Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | // SPDX-License-Identifier: GPL-2.0-only /* * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM * * Created by: Nicolas Pitre, March 2012 * Copyright: (C) 2012-2013 Linaro Limited */ #include <linux/export.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/irqflags.h> #include <linux/cpu_pm.h> #include <asm/mcpm.h> #include <asm/cacheflush.h> #include <asm/idmap.h> #include <asm/cputype.h> #include <asm/suspend.h> /* * The public API for this code is documented in arch/arm/include/asm/mcpm.h. * For a comprehensive description of the main algorithm used here, please * see Documentation/arm/cluster-pm-race-avoidance.rst. */ struct sync_struct mcpm_sync; /* * __mcpm_cpu_going_down: Indicates that the cpu is being torn down. * This must be called at the point of committing to teardown of a CPU. * The CPU cache (SCTRL.C bit) is expected to still be active. */ static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster) { mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN; sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu); } /* * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the * cluster can be torn down without disrupting this CPU. * To avoid deadlocks, this must be called before a CPU is powered down. * The CPU cache (SCTRL.C bit) is expected to be off. * However L2 cache might or might not be active. */ static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster) { dmb(); mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN; sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu); sev(); } /* * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section. * @state: the final state of the cluster: * CLUSTER_UP: no destructive teardown was done and the cluster has been * restored to the previous state (CPU cache still active); or * CLUSTER_DOWN: the cluster has been torn-down, ready for power-off * (CPU cache disabled, L2 cache either enabled or disabled). */ static void __mcpm_outbound_leave_critical(unsigned int cluster, int state) { dmb(); mcpm_sync.clusters[cluster].cluster = state; sync_cache_w(&mcpm_sync.clusters[cluster].cluster); sev(); } /* * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section. * This function should be called by the last man, after local CPU teardown * is complete. CPU cache expected to be active. * * Returns: * false: the critical section was not entered because an inbound CPU was * observed, or the cluster is already being set up; * true: the critical section was entered: it is now safe to tear down the * cluster. */ static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster) { unsigned int i; struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster]; /* Warn inbound CPUs that the cluster is being torn down: */ c->cluster = CLUSTER_GOING_DOWN; sync_cache_w(&c->cluster); /* Back out if the inbound cluster is already in the critical region: */ sync_cache_r(&c->inbound); if (c->inbound == INBOUND_COMING_UP) goto abort; /* * Wait for all CPUs to get out of the GOING_DOWN state, so that local * teardown is complete on each CPU before tearing down the cluster. * * If any CPU has been woken up again from the DOWN state, then we * shouldn't be taking the cluster down at all: abort in that case. */ sync_cache_r(&c->cpus); for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) { int cpustate; if (i == cpu) continue; while (1) { cpustate = c->cpus[i].cpu; if (cpustate != CPU_GOING_DOWN) break; wfe(); sync_cache_r(&c->cpus[i].cpu); } switch (cpustate) { case CPU_DOWN: continue; default: goto abort; } } return true; abort: __mcpm_outbound_leave_critical(cluster, CLUSTER_UP); return false; } static int __mcpm_cluster_state(unsigned int cluster) { sync_cache_r(&mcpm_sync.clusters[cluster].cluster); return mcpm_sync.clusters[cluster].cluster; } extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER]; void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr) { unsigned long val = ptr ? __pa_symbol(ptr) : 0; mcpm_entry_vectors[cluster][cpu] = val; sync_cache_w(&mcpm_entry_vectors[cluster][cpu]); } extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2]; void mcpm_set_early_poke(unsigned cpu, unsigned cluster, unsigned long poke_phys_addr, unsigned long poke_val) { unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0]; poke[0] = poke_phys_addr; poke[1] = poke_val; __sync_cache_range_w(poke, 2 * sizeof(*poke)); } static const struct mcpm_platform_ops *platform_ops; int __init mcpm_platform_register(const struct mcpm_platform_ops *ops) { if (platform_ops) return -EBUSY; platform_ops = ops; return 0; } bool mcpm_is_available(void) { return (platform_ops) ? true : false; } EXPORT_SYMBOL_GPL(mcpm_is_available); /* * We can't use regular spinlocks. In the switcher case, it is possible * for an outbound CPU to call power_down() after its inbound counterpart * is already live using the same logical CPU number which trips lockdep * debugging. */ static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED; static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER]; static inline bool mcpm_cluster_unused(unsigned int cluster) { int i, cnt; for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++) cnt |= mcpm_cpu_use_count[cluster][i]; return !cnt; } int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster) { bool cpu_is_down, cluster_is_down; int ret = 0; pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); if (!platform_ops) return -EUNATCH; /* try not to shadow power_up errors */ might_sleep(); /* * Since this is called with IRQs enabled, and no arch_spin_lock_irq * variant exists, we need to disable IRQs manually here. */ local_irq_disable(); arch_spin_lock(&mcpm_lock); cpu_is_down = !mcpm_cpu_use_count[cluster][cpu]; cluster_is_down = mcpm_cluster_unused(cluster); mcpm_cpu_use_count[cluster][cpu]++; /* * The only possible values are: * 0 = CPU down * 1 = CPU (still) up * 2 = CPU requested to be up before it had a chance * to actually make itself down. * Any other value is a bug. */ BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 && mcpm_cpu_use_count[cluster][cpu] != 2); if (cluster_is_down) ret = platform_ops->cluster_powerup(cluster); if (cpu_is_down && !ret) ret = platform_ops->cpu_powerup(cpu, cluster); arch_spin_unlock(&mcpm_lock); local_irq_enable(); return ret; } typedef typeof(cpu_reset) phys_reset_t; void mcpm_cpu_power_down(void) { unsigned int mpidr, cpu, cluster; bool cpu_going_down, last_man; phys_reset_t phys_reset; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); if (WARN_ON_ONCE(!platform_ops)) return; BUG_ON(!irqs_disabled()); setup_mm_for_reboot(); __mcpm_cpu_going_down(cpu, cluster); arch_spin_lock(&mcpm_lock); BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP); mcpm_cpu_use_count[cluster][cpu]--; BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 && mcpm_cpu_use_count[cluster][cpu] != 1); cpu_going_down = !mcpm_cpu_use_count[cluster][cpu]; last_man = mcpm_cluster_unused(cluster); if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) { platform_ops->cpu_powerdown_prepare(cpu, cluster); platform_ops->cluster_powerdown_prepare(cluster); arch_spin_unlock(&mcpm_lock); platform_ops->cluster_cache_disable(); __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); } else { if (cpu_going_down) platform_ops->cpu_powerdown_prepare(cpu, cluster); arch_spin_unlock(&mcpm_lock); /* * If cpu_going_down is false here, that means a power_up * request raced ahead of us. Even if we do not want to * shut this CPU down, the caller still expects execution * to return through the system resume entry path, like * when the WFI is aborted due to a new IRQ or the like.. * So let's continue with cache cleaning in all cases. */ platform_ops->cpu_cache_disable(); } __mcpm_cpu_down(cpu, cluster); /* Now we are prepared for power-down, do it: */ if (cpu_going_down) wfi(); /* * It is possible for a power_up request to happen concurrently * with a power_down request for the same CPU. In this case the * CPU might not be able to actually enter a powered down state * with the WFI instruction if the power_up request has removed * the required reset condition. We must perform a re-entry in * the kernel as if the power_up method just had deasserted reset * on the CPU. */ phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); phys_reset(__pa_symbol(mcpm_entry_point), false); /* should never get here */ BUG(); } int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster) { int ret; if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown)) return -EUNATCH; ret = platform_ops->wait_for_powerdown(cpu, cluster); if (ret) pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n", __func__, cpu, cluster, ret); return ret; } void mcpm_cpu_suspend(void) { if (WARN_ON_ONCE(!platform_ops)) return; /* Some platforms might have to enable special resume modes, etc. */ if (platform_ops->cpu_suspend_prepare) { unsigned int mpidr = read_cpuid_mpidr(); unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); arch_spin_lock(&mcpm_lock); platform_ops->cpu_suspend_prepare(cpu, cluster); arch_spin_unlock(&mcpm_lock); } mcpm_cpu_power_down(); } int mcpm_cpu_powered_up(void) { unsigned int mpidr, cpu, cluster; bool cpu_was_down, first_man; unsigned long flags; if (!platform_ops) return -EUNATCH; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); local_irq_save(flags); arch_spin_lock(&mcpm_lock); cpu_was_down = !mcpm_cpu_use_count[cluster][cpu]; first_man = mcpm_cluster_unused(cluster); if (first_man && platform_ops->cluster_is_up) platform_ops->cluster_is_up(cluster); if (cpu_was_down) mcpm_cpu_use_count[cluster][cpu] = 1; if (platform_ops->cpu_is_up) platform_ops->cpu_is_up(cpu, cluster); arch_spin_unlock(&mcpm_lock); local_irq_restore(flags); return 0; } #ifdef CONFIG_ARM_CPU_SUSPEND static int __init nocache_trampoline(unsigned long _arg) { void (*cache_disable)(void) = (void *)_arg; unsigned int mpidr = read_cpuid_mpidr(); unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); phys_reset_t phys_reset; mcpm_set_entry_vector(cpu, cluster, cpu_resume_no_hyp); setup_mm_for_reboot(); __mcpm_cpu_going_down(cpu, cluster); BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster)); cache_disable(); __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); __mcpm_cpu_down(cpu, cluster); phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); phys_reset(__pa_symbol(mcpm_entry_point), false); BUG(); } int __init mcpm_loopback(void (*cache_disable)(void)) { int ret; /* * We're going to soft-restart the current CPU through the * low-level MCPM code by leveraging the suspend/resume * infrastructure. Let's play it safe by using cpu_pm_enter() * in case the CPU init code path resets the VFP or similar. */ local_irq_disable(); local_fiq_disable(); ret = cpu_pm_enter(); if (!ret) { ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline); cpu_pm_exit(); } local_fiq_enable(); local_irq_enable(); if (ret) pr_err("%s returned %d\n", __func__, ret); return ret; } #endif extern unsigned long mcpm_power_up_setup_phys; int __init mcpm_sync_init( void (*power_up_setup)(unsigned int affinity_level)) { unsigned int i, j, mpidr, this_cluster; BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync); BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1)); /* * Set initial CPU and cluster states. * Only one cluster is assumed to be active at this point. */ for (i = 0; i < MAX_NR_CLUSTERS; i++) { mcpm_sync.clusters[i].cluster = CLUSTER_DOWN; mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP; for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++) mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN; } mpidr = read_cpuid_mpidr(); this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); for_each_online_cpu(i) { mcpm_cpu_use_count[this_cluster][i] = 1; mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP; } mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP; sync_cache_w(&mcpm_sync); if (power_up_setup) { mcpm_power_up_setup_phys = __pa_symbol(power_up_setup); sync_cache_w(&mcpm_power_up_setup_phys); } return 0; } |