Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017-2018 SiFive * For SiFive's PWM IP block documentation please refer Chapter 14 of * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf * * Limitations: * - When changing both duty cycle and period, we cannot prevent in * software that the output might produce a period with mixed * settings (new period length and old duty cycle). * - The hardware cannot generate a 100% duty cycle. * - The hardware generates only inverted output. */ #include <linux/clk.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/bitfield.h> /* Register offsets */ #define PWM_SIFIVE_PWMCFG 0x0 #define PWM_SIFIVE_PWMCOUNT 0x8 #define PWM_SIFIVE_PWMS 0x10 #define PWM_SIFIVE_PWMCMP(i) (0x20 + 4 * (i)) /* PWMCFG fields */ #define PWM_SIFIVE_PWMCFG_SCALE GENMASK(3, 0) #define PWM_SIFIVE_PWMCFG_STICKY BIT(8) #define PWM_SIFIVE_PWMCFG_ZERO_CMP BIT(9) #define PWM_SIFIVE_PWMCFG_DEGLITCH BIT(10) #define PWM_SIFIVE_PWMCFG_EN_ALWAYS BIT(12) #define PWM_SIFIVE_PWMCFG_EN_ONCE BIT(13) #define PWM_SIFIVE_PWMCFG_CENTER BIT(16) #define PWM_SIFIVE_PWMCFG_GANG BIT(24) #define PWM_SIFIVE_PWMCFG_IP BIT(28) #define PWM_SIFIVE_CMPWIDTH 16 #define PWM_SIFIVE_DEFAULT_PERIOD 10000000 struct pwm_sifive_ddata { struct pwm_chip chip; struct mutex lock; /* lock to protect user_count and approx_period */ struct notifier_block notifier; struct clk *clk; void __iomem *regs; unsigned int real_period; unsigned int approx_period; int user_count; }; static inline struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c) { return container_of(c, struct pwm_sifive_ddata, chip); } static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); mutex_lock(&ddata->lock); ddata->user_count++; mutex_unlock(&ddata->lock); return 0; } static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); mutex_lock(&ddata->lock); ddata->user_count--; mutex_unlock(&ddata->lock); } /* Called holding ddata->lock */ static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata, unsigned long rate) { unsigned long long num; unsigned long scale_pow; int scale; u32 val; /* * The PWM unit is used with pwmzerocmp=0, so the only way to modify the * period length is using pwmscale which provides the number of bits the * counter is shifted before being feed to the comparators. A period * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks. * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period */ scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC); scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf); val = PWM_SIFIVE_PWMCFG_EN_ALWAYS | FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale); writel(val, ddata->regs + PWM_SIFIVE_PWMCFG); /* As scale <= 15 the shift operation cannot overflow. */ num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale); ddata->real_period = div64_ul(num, rate); dev_dbg(ddata->chip.dev, "New real_period = %u ns\n", ddata->real_period); } static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); u32 duty, val; duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm)); state->enabled = duty > 0; val = readl(ddata->regs + PWM_SIFIVE_PWMCFG); if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS)) state->enabled = false; state->period = ddata->real_period; state->duty_cycle = (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH; state->polarity = PWM_POLARITY_INVERSED; return 0; } static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); struct pwm_state cur_state; unsigned int duty_cycle; unsigned long long num; bool enabled; int ret = 0; u32 frac; if (state->polarity != PWM_POLARITY_INVERSED) return -EINVAL; cur_state = pwm->state; enabled = cur_state.enabled; duty_cycle = state->duty_cycle; if (!state->enabled) duty_cycle = 0; /* * The problem of output producing mixed setting as mentioned at top, * occurs here. To minimize the window for this problem, we are * calculating the register values first and then writing them * consecutively */ num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH); frac = DIV64_U64_ROUND_CLOSEST(num, state->period); /* The hardware cannot generate a 100% duty cycle */ frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1); mutex_lock(&ddata->lock); if (state->period != ddata->approx_period) { if (ddata->user_count != 1) { mutex_unlock(&ddata->lock); return -EBUSY; } ddata->approx_period = state->period; pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk)); } mutex_unlock(&ddata->lock); /* * If the PWM is enabled the clk is already on. So only enable it * conditionally to have it on exactly once afterwards independent of * the PWM state. */ if (!enabled) { ret = clk_enable(ddata->clk); if (ret) { dev_err(ddata->chip.dev, "Enable clk failed\n"); return ret; } } writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm)); if (!state->enabled) clk_disable(ddata->clk); return 0; } static const struct pwm_ops pwm_sifive_ops = { .request = pwm_sifive_request, .free = pwm_sifive_free, .get_state = pwm_sifive_get_state, .apply = pwm_sifive_apply, .owner = THIS_MODULE, }; static int pwm_sifive_clock_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct pwm_sifive_ddata *ddata = container_of(nb, struct pwm_sifive_ddata, notifier); if (event == POST_RATE_CHANGE) { mutex_lock(&ddata->lock); pwm_sifive_update_clock(ddata, ndata->new_rate); mutex_unlock(&ddata->lock); } return NOTIFY_OK; } static int pwm_sifive_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct pwm_sifive_ddata *ddata; struct pwm_chip *chip; int ret; u32 val; unsigned int enabled_pwms = 0, enabled_clks = 1; ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL); if (!ddata) return -ENOMEM; mutex_init(&ddata->lock); chip = &ddata->chip; chip->dev = dev; chip->ops = &pwm_sifive_ops; chip->npwm = 4; ddata->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ddata->regs)) return PTR_ERR(ddata->regs); ddata->clk = devm_clk_get(dev, NULL); if (IS_ERR(ddata->clk)) return dev_err_probe(dev, PTR_ERR(ddata->clk), "Unable to find controller clock\n"); ret = clk_prepare_enable(ddata->clk); if (ret) { dev_err(dev, "failed to enable clock for pwm: %d\n", ret); return ret; } val = readl(ddata->regs + PWM_SIFIVE_PWMCFG); if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) { unsigned int i; for (i = 0; i < chip->npwm; ++i) { val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i)); if (val > 0) ++enabled_pwms; } } /* The clk should be on once for each running PWM. */ if (enabled_pwms) { while (enabled_clks < enabled_pwms) { /* This is not expected to fail as the clk is already on */ ret = clk_enable(ddata->clk); if (unlikely(ret)) { dev_err_probe(dev, ret, "Failed to enable clk\n"); goto disable_clk; } ++enabled_clks; } } else { clk_disable(ddata->clk); enabled_clks = 0; } /* Watch for changes to underlying clock frequency */ ddata->notifier.notifier_call = pwm_sifive_clock_notifier; ret = clk_notifier_register(ddata->clk, &ddata->notifier); if (ret) { dev_err(dev, "failed to register clock notifier: %d\n", ret); goto disable_clk; } ret = pwmchip_add(chip); if (ret < 0) { dev_err(dev, "cannot register PWM: %d\n", ret); goto unregister_clk; } platform_set_drvdata(pdev, ddata); dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm); return 0; unregister_clk: clk_notifier_unregister(ddata->clk, &ddata->notifier); disable_clk: while (enabled_clks) { clk_disable(ddata->clk); --enabled_clks; } clk_unprepare(ddata->clk); return ret; } static int pwm_sifive_remove(struct platform_device *dev) { struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev); struct pwm_device *pwm; int ch; pwmchip_remove(&ddata->chip); clk_notifier_unregister(ddata->clk, &ddata->notifier); for (ch = 0; ch < ddata->chip.npwm; ch++) { pwm = &ddata->chip.pwms[ch]; if (pwm->state.enabled) clk_disable(ddata->clk); } clk_unprepare(ddata->clk); return 0; } static const struct of_device_id pwm_sifive_of_match[] = { { .compatible = "sifive,pwm0" }, {}, }; MODULE_DEVICE_TABLE(of, pwm_sifive_of_match); static struct platform_driver pwm_sifive_driver = { .probe = pwm_sifive_probe, .remove = pwm_sifive_remove, .driver = { .name = "pwm-sifive", .of_match_table = pwm_sifive_of_match, }, }; module_platform_driver(pwm_sifive_driver); MODULE_DESCRIPTION("SiFive PWM driver"); MODULE_LICENSE("GPL v2"); |