tree_node_free(node);
		shrunk = true;
	}

	return shrunk;
}

static bool delete_node(struct radix_tree_root *root,
			struct radix_tree_node *node)
{
	bool deleted = false;

	do {
		struct radix_tree_node *parent;

		if (node->count) {
			if (node_to_entry(node) ==
					rcu_dereference_raw(root->xa_head))
				deleted |= radix_tree_shrink(root);
			return deleted;
		}

		parent = node->parent;
		if (parent) {
			parent->slots[node->offset] = NULL;
			parent->count--;
		} else {
			/*
			 * Shouldn't the tags already have all been cleared
			 * by the caller?
			 */
			if (!is_idr(root))
				root_tag_clear_all(root);
			root->xa_head = NULL;
		}

		WARN_ON_ONCE(!list_empty(&node->private_list));
		radix_tree_node_free(node);
		deleted = true;

		node = parent;
	} while (node);

	return deleted;
}

/**
 *	__radix_tree_create	-	create a slot in a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *	@nodep:		returns node
 *	@slotp:		returns slot
 *
 *	Create, if necessary, and return the node and slot for an item
 *	at position @index in the radix tree @root.
 *
 *	Until there is more than one item in the tree, no nodes are
 *	allocated and @root->xa_head is used as a direct slot instead of
 *	pointing to a node, in which case *@nodep will be NULL.
 *
 *	Returns -ENOMEM, or 0 for success.
 */
static int __radix_tree_create(struct radix_tree_root *root,
		unsigned long index, struct radix_tree_node **nodep,
		void __rcu ***slotp)
{
	struct radix_tree_node *node = NULL, *child;
	void __rcu **slot = (void __rcu **)&root->xa_head;
	unsigned long maxindex;
	unsigned int shift, offset = 0;
	unsigned long max = index;
	gfp_t gfp = root_gfp_mask(root);

	shift = radix_tree_load_root(root, &child, &maxindex);

	/* Make sure the tree is high enough.  */
	if (max > maxindex) {
		int error = radix_tree_extend(root, gfp, max, shift);
		if (error < 0)
			return error;
		shift = error;
		child = rcu_dereference_raw(root->xa_head);
	}

	while (shift > 0) {
		shift -= RADIX_TREE_MAP_SHIFT;
		if (child == NULL) {
			/* Have to add a child node.  */
			child = radix_tree_node_alloc(gfp, node, root, shift,
							offset, 0, 0);
			if (!child)
				return -ENOMEM;
			rcu_assign_pointer(*slot, node_to_entry(child));
			if (node)
				node->count++;
		} else if (!radix_tree_is_internal_node(child))
			break;

		/* Go a level down */
		node = entry_to_node(child);
		offset = radix_tree_descend(node, &child, index);
		slot = &node->slots[offset];
	}

	if (nodep)
		*nodep = node;
	if (slotp)
		*slotp = slot;
	return 0;
}

/*
 * Free any nodes below this node.  The tree is presumed to not need
 * shrinking, and any user data in the tree is presumed to not need a
 * destructor called on it.  If we need to add a destructor, we can
 * add that functionality later.  Note that we may not clear tags or
 * slots from the tree as an RCU walker may still have a pointer into
 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 * but we'll still have to clear those in rcu_free.
 */
static void radix_tree_free_nodes(struct radix_tree_node *node)
{
	unsigned offset = 0;
	struct radix_tree_node *child = entry_to_node(node);

	for (;;) {
		void *entry = rcu_dereference_raw(child->slots[offset]);
		if (xa_is_node(entry) && child->shift) {
			child = entry_to_node(entry);
			offset = 0;
			continue;
		}
		offset++;
		while (offset == RADIX_TREE_MAP_SIZE) {
			struct radix_tree_node *old = child;
			offset = child->offset + 1;
			child = child->parent;
			WARN_ON_ONCE(!list_empty(&old->private_list));
			radix_tree_node_free(old);
			if (old == entry_to_node(node))
				return;
		}
	}
}

static inline int insert_entries(struct radix_tree_node *node,
		void __rcu **slot, void *item)
{
	if (*slot)
		return -EEXIST;
	rcu_assign_pointer(*slot, item);
	if (node) {
		node->count++;
		if (xa_is_value(item))
			node->nr_values++;
	}
	return 1;
}

/**
 *	radix_tree_insert    -    insert into a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *	@item:		item to insert
 *
 *	Insert an item into the radix tree at position @index.
 */
int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
			void *item)
{
	struct radix_tree_node *node;
	void __rcu **slot;
	int error;

	BUG_ON(radix_tree_is_internal_node(item));

	error = __radix_tree_create(root, index, &node, &slot);
	if (error)
		return error;

	error = insert_entries(node, slot, item);
	if (error < 0)
		return error;

	if (node) {
		unsigned offset = get_slot_offset(node, slot);
		BUG_ON(tag_get(node, 0, offset));
		BUG_ON(tag_get(node, 1, offset));
		BUG_ON(tag_get(node, 2, offset));
	} else {
		BUG_ON(root_tags_get(root));
	}

	return 0;
}
EXPORT_SYMBOL(radix_tree_insert);

/**
 *	__radix_tree_lookup	-	lookup an item in a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *	@nodep:		returns node
 *	@slotp:		returns slot
 *
 *	Lookup and return the item at position @index in the radix
 *	tree @root.
 *
 *	Until there is more than one item in the tree, no nodes are
 *	allocated and @root->xa_head is used as a direct slot instead of
 *	pointing to a node, in which case *@nodep will be NULL.
 */
void *__radix_tree_lookup(const struct radix_tree_root *root,
			  unsigned long index, struct radix_tree_node **nodep,
			  void __rcu ***slotp)
{
	struct radix_tree_node *node, *parent;
	unsigned long maxindex;
	void __rcu **slot;

 restart:
	parent = NULL;
	slot = (void __rcu **)&root->xa_head;
	radix_tree_load_root(root, &node, &maxindex);
	if (index > maxindex)
		return NULL;

	while (radix_tree_is_internal_node(node)) {
		unsigned offset;

		parent = entry_to_node(node);
		offset = radix_tree_descend(parent, &node, index);
		slot = parent->slots + offset;
		if (node == RADIX_TREE_RETRY)
			goto restart;
		if (parent->shift == 0)
			break;
	}

	if (nodep)
		*nodep = parent;
	if (slotp)
		*slotp = slot;
	return node;
}

/**
 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *
 *	Returns:  the slot corresponding to the position @index in the
 *	radix tree @root. This is useful for update-if-exists operations.
 *
 *	This function can be called under rcu_read_lock iff the slot is not
 *	modified by radix_tree_replace_slot, otherwise it must be called
 *	exclusive from other writers. Any dereference of the slot must be done
 *	using radix_tree_deref_slot.
 */
void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
				unsigned long index)
{
	void __rcu **slot;

	if (!__radix_tree_lookup(root, index, NULL, &slot))
		return NULL;
	return slot;
}
EXPORT_SYMBOL(radix_tree_lookup_slot);

/**
 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *
 *	Lookup the item at the position @index in the radix tree @root.
 *
 *	This function can be called under rcu_read_lock, however the caller
 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 *	them safely). No RCU barriers are required to access or modify the
 *	returned item, however.
 */
void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
{
	return __radix_tree_lookup(root, index, NULL, NULL);
}
EXPORT_SYMBOL(radix_tree_lookup);

static void replace_slot(void __rcu **slot, void *item,
		struct radix_tree_node *node, int count, int values)
{
	if (node && (count || values)) {
		node->count += count;
		node->nr_values += values;
	}

	rcu_assign_pointer(*slot, item);
}

static bool node_tag_get(const struct radix_tree_root *root,
				const struct radix_tree_node *node,
				unsigned int tag, unsigned int offset)
{
	if (node)
		return tag_get(node, tag, offset);
	return root_tag_get(root, tag);
}

/*
 * IDR users want to be able to store NULL in the tree, so if the slot isn't
 * free, don't adjust the count, even if it's transitioning between NULL and
 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 * have empty bits, but it only stores NULL in slots when they're being
 * deleted.
 */
static int calculate_count(struct radix_tree_root *root,
				struct radix_tree_node *node, void __rcu **slot,
				void *item, void *old)
{
	if (is_idr(root)) {
		unsigned offset = get_slot_offset(node, slot);
		bool free = node_tag_get(root, node, IDR_FREE, offset);
		if (!free)
			return 0;
		if (!old)
			return 1;
	}
	return !!item - !!old;
}

/**
 * __radix_tree_replace		- replace item in a slot
 * @root:		radix tree root
 * @node:		pointer to tree node
 * @slot:		pointer to slot in @node
 * @item:		new item to store in the slot.
 *
 * For use with __radix_tree_lookup().  Caller must hold tree write locked
 * across slot lookup and replacement.
 */
void __radix_tree_replace(struct radix_tree_root *root,
			  struct radix_tree_node *node,
			  void __rcu **slot, void *item)
{
	void *old = rcu_dereference_raw(*slot);
	int values = !!xa_is_value(item) - !!xa_is_value(old);
	int count = calculate_count(root, node, slot, item, old);

	/*
	 * This function supports replacing value entries and
	 * deleting entries, but that needs accounting against the
	 * node unless the slot is root->xa_head.
	 */
	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
			(count || values));
	replace_slot(slot, item, node, count, values);

	if (!node)
		return;

	delete_node(root, node);
}

/**
 * radix_tree_replace_slot	- replace item in a slot
 * @root:	radix tree root
 * @slot:	pointer to slot
 * @item:	new item to store in the slot.
 *
 * For use with radix_tree_lookup_slot() and
 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 * across slot lookup and replacement.
 *
 * NOTE: This cannot be used to switch between non-entries (empty slots),
 * regular entries, and value entries, as that requires accounting
 * inside the radix tree node. When switching from one type of entry or
 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 * radix_tree_iter_replace().
 */
void radix_tree_replace_slot(struct radix_tree_root *root,
			     void __rcu **slot, void *item)
{
	__radix_tree_replace(root, NULL, slot, item);
}
EXPORT_SYMBOL(radix_tree_replace_slot);

/**
 * radix_tree_iter_replace - replace item in a slot
 * @root:	radix tree root
 * @iter:	iterator state
 * @slot:	pointer to slot
 * @item:	new item to store in the slot.
 *
 * For use with radix_tree_for_each_slot().
 * Caller must hold tree write locked.
 */
void radix_tree_iter_replace(struct radix_tree_root *root,
				const struct radix_tree_iter *iter,
				void __rcu **slot, void *item)
{
	__radix_tree_replace(root, iter->node, slot, item);
}

static void node_tag_set(struct radix_tree_root *root,
				struct radix_tree_node *node,
				unsigned int tag, unsigned int offset)
{
	while (node) {
		if (tag_get(node, tag, offset))
			return;
		tag_set(node, tag, offset);
		offset = node->offset;
		node = node->parent;
	}

	if (!root_tag_get(root, tag))
		root_tag_set(root, tag);
}

/**
 *	radix_tree_tag_set - set a tag on a radix tree node
 *	@root:		radix tree root
 *	@index:		index key
 *	@tag:		tag index
 *
 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 *	corresponding to @index in the radix tree.  From
 *	the root all the way down to the leaf node.
 *
 *	Returns the address of the tagged item.  Setting a tag on a not-present
 *	item is a bug.
 */
void *radix_tree_tag_set(struct radix_tree_root *root,
			unsigned long index, unsigned int tag)
{
	struct radix_tree_node *node, *parent;
	unsigned long maxindex;

	radix_tree_load_root(root, &node, &maxindex);
	BUG_ON(index > maxindex);

	while (radix_tree_is_internal_node(node)) {
		unsigned offset;

		parent = entry_to_node(node);
		offset = radix_tree_descend(parent, &node, index);
		BUG_ON(!node);

		if (!tag_get(parent, tag, offset))
			tag_set(parent, tag, offset);
	}

	/* set the root's tag bit */
	if (!root_tag_get(root, tag))
		root_tag_set(root, tag);

	return node;
}
EXPORT_SYMBOL(radix_tree_tag_set);

static void node_tag_clear(struct radix_tree_root *root,
				struct radix_tree_node *node,
				unsigned int tag, unsigned int offset)
{
	while (node) {
		if (!tag_get(node, tag, offset))
			return;
		tag_clear(node, tag, offset);
		if (any_tag_set(node, tag))
			return;

		offset = node->offset;
		node = node->parent;
	}

	/* clear the root's tag bit */
	if (root_tag_get(root, tag))
		root_tag_clear(root, tag);
}

/**
 *	radix_tree_tag_clear - clear a tag on a radix tree node
 *	@root:		radix tree root
 *	@index:		index key
 *	@tag:		tag index
 *
 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 *	corresponding to @index in the radix tree.  If this causes
 *	the leaf node to have no tags set then clear the tag in the
 *	next-to-leaf node, etc.
 *
 *	Returns the address of the tagged item on success, else NULL.  ie:
 *	has the same return value and semantics as radix_tree_lookup().
 */
void *radix_tree_tag_clear(struct radix_tree_root *root,
			unsigned long index, unsigned int tag)
{
	struct radix_tree_node *node, *parent;
	unsigned long maxindex;
	int offset = 0;

	radix_tree_load_root(root, &node, &maxindex);
	if (index > maxindex)
		return NULL;

	parent = NULL;

	while (radix_tree_is_internal_node(node)) {
		parent = entry_to_node(node);
		offset = radix_tree_descend(parent, &node, index);
	}

	if (node)
		node_tag_clear(root, parent, tag, offset);

	return node;
}
EXPORT_SYMBOL(radix_tree_tag_clear);

/**
  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
  * @root: radix tree root
  * @iter: iterator state
  * @tag: tag to clear
  */
void radix_tree_iter_tag_clear(struct radix_tree_root *root,
			const struct radix_tree_iter *iter, unsigned int tag)
{
	node_tag_clear(root, iter->node, tag, iter_offset(iter));
}

/**
 * radix_tree_tag_get - get a tag on a radix tree node
 * @root:		radix tree root
 * @index:		index key
 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
 *
 * Return values:
 *
 *  0: tag not present or not set
 *  1: tag set
 *
 * Note that the return value of this function may not be relied on, even if
 * the RCU lock is held, unless tag modification and node deletion are excluded
 * from concurrency.
 */
int radix_tree_tag_get(const struct radix_tree_root *root,
			unsigned long index, unsigned int tag)
{
	struct radix_tree_node *node, *parent;
	unsigned long maxindex;

	if (!root_tag_get(root, tag))
		return 0;

	radix_tree_load_root(root, &node, &maxindex);
	if (index > maxindex)
		return 0;

	while (radix_tree_is_internal_node(node)) {
		unsigned offset;

		parent = entry_to_node(node);
		offset = radix_tree_descend(parent, &node, index);

		if (!tag_get(parent, tag, offset))
			return 0;
		if (node == RADIX_TREE_RETRY)
			break;
	}

	return 1;
}
EXPORT_SYMBOL(radix_tree_tag_get);

/* Construct iter->tags bit-mask from node->tags[tag] array */
static void set_iter_tags(struct radix_tree_iter *iter,
				struct radix_tree_node *node, unsigned offset,
				unsigned tag)
{
	unsigned tag_long = offset / BITS_PER_LONG;
	unsigned tag_bit  = offset % BITS_PER_LONG;

	if (!node) {
		iter->tags = 1;
		return;
	}

	iter->tags = node->tags[tag][tag_long] >> tag_bit;

	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
		/* Pick tags from next element */
		if (tag_bit)
			iter->tags |= node->tags[tag][tag_long + 1] <<
						(BITS_PER_LONG - tag_bit);
		/* Clip chunk size, here only BITS_PER_LONG tags */
		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
	}
}

void __rcu **radix_tree_iter_resume(void __rcu **slot,
					struct radix_tree_iter *iter)
{
	slot++;
	iter->index = __radix_tree_iter_add(iter, 1);
	iter->next_index = iter->index;
	iter->tags = 0;
	return NULL;
}
EXPORT_SYMBOL(radix_tree_iter_resume);

/**
 * radix_tree_next_chunk - find next chunk of slots for iteration
 *
 * @root:	radix tree root
 * @iter:	iterator state
 * @flags:	RADIX_TREE_ITER_* flags and tag index
 * Returns:	pointer to chunk first slot, or NULL if iteration is over
 */
void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
			     struct radix_tree_iter *iter, unsigned flags)
{
	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
	struct radix_tree_node *node, *child;
	unsigned long index, offset, maxindex;

	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
		return NULL;

	/*
	 * Catch next_index overflow after ~0UL. iter->index never overflows
	 * during iterating; it can be zero only at the beginning.
	 * And we cannot overflow iter->next_index in a single step,
	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
	 *
	 * This condition also used by radix_tree_next_slot() to stop
	 * contiguous iterating, and forbid switching to the next chunk.
	 */
	index = iter->next_index;
	if (!index && iter->index)
		return NULL;

 restart:
	radix_tree_load_root(root, &child, &maxindex);
	if (index > maxindex)
		return NULL;
	if (!child)
		return NULL;

	if (!radix_tree_is_internal_node(child)) {
		/* Single-slot tree */
		iter->index = index;
		iter->next_index = maxindex + 1;
		iter->tags = 1;
		iter->node = NULL;
		return (void __rcu **)&root->xa_head;
	}

	do {
		node = entry_to_node(child);
		offset = radix_tree_descend(node, &child, index);

		if ((flags & RADIX_TREE_ITER_TAGGED) ?
				!tag_get(node, tag, offset) : !child) {
			/* Hole detected */
			if (flags & RADIX_TREE_ITER_CONTIG)
				return NULL;

			if (flags & RADIX_TREE_ITER_TAGGED)
				offset = radix_tree_find_next_bit(node, tag,
						offset + 1);
			else
				while (++offset	< RADIX_TREE_MAP_SIZE) {
					void *slot = rcu_dereference_raw(
							node->slots[offset]);
					if (slot)
						break;
				}
			index &= ~node_maxindex(node);
			index += offset << node->shift;
			/* Overflow after ~0UL */
			if (!index)
				return NULL;
			if (offset == RADIX_TREE_MAP_SIZE)
				goto restart;
			child = rcu_dereference_raw(node->slots[offset]);
		}

		if (!child)
			goto restart;
		if (child == RADIX_TREE_RETRY)
			break;
	} while (node->shift && radix_tree_is_internal_node(child));

	/* Update the iterator state */
	iter->index = (index &~ node_maxindex(node)) | offset;
	iter->next_index = (index | node_maxindex(node)) + 1;
	iter->node = node;

	if (flags & RADIX_TREE_ITER_TAGGED)
		set_iter_tags(iter, node, offset, tag);

	return node->slots + offset;
}
EXPORT_SYMBOL(radix_tree_next_chunk);

/**
 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
 *	@root:		radix tree root
 *	@results:	where the results of the lookup are placed
 *	@first_index:	start the lookup from this key
 *	@max_items:	place up to this many items at *results
 *
 *	Performs an index-ascending scan of the tree for present items.  Places
 *	them at *@results and returns the number of items which were placed at
 *	*@results.
 *
 *	The implementation is naive.
 *
 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
 *	rcu_read_lock. In this case, rather than the returned results being
 *	an atomic snapshot of the tree at a single point in time, the
 *	semantics of an RCU protected gang lookup are as though multiple
 *	radix_tree_lookups have been issued in individual locks, and results
 *	stored in 'results'.
 */
unsigned int
radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
			unsigned long first_index, unsigned int max_items)
{
	struct radix_tree_iter iter;
	void __rcu **slot;
	unsigned int ret = 0;

	if (unlikely(!max_items))
		return 0;

	radix_tree_for_each_slot(slot, root, &iter, first_index) {
		results[ret] = rcu_dereference_raw(*slot);
		if (!results[ret])
			continue;
		if (radix_tree_is_internal_node(results[ret])) {
			slot = radix_tree_iter_retry(&iter);
			continue;
		}
		if (++ret == max_items)
			break;
	}

	return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup);

/**
 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
 *	                             based on a tag
 *	@root:		radix tree root
 *	@results:	where the results of the lookup are placed
 *	@first_index:	start the lookup from this key
 *	@max_items:	place up to this many items at *results
 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
 *
 *	Performs an index-ascending scan of the tree for present items which
 *	have the tag indexed by @tag set.  Places the items at *@results and
 *	returns the number of items which were placed at *@results.
 */
unsigned int
radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
		unsigned long first_index, unsigned int max_items,
		unsigned int tag)
{
	struct radix_tree_iter iter;
	void __rcu **slot;
	unsigned int ret = 0;

	if (unlikely(!max_items))
		return 0;

	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
		results[ret] = rcu_dereference_raw(*slot);
		if (!results[ret])
			continue;
		if (radix_tree_is_internal_node(results[ret])) {
			slot = radix_tree_iter_retry(&iter);
			continue;
		}
		if (++ret == max_items)
			break;
	}

	return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_tag);

/**
 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
 *					  radix tree based on a tag
 *	@root:		radix tree root
 *	@results:	where the results of the lookup are placed
 *	@first_index:	start the lookup from this key
 *	@max_items:	place up to this many items at *results
 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
 *
 *	Performs an index-ascending scan of the tree for present items which
 *	have the tag indexed by @tag set.  Places the slots at *@results and
 *	returns the number of slots which were placed at *@results.
 */
unsigned int
radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
		void __rcu ***results, unsigned long first_index,
		unsigned int max_items, unsigned int tag)
{
	struct radix_tree_iter iter;
	void __rcu **slot;
	unsigned int ret = 0;

	if (unlikely(!max_items))
		return 0;

	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
		results[ret] = slot;
		if (++ret == max_items)
			break;
	}

	return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);

static bool __radix_tree_delete(struct radix_tree_root *root,
				struct radix_tree_node *node, void __rcu **slot)
{
	void *old = rcu_dereference_raw(*slot);
	int values = xa_is_value(old) ? -1 : 0;
	unsigned offset = get_slot_offset(node, slot);
	int tag;

	if (is_idr(root))
		node_tag_set(root, node, IDR_FREE, offset);
	else
		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
			node_tag_clear(root, node, tag, offset);

	replace_slot(slot, NULL, node, -1, values);
	return node && delete_node(root, node);
}

/**
 * radix_tree_iter_delete - delete the entry at this iterator position
 * @root: radix tree root
 * @iter: iterator state
 * @slot: pointer to slot
 *
 * Delete the entry at the position currently pointed to by the iterator.
 * This may result in the current node being freed; if it is, the iterator
 * is advanced so that it will not reference the freed memory.  This
 * function may be called without any locking if there are no other threads
 * which can access this tree.
 */
void radix_tree_iter_delete(struct radix_tree_root *root,
				struct radix_tree_iter *iter, void __rcu **slot)
{
	if (__radix_tree_delete(root, iter->node, slot))
		iter->index = iter->next_index;
}
EXPORT_SYMBOL(radix_tree_iter_delete);

/**
 * radix_tree_delete_item - delete an item from a radix tree
 * @root: radix tree root
 * @index: index key
 * @item: expected item
 *
 * Remove @item at @index from the radix tree rooted at @root.
 *
 * Return: the deleted entry, or %NULL if it was not present
 * or the entry at the given @index was not @item.
 */
void *radix_tree_delete_item(struct radix_tree_root *root,
			     unsigned long index, void *item)
{
	struct radix_tree_node *node = NULL;
	void __rcu **slot = NULL;
	void *entry;

	entry = __radix_tree_lookup(root, index, &node, &slot);
	if (!slot)
		return NULL;
	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
						get_slot_offset(node, slot))))
		return NULL;

	if (item && entry != item)
		return NULL;

	__radix_tree_delete(root, node, slot);

	return entry;
}
EXPORT_SYMBOL(radix_tree_delete_item);

/**
 * radix_tree_delete - delete an entry from a radix tree
 * @root: radix tree root
 * @index: index key
 *
 * Remove the entry at @index from the radix tree rooted at @root.
 *
 * Return: The deleted entry, or %NULL if it was not present.
 */
void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
{
	return radix_tree_delete_item(root, index, NULL);
}
EXPORT_SYMBOL(radix_tree_delete);

/**
 *	radix_tree_tagged - test whether any items in the tree are tagged
 *	@root:		radix tree root
 *	@tag:		tag to test
 */
int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
{
	return root_tag_get(root, tag);
}
EXPORT_SYMBOL(radix_tree_tagged);

/**
 * idr_preload - preload for idr_alloc()
 * @gfp_mask: allocation mask to use for preloading
 *
 * Preallocate memory to use for the next call to idr_alloc().  This function
 * returns with preemption disabled.  It will be enabled by idr_preload_end().
 */
void idr_preload(gfp_t gfp_mask)
{
	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
		local_lock(&radix_tree_preloads.lock);
}
EXPORT_SYMBOL(idr_preload);

void __rcu **idr_get_free(struct radix_tree_root *root,
			      struct radix_tree_iter *iter, gfp_t gfp,
			      unsigned long max)
{
	struct radix_tree_node *node = NULL, *child;
	void __rcu **slot = (void __rcu **)&root->xa_head;
	unsigned long maxindex, start = iter->next_index;
	unsigned int shift, offset = 0;

 grow:
	shift = radix_tree_load_root(root, &child, &maxindex);
	if (!radix_tree_tagged(root, IDR_FREE))
		start = max(start, maxindex + 1);
	if (start > max)
		return ERR_PTR(-ENOSPC);

	if (start > maxindex) {
		int error = radix_tree_extend(root, gfp, start, shift);
		if (error < 0)
			return ERR_PTR(error);
		shift = error;
		child = rcu_dereference_raw(root->xa_head);
	}
	if (start == 0 && shift == 0)
		shift = RADIX_TREE_MAP_SHIFT;

	while (shift) {
		shift -= RADIX_TREE_MAP_SHIFT;
		if (child == NULL) {
			/* Have to add a child node.  */
			child = radix_tree_node_alloc(gfp, node, root, shift,
							offset, 0, 0);
			if (!child)
				return ERR_PTR(-ENOMEM);
			all_tag_set(child, IDR_FREE);
			rcu_assign_pointer(*slot, node_to_entry(child));
			if (node)
				node->count++;
		} else if (!radix_tree_is_internal_node(child))
			break;

		node = entry_to_node(child);
		offset = radix_tree_descend(node, &child, start);
		if (!tag_get(node, IDR_FREE, offset)) {
			offset = radix_tree_find_next_bit(node, IDR_FREE,
							offset + 1);
			start = next_index(start, node, offset);
			if (start > max || start == 0)
				return ERR_PTR(-ENOSPC);
			while (offset == RADIX_TREE_MAP_SIZE) {
				offset = node->offset + 1;
				node = node->parent;
				if (!node)
					goto grow;
				shift = node->shift;
			}
			child = rcu_dereference_raw(node->slots[offset]);
		}
		slot = &node->slots[offset];
	}

	iter->index = start;
	if (node)
		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
	else
		iter->next_index = 1;
	iter->node = node;
	set_iter_tags(iter, node, offset, IDR_FREE);

	return slot;
}

/**
 * idr_destroy - release all internal memory from an IDR
 * @idr: idr handle
 *
 * After this function is called, the IDR is empty, and may be reused or
 * the data structure containing it may be freed.
 *
 * A typical clean-up sequence for objects stored in an idr tree will use
 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
 * free the memory used to keep track of those objects.
 */
void idr_destroy(struct idr *idr)
{
	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
	if (radix_tree_is_internal_node(node))
		radix_tree_free_nodes(node);
	idr->idr_rt.xa_head = NULL;
	root_tag_set(&idr->idr_rt, IDR_FREE);
}
EXPORT_SYMBOL(idr_destroy);

static void
radix_tree_node_ctor(void *arg)
{
	struct radix_tree_node *node = arg;

	memset(node, 0, sizeof(*node));
	INIT_LIST_HEAD(&node->private_list);
}

static int radix_tree_cpu_dead(unsigned int cpu)
{
	struct radix_tree_preload *rtp;
	struct radix_tree_node *node;

	/* Free per-cpu pool of preloaded nodes */
	rtp = &per_cpu(radix_tree_preloads, cpu);
	while (rtp->nr) {
		node = rtp->nodes;
		rtp->nodes = node->parent;
		kmem_cache_free(radix_tree_node_cachep, node);
		rtp->nr--;
	}
	return 0;
}

void __init radix_tree_init(void)
{
	int ret;

	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
	BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
			sizeof(struct radix_tree_node), 0,
			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
			radix_tree_node_ctor);
	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
					NULL, radix_tree_cpu_dead);
	WARN_ON(ret < 0);
}