Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | // SPDX-License-Identifier: GPL-2.0 /* * Hyper-V specific APIC code. * * Copyright (C) 2018, Microsoft, Inc. * * Author : K. Y. Srinivasan <kys@microsoft.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * */ #include <linux/types.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/clockchips.h> #include <linux/hyperv.h> #include <linux/slab.h> #include <linux/cpuhotplug.h> #include <asm/hypervisor.h> #include <asm/mshyperv.h> #include <asm/apic.h> #include <asm/trace/hyperv.h> static struct apic orig_apic; static u64 hv_apic_icr_read(void) { u64 reg_val; rdmsrl(HV_X64_MSR_ICR, reg_val); return reg_val; } static void hv_apic_icr_write(u32 low, u32 id) { u64 reg_val; reg_val = SET_XAPIC_DEST_FIELD(id); reg_val = reg_val << 32; reg_val |= low; wrmsrl(HV_X64_MSR_ICR, reg_val); } static u32 hv_apic_read(u32 reg) { u32 reg_val, hi; switch (reg) { case APIC_EOI: rdmsr(HV_X64_MSR_EOI, reg_val, hi); (void)hi; return reg_val; case APIC_TASKPRI: rdmsr(HV_X64_MSR_TPR, reg_val, hi); (void)hi; return reg_val; default: return native_apic_mem_read(reg); } } static void hv_apic_write(u32 reg, u32 val) { switch (reg) { case APIC_EOI: wrmsr(HV_X64_MSR_EOI, val, 0); break; case APIC_TASKPRI: wrmsr(HV_X64_MSR_TPR, val, 0); break; default: native_apic_mem_write(reg, val); } } static void hv_apic_eoi_write(void) { struct hv_vp_assist_page *hvp = hv_vp_assist_page[smp_processor_id()]; if (hvp && (xchg(&hvp->apic_assist, 0) & 0x1)) return; wrmsr(HV_X64_MSR_EOI, APIC_EOI_ACK, 0); } static bool cpu_is_self(int cpu) { return cpu == smp_processor_id(); } /* * IPI implementation on Hyper-V. */ static bool __send_ipi_mask_ex(const struct cpumask *mask, int vector, bool exclude_self) { struct hv_send_ipi_ex *ipi_arg; unsigned long flags; int nr_bank = 0; u64 status = HV_STATUS_INVALID_PARAMETER; if (!(ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) return false; local_irq_save(flags); ipi_arg = *this_cpu_ptr(hyperv_pcpu_input_arg); if (unlikely(!ipi_arg)) goto ipi_mask_ex_done; ipi_arg->vector = vector; ipi_arg->reserved = 0; ipi_arg->vp_set.valid_bank_mask = 0; /* * Use HV_GENERIC_SET_ALL and avoid converting cpumask to VP_SET * when the IPI is sent to all currently present CPUs. */ if (!cpumask_equal(mask, cpu_present_mask) || exclude_self) { ipi_arg->vp_set.format = HV_GENERIC_SET_SPARSE_4K; nr_bank = cpumask_to_vpset_skip(&ipi_arg->vp_set, mask, exclude_self ? cpu_is_self : NULL); /* * 'nr_bank <= 0' means some CPUs in cpumask can't be * represented in VP_SET. Return an error and fall back to * native (architectural) method of sending IPIs. */ if (nr_bank <= 0) goto ipi_mask_ex_done; } else { ipi_arg->vp_set.format = HV_GENERIC_SET_ALL; } status = hv_do_rep_hypercall(HVCALL_SEND_IPI_EX, 0, nr_bank, ipi_arg, NULL); ipi_mask_ex_done: local_irq_restore(flags); return hv_result_success(status); } static bool __send_ipi_mask(const struct cpumask *mask, int vector, bool exclude_self) { int cur_cpu, vcpu, this_cpu = smp_processor_id(); struct hv_send_ipi ipi_arg; u64 status; unsigned int weight; trace_hyperv_send_ipi_mask(mask, vector); weight = cpumask_weight(mask); /* * Do nothing if * 1. the mask is empty * 2. the mask only contains self when exclude_self is true */ if (weight == 0 || (exclude_self && weight == 1 && cpumask_test_cpu(this_cpu, mask))) return true; /* A fully enlightened TDX VM uses GHCI rather than hv_hypercall_pg. */ if (!hv_hypercall_pg) { if (ms_hyperv.paravisor_present || !hv_isolation_type_tdx()) return false; } if (vector < HV_IPI_LOW_VECTOR || vector > HV_IPI_HIGH_VECTOR) return false; /* * From the supplied CPU set we need to figure out if we can get away * with cheaper HVCALL_SEND_IPI hypercall. This is possible when the * highest VP number in the set is < 64. As VP numbers are usually in * ascending order and match Linux CPU ids, here is an optimization: * we check the VP number for the highest bit in the supplied set first * so we can quickly find out if using HVCALL_SEND_IPI_EX hypercall is * a must. We will also check all VP numbers when walking the supplied * CPU set to remain correct in all cases. */ if (hv_cpu_number_to_vp_number(cpumask_last(mask)) >= 64) goto do_ex_hypercall; ipi_arg.vector = vector; ipi_arg.cpu_mask = 0; for_each_cpu(cur_cpu, mask) { if (exclude_self && cur_cpu == this_cpu) continue; vcpu = hv_cpu_number_to_vp_number(cur_cpu); if (vcpu == VP_INVAL) return false; /* * This particular version of the IPI hypercall can * only target up to 64 CPUs. */ if (vcpu >= 64) goto do_ex_hypercall; __set_bit(vcpu, (unsigned long *)&ipi_arg.cpu_mask); } status = hv_do_fast_hypercall16(HVCALL_SEND_IPI, ipi_arg.vector, ipi_arg.cpu_mask); return hv_result_success(status); do_ex_hypercall: return __send_ipi_mask_ex(mask, vector, exclude_self); } static bool __send_ipi_one(int cpu, int vector) { int vp = hv_cpu_number_to_vp_number(cpu); u64 status; trace_hyperv_send_ipi_one(cpu, vector); if (vp == VP_INVAL) return false; /* A fully enlightened TDX VM uses GHCI rather than hv_hypercall_pg. */ if (!hv_hypercall_pg) { if (ms_hyperv.paravisor_present || !hv_isolation_type_tdx()) return false; } if (vector < HV_IPI_LOW_VECTOR || vector > HV_IPI_HIGH_VECTOR) return false; if (vp >= 64) return __send_ipi_mask_ex(cpumask_of(cpu), vector, false); status = hv_do_fast_hypercall16(HVCALL_SEND_IPI, vector, BIT_ULL(vp)); return hv_result_success(status); } static void hv_send_ipi(int cpu, int vector) { if (!__send_ipi_one(cpu, vector)) orig_apic.send_IPI(cpu, vector); } static void hv_send_ipi_mask(const struct cpumask *mask, int vector) { if (!__send_ipi_mask(mask, vector, false)) orig_apic.send_IPI_mask(mask, vector); } static void hv_send_ipi_mask_allbutself(const struct cpumask *mask, int vector) { if (!__send_ipi_mask(mask, vector, true)) orig_apic.send_IPI_mask_allbutself(mask, vector); } static void hv_send_ipi_allbutself(int vector) { hv_send_ipi_mask_allbutself(cpu_online_mask, vector); } static void hv_send_ipi_all(int vector) { if (!__send_ipi_mask(cpu_online_mask, vector, false)) orig_apic.send_IPI_all(vector); } static void hv_send_ipi_self(int vector) { if (!__send_ipi_one(smp_processor_id(), vector)) orig_apic.send_IPI_self(vector); } void __init hv_apic_init(void) { if (ms_hyperv.hints & HV_X64_CLUSTER_IPI_RECOMMENDED) { pr_info("Hyper-V: Using IPI hypercalls\n"); /* * Set the IPI entry points. */ orig_apic = *apic; apic_update_callback(send_IPI, hv_send_ipi); apic_update_callback(send_IPI_mask, hv_send_ipi_mask); apic_update_callback(send_IPI_mask_allbutself, hv_send_ipi_mask_allbutself); apic_update_callback(send_IPI_allbutself, hv_send_ipi_allbutself); apic_update_callback(send_IPI_all, hv_send_ipi_all); apic_update_callback(send_IPI_self, hv_send_ipi_self); } if (ms_hyperv.hints & HV_X64_APIC_ACCESS_RECOMMENDED) { pr_info("Hyper-V: Using enlightened APIC (%s mode)", x2apic_enabled() ? "x2apic" : "xapic"); /* * When in x2apic mode, don't use the Hyper-V specific APIC * accessors since the field layout in the ICR register is * different in x2apic mode. Furthermore, the architectural * x2apic MSRs function just as well as the Hyper-V * synthetic APIC MSRs, so there's no benefit in having * separate Hyper-V accessors for x2apic mode. The only * exception is hv_apic_eoi_write, because it benefits from * lazy EOI when available, but the same accessor works for * both xapic and x2apic because the field layout is the same. */ apic_update_callback(eoi, hv_apic_eoi_write); if (!x2apic_enabled()) { apic_update_callback(read, hv_apic_read); apic_update_callback(write, hv_apic_write); apic_update_callback(icr_write, hv_apic_icr_write); apic_update_callback(icr_read, hv_apic_icr_read); } } } |