Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * BLAKE2b digest algorithm, NEON accelerated * * Copyright 2020 Google LLC * * Author: Eric Biggers <ebiggers@google.com> */ #include <linux/linkage.h> .text .fpu neon // The arguments to blake2b_compress_neon() STATE .req r0 BLOCK .req r1 NBLOCKS .req r2 INC .req r3 // Pointers to the rotation tables ROR24_TABLE .req r4 ROR16_TABLE .req r5 // The original stack pointer ORIG_SP .req r6 // NEON registers which contain the message words of the current block. // M_0-M_3 are occasionally used for other purposes too. M_0 .req d16 M_1 .req d17 M_2 .req d18 M_3 .req d19 M_4 .req d20 M_5 .req d21 M_6 .req d22 M_7 .req d23 M_8 .req d24 M_9 .req d25 M_10 .req d26 M_11 .req d27 M_12 .req d28 M_13 .req d29 M_14 .req d30 M_15 .req d31 .align 4 // Tables for computing ror64(x, 24) and ror64(x, 16) using the vtbl.8 // instruction. This is the most efficient way to implement these // rotation amounts with NEON. (On Cortex-A53 it's the same speed as // vshr.u64 + vsli.u64, while on Cortex-A7 it's faster.) .Lror24_table: .byte 3, 4, 5, 6, 7, 0, 1, 2 .Lror16_table: .byte 2, 3, 4, 5, 6, 7, 0, 1 // The BLAKE2b initialization vector .Lblake2b_IV: .quad 0x6a09e667f3bcc908, 0xbb67ae8584caa73b .quad 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 .quad 0x510e527fade682d1, 0x9b05688c2b3e6c1f .quad 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 // Execute one round of BLAKE2b by updating the state matrix v[0..15] in the // NEON registers q0-q7. The message block is in q8..q15 (M_0-M_15). The stack // pointer points to a 32-byte aligned buffer containing a copy of q8 and q9 // (M_0-M_3), so that they can be reloaded if they are used as temporary // registers. The macro arguments s0-s15 give the order in which the message // words are used in this round. 'final' is 1 if this is the final round. .macro _blake2b_round s0, s1, s2, s3, s4, s5, s6, s7, \ s8, s9, s10, s11, s12, s13, s14, s15, final=0 // Mix the columns: // (v[0], v[4], v[8], v[12]), (v[1], v[5], v[9], v[13]), // (v[2], v[6], v[10], v[14]), and (v[3], v[7], v[11], v[15]). // a += b + m[blake2b_sigma[r][2*i + 0]]; vadd.u64 q0, q0, q2 vadd.u64 q1, q1, q3 vadd.u64 d0, d0, M_\s0 vadd.u64 d1, d1, M_\s2 vadd.u64 d2, d2, M_\s4 vadd.u64 d3, d3, M_\s6 // d = ror64(d ^ a, 32); veor q6, q6, q0 veor q7, q7, q1 vrev64.32 q6, q6 vrev64.32 q7, q7 // c += d; vadd.u64 q4, q4, q6 vadd.u64 q5, q5, q7 // b = ror64(b ^ c, 24); vld1.8 {M_0}, [ROR24_TABLE, :64] veor q2, q2, q4 veor q3, q3, q5 vtbl.8 d4, {d4}, M_0 vtbl.8 d5, {d5}, M_0 vtbl.8 d6, {d6}, M_0 vtbl.8 d7, {d7}, M_0 // a += b + m[blake2b_sigma[r][2*i + 1]]; // // M_0 got clobbered above, so we have to reload it if any of the four // message words this step needs happens to be M_0. Otherwise we don't // need to reload it here, as it will just get clobbered again below. .if \s1 == 0 || \s3 == 0 || \s5 == 0 || \s7 == 0 vld1.8 {M_0}, [sp, :64] .endif vadd.u64 q0, q0, q2 vadd.u64 q1, q1, q3 vadd.u64 d0, d0, M_\s1 vadd.u64 d1, d1, M_\s3 vadd.u64 d2, d2, M_\s5 vadd.u64 d3, d3, M_\s7 // d = ror64(d ^ a, 16); vld1.8 {M_0}, [ROR16_TABLE, :64] veor q6, q6, q0 veor q7, q7, q1 vtbl.8 d12, {d12}, M_0 vtbl.8 d13, {d13}, M_0 vtbl.8 d14, {d14}, M_0 vtbl.8 d15, {d15}, M_0 // c += d; vadd.u64 q4, q4, q6 vadd.u64 q5, q5, q7 // b = ror64(b ^ c, 63); // // This rotation amount isn't a multiple of 8, so it has to be // implemented using a pair of shifts, which requires temporary // registers. Use q8-q9 (M_0-M_3) for this, and reload them afterwards. veor q8, q2, q4 veor q9, q3, q5 vshr.u64 q2, q8, #63 vshr.u64 q3, q9, #63 vsli.u64 q2, q8, #1 vsli.u64 q3, q9, #1 vld1.8 {q8-q9}, [sp, :256] // Mix the diagonals: // (v[0], v[5], v[10], v[15]), (v[1], v[6], v[11], v[12]), // (v[2], v[7], v[8], v[13]), and (v[3], v[4], v[9], v[14]). // // There are two possible ways to do this: use 'vext' instructions to // shift the rows of the matrix so that the diagonals become columns, // and undo it afterwards; or just use 64-bit operations on 'd' // registers instead of 128-bit operations on 'q' registers. We use the // latter approach, as it performs much better on Cortex-A7. // a += b + m[blake2b_sigma[r][2*i + 0]]; vadd.u64 d0, d0, d5 vadd.u64 d1, d1, d6 vadd.u64 d2, d2, d7 vadd.u64 d3, d3, d4 vadd.u64 d0, d0, M_\s8 vadd.u64 d1, d1, M_\s10 vadd.u64 d2, d2, M_\s12 vadd.u64 d3, d3, M_\s14 // d = ror64(d ^ a, 32); veor d15, d15, d0 veor d12, d12, d1 veor d13, d13, d2 veor d14, d14, d3 vrev64.32 d15, d15 vrev64.32 d12, d12 vrev64.32 d13, d13 vrev64.32 d14, d14 // c += d; vadd.u64 d10, d10, d15 vadd.u64 d11, d11, d12 vadd.u64 d8, d8, d13 vadd.u64 d9, d9, d14 // b = ror64(b ^ c, 24); vld1.8 {M_0}, [ROR24_TABLE, :64] veor d5, d5, d10 veor d6, d6, d11 veor d7, d7, d8 veor d4, d4, d9 vtbl.8 d5, {d5}, M_0 vtbl.8 d6, {d6}, M_0 vtbl.8 d7, {d7}, M_0 vtbl.8 d4, {d4}, M_0 // a += b + m[blake2b_sigma[r][2*i + 1]]; .if \s9 == 0 || \s11 == 0 || \s13 == 0 || \s15 == 0 vld1.8 {M_0}, [sp, :64] .endif vadd.u64 d0, d0, d5 vadd.u64 d1, d1, d6 vadd.u64 d2, d2, d7 vadd.u64 d3, d3, d4 vadd.u64 d0, d0, M_\s9 vadd.u64 d1, d1, M_\s11 vadd.u64 d2, d2, M_\s13 vadd.u64 d3, d3, M_\s15 // d = ror64(d ^ a, 16); vld1.8 {M_0}, [ROR16_TABLE, :64] veor d15, d15, d0 veor d12, d12, d1 veor d13, d13, d2 veor d14, d14, d3 vtbl.8 d12, {d12}, M_0 vtbl.8 d13, {d13}, M_0 vtbl.8 d14, {d14}, M_0 vtbl.8 d15, {d15}, M_0 // c += d; vadd.u64 d10, d10, d15 vadd.u64 d11, d11, d12 vadd.u64 d8, d8, d13 vadd.u64 d9, d9, d14 // b = ror64(b ^ c, 63); veor d16, d4, d9 veor d17, d5, d10 veor d18, d6, d11 veor d19, d7, d8 vshr.u64 q2, q8, #63 vshr.u64 q3, q9, #63 vsli.u64 q2, q8, #1 vsli.u64 q3, q9, #1 // Reloading q8-q9 can be skipped on the final round. .if ! \final vld1.8 {q8-q9}, [sp, :256] .endif .endm // // void blake2b_compress_neon(struct blake2b_state *state, // const u8 *block, size_t nblocks, u32 inc); // // Only the first three fields of struct blake2b_state are used: // u64 h[8]; (inout) // u64 t[2]; (inout) // u64 f[2]; (in) // .align 5 ENTRY(blake2b_compress_neon) push {r4-r10} // Allocate a 32-byte stack buffer that is 32-byte aligned. mov ORIG_SP, sp sub ip, sp, #32 bic ip, ip, #31 mov sp, ip adr ROR24_TABLE, .Lror24_table adr ROR16_TABLE, .Lror16_table mov ip, STATE vld1.64 {q0-q1}, [ip]! // Load h[0..3] vld1.64 {q2-q3}, [ip]! // Load h[4..7] .Lnext_block: adr r10, .Lblake2b_IV vld1.64 {q14-q15}, [ip] // Load t[0..1] and f[0..1] vld1.64 {q4-q5}, [r10]! // Load IV[0..3] vmov r7, r8, d28 // Copy t[0] to (r7, r8) vld1.64 {q6-q7}, [r10] // Load IV[4..7] adds r7, r7, INC // Increment counter bcs .Lslow_inc_ctr vmov.i32 d28[0], r7 vst1.64 {d28}, [ip] // Update t[0] .Linc_ctr_done: // Load the next message block and finish initializing the state matrix // 'v'. Fortunately, there are exactly enough NEON registers to fit the // entire state matrix in q0-q7 and the entire message block in q8-15. // // However, _blake2b_round also needs some extra registers for rotates, // so we have to spill some registers. It's better to spill the message // registers than the state registers, as the message doesn't change. // Therefore we store a copy of the first 32 bytes of the message block // (q8-q9) in an aligned buffer on the stack so that they can be // reloaded when needed. (We could just reload directly from the // message buffer, but it's faster to use aligned loads.) vld1.8 {q8-q9}, [BLOCK]! veor q6, q6, q14 // v[12..13] = IV[4..5] ^ t[0..1] vld1.8 {q10-q11}, [BLOCK]! veor q7, q7, q15 // v[14..15] = IV[6..7] ^ f[0..1] vld1.8 {q12-q13}, [BLOCK]! vst1.8 {q8-q9}, [sp, :256] mov ip, STATE vld1.8 {q14-q15}, [BLOCK]! // Execute the rounds. Each round is provided the order in which it // needs to use the message words. _blake2b_round 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 _blake2b_round 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 _blake2b_round 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 _blake2b_round 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 _blake2b_round 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 _blake2b_round 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 _blake2b_round 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 _blake2b_round 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 _blake2b_round 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 _blake2b_round 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 _blake2b_round 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 _blake2b_round 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 \ final=1 // Fold the final state matrix into the hash chaining value: // // for (i = 0; i < 8; i++) // h[i] ^= v[i] ^ v[i + 8]; // vld1.64 {q8-q9}, [ip]! // Load old h[0..3] veor q0, q0, q4 // v[0..1] ^= v[8..9] veor q1, q1, q5 // v[2..3] ^= v[10..11] vld1.64 {q10-q11}, [ip] // Load old h[4..7] veor q2, q2, q6 // v[4..5] ^= v[12..13] veor q3, q3, q7 // v[6..7] ^= v[14..15] veor q0, q0, q8 // v[0..1] ^= h[0..1] veor q1, q1, q9 // v[2..3] ^= h[2..3] mov ip, STATE subs NBLOCKS, NBLOCKS, #1 // nblocks-- vst1.64 {q0-q1}, [ip]! // Store new h[0..3] veor q2, q2, q10 // v[4..5] ^= h[4..5] veor q3, q3, q11 // v[6..7] ^= h[6..7] vst1.64 {q2-q3}, [ip]! // Store new h[4..7] // Advance to the next block, if there is one. bne .Lnext_block // nblocks != 0? mov sp, ORIG_SP pop {r4-r10} mov pc, lr .Lslow_inc_ctr: // Handle the case where the counter overflowed its low 32 bits, by // carrying the overflow bit into the full 128-bit counter. vmov r9, r10, d29 adcs r8, r8, #0 adcs r9, r9, #0 adc r10, r10, #0 vmov d28, r7, r8 vmov d29, r9, r10 vst1.64 {q14}, [ip] // Update t[0] and t[1] b .Linc_ctr_done ENDPROC(blake2b_compress_neon) |