Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | // SPDX-License-Identifier: GPL-2.0-only /* * Driver for Linear Technology LTC4215 I2C Hot Swap Controller * * Copyright (C) 2009 Ira W. Snyder <iws@ovro.caltech.edu> * * Datasheet: * http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1006,C1163,P17572,D12697 */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/jiffies.h> /* Here are names of the chip's registers (a.k.a. commands) */ enum ltc4215_cmd { LTC4215_CONTROL = 0x00, /* rw */ LTC4215_ALERT = 0x01, /* rw */ LTC4215_STATUS = 0x02, /* ro */ LTC4215_FAULT = 0x03, /* rw */ LTC4215_SENSE = 0x04, /* rw */ LTC4215_SOURCE = 0x05, /* rw */ LTC4215_ADIN = 0x06, /* rw */ }; struct ltc4215_data { struct i2c_client *client; struct mutex update_lock; bool valid; unsigned long last_updated; /* in jiffies */ /* Registers */ u8 regs[7]; }; static struct ltc4215_data *ltc4215_update_device(struct device *dev) { struct ltc4215_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; s32 val; int i; mutex_lock(&data->update_lock); /* The chip's A/D updates 10 times per second */ if (time_after(jiffies, data->last_updated + HZ / 10) || !data->valid) { dev_dbg(&client->dev, "Starting ltc4215 update\n"); /* Read all registers */ for (i = 0; i < ARRAY_SIZE(data->regs); i++) { val = i2c_smbus_read_byte_data(client, i); if (unlikely(val < 0)) data->regs[i] = 0; else data->regs[i] = val; } data->last_updated = jiffies; data->valid = true; } mutex_unlock(&data->update_lock); return data; } /* Return the voltage from the given register in millivolts */ static int ltc4215_get_voltage(struct device *dev, u8 reg) { struct ltc4215_data *data = ltc4215_update_device(dev); const u8 regval = data->regs[reg]; u32 voltage = 0; switch (reg) { case LTC4215_SENSE: /* 151 uV per increment */ voltage = regval * 151 / 1000; break; case LTC4215_SOURCE: /* 60.5 mV per increment */ voltage = regval * 605 / 10; break; case LTC4215_ADIN: /* * The ADIN input is divided by 12.5, and has 4.82 mV * per increment, so we have the additional multiply */ voltage = regval * 482 * 125 / 1000; break; default: /* If we get here, the developer messed up */ WARN_ON_ONCE(1); break; } return voltage; } /* Return the current from the sense resistor in mA */ static unsigned int ltc4215_get_current(struct device *dev) { struct ltc4215_data *data = ltc4215_update_device(dev); /* * The strange looking conversions that follow are fixed-point * math, since we cannot do floating point in the kernel. * * Step 1: convert sense register to microVolts * Step 2: convert voltage to milliAmperes * * If you play around with the V=IR equation, you come up with * the following: X uV / Y mOhm == Z mA * * With the resistors that are fractions of a milliOhm, we multiply * the voltage and resistance by 10, to shift the decimal point. * Now we can use the normal division operator again. */ /* Calculate voltage in microVolts (151 uV per increment) */ const unsigned int voltage = data->regs[LTC4215_SENSE] * 151; /* Calculate current in milliAmperes (4 milliOhm sense resistor) */ const unsigned int curr = voltage / 4; return curr; } static ssize_t ltc4215_voltage_show(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); const int voltage = ltc4215_get_voltage(dev, attr->index); return sysfs_emit(buf, "%d\n", voltage); } static ssize_t ltc4215_current_show(struct device *dev, struct device_attribute *da, char *buf) { const unsigned int curr = ltc4215_get_current(dev); return sysfs_emit(buf, "%u\n", curr); } static ssize_t ltc4215_power_show(struct device *dev, struct device_attribute *da, char *buf) { const unsigned int curr = ltc4215_get_current(dev); const int output_voltage = ltc4215_get_voltage(dev, LTC4215_ADIN); /* current in mA * voltage in mV == power in uW */ const unsigned int power = abs(output_voltage * curr); return sysfs_emit(buf, "%u\n", power); } static ssize_t ltc4215_alarm_show(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct ltc4215_data *data = ltc4215_update_device(dev); const u8 reg = data->regs[LTC4215_STATUS]; const u32 mask = attr->index; return sysfs_emit(buf, "%u\n", !!(reg & mask)); } /* * These macros are used below in constructing device attribute objects * for use with sysfs_create_group() to make a sysfs device file * for each register. */ /* Construct a sensor_device_attribute structure for each register */ /* Current */ static SENSOR_DEVICE_ATTR_RO(curr1_input, ltc4215_current, 0); static SENSOR_DEVICE_ATTR_RO(curr1_max_alarm, ltc4215_alarm, 1 << 2); /* Power (virtual) */ static SENSOR_DEVICE_ATTR_RO(power1_input, ltc4215_power, 0); /* Input Voltage */ static SENSOR_DEVICE_ATTR_RO(in1_input, ltc4215_voltage, LTC4215_ADIN); static SENSOR_DEVICE_ATTR_RO(in1_max_alarm, ltc4215_alarm, 1 << 0); static SENSOR_DEVICE_ATTR_RO(in1_min_alarm, ltc4215_alarm, 1 << 1); /* Output Voltage */ static SENSOR_DEVICE_ATTR_RO(in2_input, ltc4215_voltage, LTC4215_SOURCE); static SENSOR_DEVICE_ATTR_RO(in2_min_alarm, ltc4215_alarm, 1 << 3); /* * Finally, construct an array of pointers to members of the above objects, * as required for sysfs_create_group() */ static struct attribute *ltc4215_attrs[] = { &sensor_dev_attr_curr1_input.dev_attr.attr, &sensor_dev_attr_curr1_max_alarm.dev_attr.attr, &sensor_dev_attr_power1_input.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_max_alarm.dev_attr.attr, &sensor_dev_attr_in1_min_alarm.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_min_alarm.dev_attr.attr, NULL, }; ATTRIBUTE_GROUPS(ltc4215); static int ltc4215_probe(struct i2c_client *client) { struct i2c_adapter *adapter = client->adapter; struct device *dev = &client->dev; struct ltc4215_data *data; struct device *hwmon_dev; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; mutex_init(&data->update_lock); /* Initialize the LTC4215 chip */ i2c_smbus_write_byte_data(client, LTC4215_FAULT, 0x00); hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, ltc4215_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id ltc4215_id[] = { { "ltc4215", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, ltc4215_id); /* This is the driver that will be inserted */ static struct i2c_driver ltc4215_driver = { .driver = { .name = "ltc4215", }, .probe_new = ltc4215_probe, .id_table = ltc4215_id, }; module_i2c_driver(ltc4215_driver); MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>"); MODULE_DESCRIPTION("LTC4215 driver"); MODULE_LICENSE("GPL"); |