Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 | // SPDX-License-Identifier: GPL-2.0-only /* * IEEE754 floating point arithmetic * double precision: MADDF.f (Fused Multiply Add) * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <markos.chandras@imgtec.com> */ #include "ieee754dp.h" /* 128 bits shift right logical with rounding. */ static void srl128(u64 *hptr, u64 *lptr, int count) { u64 low; if (count >= 128) { *lptr = *hptr != 0 || *lptr != 0; *hptr = 0; } else if (count >= 64) { if (count == 64) { *lptr = *hptr | (*lptr != 0); } else { low = *lptr; *lptr = *hptr >> (count - 64); *lptr |= (*hptr << (128 - count)) != 0 || low != 0; } *hptr = 0; } else { low = *lptr; *lptr = low >> count | *hptr << (64 - count); *lptr |= (low << (64 - count)) != 0; *hptr = *hptr >> count; } } static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x, union ieee754dp y, enum maddf_flags flags) { int re; int rs; unsigned int lxm; unsigned int hxm; unsigned int lym; unsigned int hym; u64 lrm; u64 hrm; u64 lzm; u64 hzm; u64 t; u64 at; int s; COMPXDP; COMPYDP; COMPZDP; EXPLODEXDP; EXPLODEYDP; EXPLODEZDP; FLUSHXDP; FLUSHYDP; FLUSHZDP; ieee754_clearcx(); rs = xs ^ ys; if (flags & MADDF_NEGATE_PRODUCT) rs ^= 1; if (flags & MADDF_NEGATE_ADDITION) zs ^= 1; /* * Handle the cases when at least one of x, y or z is a NaN. * Order of precedence is sNaN, qNaN and z, x, y. */ if (zc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(z); if (xc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(x); if (yc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(y); if (zc == IEEE754_CLASS_QNAN) return z; if (xc == IEEE754_CLASS_QNAN) return x; if (yc == IEEE754_CLASS_QNAN) return y; if (zc == IEEE754_CLASS_DNORM) DPDNORMZ; /* ZERO z cases are handled separately below */ switch (CLPAIR(xc, yc)) { /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): if ((zc == IEEE754_CLASS_INF) && (zs != rs)) { /* * Cases of addition of infinities with opposite signs * or subtraction of infinities with same signs. */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); } /* * z is here either not an infinity, or an infinity having the * same sign as product (x*y). The result must be an infinity, * and its sign is determined only by the sign of product (x*y). */ return ieee754dp_inf(rs); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); if (zc == IEEE754_CLASS_ZERO) { /* Handle cases +0 + (-0) and similar ones. */ if (zs == rs) /* * Cases of addition of zeros of equal signs * or subtraction of zeroes of opposite signs. * The sign of the resulting zero is in any * such case determined only by the sign of z. */ return z; return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); } /* x*y is here 0, and z is not 0, so just return z */ return z; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): DPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); DPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); DPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); /* continue to real computations */ } /* Finally get to do some computation */ /* * Do the multiplication bit first * * rm = xm * ym, re = xe + ye basically * * At this point xm and ym should have been normalized. */ assert(xm & DP_HIDDEN_BIT); assert(ym & DP_HIDDEN_BIT); re = xe + ye; /* shunt to top of word */ xm <<= 64 - (DP_FBITS + 1); ym <<= 64 - (DP_FBITS + 1); /* * Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm. */ lxm = xm; hxm = xm >> 32; lym = ym; hym = ym >> 32; lrm = DPXMULT(lxm, lym); hrm = DPXMULT(hxm, hym); t = DPXMULT(lxm, hym); at = lrm + (t << 32); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 32); t = DPXMULT(hxm, lym); at = lrm + (t << 32); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 32); /* Put explicit bit at bit 126 if necessary */ if ((int64_t)hrm < 0) { lrm = (hrm << 63) | (lrm >> 1); hrm = hrm >> 1; re++; } assert(hrm & (1 << 62)); if (zc == IEEE754_CLASS_ZERO) { /* * Move explicit bit from bit 126 to bit 55 since the * ieee754dp_format code expects the mantissa to be * 56 bits wide (53 + 3 rounding bits). */ srl128(&hrm, &lrm, (126 - 55)); return ieee754dp_format(rs, re, lrm); } /* Move explicit bit from bit 52 to bit 126 */ lzm = 0; hzm = zm << 10; assert(hzm & (1 << 62)); /* Make the exponents the same */ if (ze > re) { /* * Have to shift y fraction right to align. */ s = ze - re; srl128(&hrm, &lrm, s); re += s; } else if (re > ze) { /* * Have to shift x fraction right to align. */ s = re - ze; srl128(&hzm, &lzm, s); ze += s; } assert(ze == re); assert(ze <= DP_EMAX); /* Do the addition */ if (zs == rs) { /* * Generate 128 bit result by adding two 127 bit numbers * leaving result in hzm:lzm, zs and ze. */ hzm = hzm + hrm + (lzm > (lzm + lrm)); lzm = lzm + lrm; if ((int64_t)hzm < 0) { /* carry out */ srl128(&hzm, &lzm, 1); ze++; } } else { if (hzm > hrm || (hzm == hrm && lzm >= lrm)) { hzm = hzm - hrm - (lzm < lrm); lzm = lzm - lrm; } else { hzm = hrm - hzm - (lrm < lzm); lzm = lrm - lzm; zs = rs; } if (lzm == 0 && hzm == 0) return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); /* * Put explicit bit at bit 126 if necessary. */ if (hzm == 0) { /* left shift by 63 or 64 bits */ if ((int64_t)lzm < 0) { /* MSB of lzm is the explicit bit */ hzm = lzm >> 1; lzm = lzm << 63; ze -= 63; } else { hzm = lzm; lzm = 0; ze -= 64; } } t = 0; while ((hzm >> (62 - t)) == 0) t++; assert(t <= 62); if (t) { hzm = hzm << t | lzm >> (64 - t); lzm = lzm << t; ze -= t; } } /* * Move explicit bit from bit 126 to bit 55 since the * ieee754dp_format code expects the mantissa to be * 56 bits wide (53 + 3 rounding bits). */ srl128(&hzm, &lzm, (126 - 55)); return ieee754dp_format(zs, ze, lzm); } union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, 0); } union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); } union ieee754dp ieee754dp_madd(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, 0); } union ieee754dp ieee754dp_msub(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, MADDF_NEGATE_ADDITION); } union ieee754dp ieee754dp_nmadd(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION); } union ieee754dp ieee754dp_nmsub(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); } |