Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 ARM Ltd. */ #include <linux/bitops.h> #include <linux/cpu.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/prctl.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/string.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/thread_info.h> #include <linux/types.h> #include <linux/uaccess.h> #include <linux/uio.h> #include <asm/barrier.h> #include <asm/cpufeature.h> #include <asm/mte.h> #include <asm/ptrace.h> #include <asm/sysreg.h> static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); #ifdef CONFIG_KASAN_HW_TAGS /* * The asynchronous and asymmetric MTE modes have the same behavior for * store operations. This flag is set when either of these modes is enabled. */ DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); #endif void mte_sync_tags(pte_t pte, unsigned int nr_pages) { struct page *page = pte_page(pte); unsigned int i; /* if PG_mte_tagged is set, tags have already been initialised */ for (i = 0; i < nr_pages; i++, page++) { if (try_page_mte_tagging(page)) { mte_clear_page_tags(page_address(page)); set_page_mte_tagged(page); } } /* ensure the tags are visible before the PTE is set */ smp_wmb(); } int memcmp_pages(struct page *page1, struct page *page2) { char *addr1, *addr2; int ret; addr1 = page_address(page1); addr2 = page_address(page2); ret = memcmp(addr1, addr2, PAGE_SIZE); if (!system_supports_mte() || ret) return ret; /* * If the page content is identical but at least one of the pages is * tagged, return non-zero to avoid KSM merging. If only one of the * pages is tagged, __set_ptes() may zero or change the tags of the * other page via mte_sync_tags(). */ if (page_mte_tagged(page1) || page_mte_tagged(page2)) return addr1 != addr2; return ret; } static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) { /* Enable MTE Sync Mode for EL1. */ sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf)); isb(); pr_info_once("MTE: enabled in %s mode at EL1\n", mode); } #ifdef CONFIG_KASAN_HW_TAGS void mte_enable_kernel_sync(void) { /* * Make sure we enter this function when no PE has set * async mode previously. */ WARN_ONCE(system_uses_mte_async_or_asymm_mode(), "MTE async mode enabled system wide!"); __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC); } void mte_enable_kernel_async(void) { __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC); /* * MTE async mode is set system wide by the first PE that * executes this function. * * Note: If in future KASAN acquires a runtime switching * mode in between sync and async, this strategy needs * to be reviewed. */ if (!system_uses_mte_async_or_asymm_mode()) static_branch_enable(&mte_async_or_asymm_mode); } void mte_enable_kernel_asymm(void) { if (cpus_have_cap(ARM64_MTE_ASYMM)) { __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM); /* * MTE asymm mode behaves as async mode for store * operations. The mode is set system wide by the * first PE that executes this function. * * Note: If in future KASAN acquires a runtime switching * mode in between sync and async, this strategy needs * to be reviewed. */ if (!system_uses_mte_async_or_asymm_mode()) static_branch_enable(&mte_async_or_asymm_mode); } else { /* * If the CPU does not support MTE asymmetric mode the * kernel falls back on synchronous mode which is the * default for kasan=on. */ mte_enable_kernel_sync(); } } #endif #ifdef CONFIG_KASAN_HW_TAGS void mte_check_tfsr_el1(void) { u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { /* * Note: isb() is not required after this direct write * because there is no indirect read subsequent to it * (per ARM DDI 0487F.c table D13-1). */ write_sysreg_s(0, SYS_TFSR_EL1); kasan_report_async(); } } #endif /* * This is where we actually resolve the system and process MTE mode * configuration into an actual value in SCTLR_EL1 that affects * userspace. */ static void mte_update_sctlr_user(struct task_struct *task) { /* * This must be called with preemption disabled and can only be called * on the current or next task since the CPU must match where the thread * is going to run. The caller is responsible for calling * update_sctlr_el1() later in the same preemption disabled block. */ unsigned long sctlr = task->thread.sctlr_user; unsigned long mte_ctrl = task->thread.mte_ctrl; unsigned long pref, resolved_mte_tcf; pref = __this_cpu_read(mte_tcf_preferred); /* * If there is no overlap between the system preferred and * program requested values go with what was requested. */ resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; sctlr &= ~SCTLR_EL1_TCF0_MASK; /* * Pick an actual setting. The order in which we check for * set bits and map into register values determines our * default order. */ if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM); else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC); else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC); task->thread.sctlr_user = sctlr; } static void mte_update_gcr_excl(struct task_struct *task) { /* * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. */ if (kasan_hw_tags_enabled()) return; write_sysreg_s( ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, SYS_GCR_EL1); } #ifdef CONFIG_KASAN_HW_TAGS /* Only called from assembly, silence sparse */ void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst); void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { BUG_ON(nr_inst != 1); /* Branch -> NOP */ if (kasan_hw_tags_enabled()) *updptr = cpu_to_le32(aarch64_insn_gen_nop()); } #endif void mte_thread_init_user(void) { if (!system_supports_mte()) return; /* clear any pending asynchronous tag fault */ dsb(ish); write_sysreg_s(0, SYS_TFSRE0_EL1); clear_thread_flag(TIF_MTE_ASYNC_FAULT); /* disable tag checking and reset tag generation mask */ set_mte_ctrl(current, 0); } void mte_thread_switch(struct task_struct *next) { if (!system_supports_mte()) return; mte_update_sctlr_user(next); mte_update_gcr_excl(next); /* TCO may not have been disabled on exception entry for the current task. */ mte_disable_tco_entry(next); /* * Check if an async tag exception occurred at EL1. * * Note: On the context switch path we rely on the dsb() present * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 * are synchronized before this point. */ isb(); mte_check_tfsr_el1(); } void mte_cpu_setup(void) { u64 rgsr; /* * CnP must be enabled only after the MAIR_EL1 register has been set * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may * lead to the wrong memory type being used for a brief window during * CPU power-up. * * CnP is not a boot feature so MTE gets enabled before CnP, but let's * make sure that is the case. */ BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT); BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT); /* Normal Tagged memory type at the corresponding MAIR index */ sysreg_clear_set(mair_el1, MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED), MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED, MT_NORMAL_TAGGED)); write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1); /* * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then * RGSR_EL1.SEED must be non-zero for IRG to produce * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we * must initialize it. */ rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) << SYS_RGSR_EL1_SEED_SHIFT; if (rgsr == 0) rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT; write_sysreg_s(rgsr, SYS_RGSR_EL1); /* clear any pending tag check faults in TFSR*_EL1 */ write_sysreg_s(0, SYS_TFSR_EL1); write_sysreg_s(0, SYS_TFSRE0_EL1); local_flush_tlb_all(); } void mte_suspend_enter(void) { if (!system_supports_mte()) return; /* * The barriers are required to guarantee that the indirect writes * to TFSR_EL1 are synchronized before we report the state. */ dsb(nsh); isb(); /* Report SYS_TFSR_EL1 before suspend entry */ mte_check_tfsr_el1(); } void mte_suspend_exit(void) { if (!system_supports_mte()) return; mte_cpu_setup(); } long set_mte_ctrl(struct task_struct *task, unsigned long arg) { u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; if (!system_supports_mte()) return 0; if (arg & PR_MTE_TCF_ASYNC) mte_ctrl |= MTE_CTRL_TCF_ASYNC; if (arg & PR_MTE_TCF_SYNC) mte_ctrl |= MTE_CTRL_TCF_SYNC; /* * If the system supports it and both sync and async modes are * specified then implicitly enable asymmetric mode. * Userspace could see a mix of both sync and async anyway due * to differing or changing defaults on CPUs. */ if (cpus_have_cap(ARM64_MTE_ASYMM) && (arg & PR_MTE_TCF_ASYNC) && (arg & PR_MTE_TCF_SYNC)) mte_ctrl |= MTE_CTRL_TCF_ASYMM; task->thread.mte_ctrl = mte_ctrl; if (task == current) { preempt_disable(); mte_update_sctlr_user(task); mte_update_gcr_excl(task); update_sctlr_el1(task->thread.sctlr_user); preempt_enable(); } return 0; } long get_mte_ctrl(struct task_struct *task) { unsigned long ret; u64 mte_ctrl = task->thread.mte_ctrl; u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & SYS_GCR_EL1_EXCL_MASK; if (!system_supports_mte()) return 0; ret = incl << PR_MTE_TAG_SHIFT; if (mte_ctrl & MTE_CTRL_TCF_ASYNC) ret |= PR_MTE_TCF_ASYNC; if (mte_ctrl & MTE_CTRL_TCF_SYNC) ret |= PR_MTE_TCF_SYNC; return ret; } /* * Access MTE tags in another process' address space as given in mm. Update * the number of tags copied. Return 0 if any tags copied, error otherwise. * Inspired by __access_remote_vm(). */ static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, struct iovec *kiov, unsigned int gup_flags) { void __user *buf = kiov->iov_base; size_t len = kiov->iov_len; int err = 0; int write = gup_flags & FOLL_WRITE; if (!access_ok(buf, len)) return -EFAULT; if (mmap_read_lock_killable(mm)) return -EIO; while (len) { struct vm_area_struct *vma; unsigned long tags, offset; void *maddr; struct page *page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); if (IS_ERR(page)) { err = PTR_ERR(page); break; } /* * Only copy tags if the page has been mapped as PROT_MTE * (PG_mte_tagged set). Otherwise the tags are not valid and * not accessible to user. Moreover, an mprotect(PROT_MTE) * would cause the existing tags to be cleared if the page * was never mapped with PROT_MTE. */ if (!(vma->vm_flags & VM_MTE)) { err = -EOPNOTSUPP; put_page(page); break; } WARN_ON_ONCE(!page_mte_tagged(page)); /* limit access to the end of the page */ offset = offset_in_page(addr); tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); maddr = page_address(page); if (write) { tags = mte_copy_tags_from_user(maddr + offset, buf, tags); set_page_dirty_lock(page); } else { tags = mte_copy_tags_to_user(buf, maddr + offset, tags); } put_page(page); /* error accessing the tracer's buffer */ if (!tags) break; len -= tags; buf += tags; addr += tags * MTE_GRANULE_SIZE; } mmap_read_unlock(mm); /* return an error if no tags copied */ kiov->iov_len = buf - kiov->iov_base; if (!kiov->iov_len) { /* check for error accessing the tracee's address space */ if (err) return -EIO; else return -EFAULT; } return 0; } /* * Copy MTE tags in another process' address space at 'addr' to/from tracer's * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). */ static int access_remote_tags(struct task_struct *tsk, unsigned long addr, struct iovec *kiov, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return -EPERM; if (!tsk->ptrace || (current != tsk->parent) || ((get_dumpable(mm) != SUID_DUMP_USER) && !ptracer_capable(tsk, mm->user_ns))) { mmput(mm); return -EPERM; } ret = __access_remote_tags(mm, addr, kiov, gup_flags); mmput(mm); return ret; } int mte_ptrace_copy_tags(struct task_struct *child, long request, unsigned long addr, unsigned long data) { int ret; struct iovec kiov; struct iovec __user *uiov = (void __user *)data; unsigned int gup_flags = FOLL_FORCE; if (!system_supports_mte()) return -EIO; if (get_user(kiov.iov_base, &uiov->iov_base) || get_user(kiov.iov_len, &uiov->iov_len)) return -EFAULT; if (request == PTRACE_POKEMTETAGS) gup_flags |= FOLL_WRITE; /* align addr to the MTE tag granule */ addr &= MTE_GRANULE_MASK; ret = access_remote_tags(child, addr, &kiov, gup_flags); if (!ret) ret = put_user(kiov.iov_len, &uiov->iov_len); return ret; } static ssize_t mte_tcf_preferred_show(struct device *dev, struct device_attribute *attr, char *buf) { switch (per_cpu(mte_tcf_preferred, dev->id)) { case MTE_CTRL_TCF_ASYNC: return sysfs_emit(buf, "async\n"); case MTE_CTRL_TCF_SYNC: return sysfs_emit(buf, "sync\n"); case MTE_CTRL_TCF_ASYMM: return sysfs_emit(buf, "asymm\n"); default: return sysfs_emit(buf, "???\n"); } } static ssize_t mte_tcf_preferred_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 tcf; if (sysfs_streq(buf, "async")) tcf = MTE_CTRL_TCF_ASYNC; else if (sysfs_streq(buf, "sync")) tcf = MTE_CTRL_TCF_SYNC; else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) tcf = MTE_CTRL_TCF_ASYMM; else return -EINVAL; device_lock(dev); per_cpu(mte_tcf_preferred, dev->id) = tcf; device_unlock(dev); return count; } static DEVICE_ATTR_RW(mte_tcf_preferred); static int register_mte_tcf_preferred_sysctl(void) { unsigned int cpu; if (!system_supports_mte()) return 0; for_each_possible_cpu(cpu) { per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; device_create_file(get_cpu_device(cpu), &dev_attr_mte_tcf_preferred); } return 0; } subsys_initcall(register_mte_tcf_preferred_sysctl); /* * Return 0 on success, the number of bytes not probed otherwise. */ size_t mte_probe_user_range(const char __user *uaddr, size_t size) { const char __user *end = uaddr + size; char val; __raw_get_user(val, uaddr, efault); uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE); while (uaddr < end) { /* * A read is sufficient for mte, the caller should have probed * for the pte write permission if required. */ __raw_get_user(val, uaddr, efault); uaddr += MTE_GRANULE_SIZE; } (void)val; return 0; efault: return end - uaddr; } |