Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | // SPDX-License-Identifier: GPL-2.0-or-later #include <linux/array_size.h> #include <linux/sort.h> #include <linux/printk.h> #include <linux/memblock.h> #include <linux/numa.h> #include <linux/numa_memblks.h> static int numa_distance_cnt; static u8 *numa_distance; nodemask_t numa_nodes_parsed __initdata; static struct numa_meminfo numa_meminfo __initdata_or_meminfo; static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo; /* * Set nodes, which have memory in @mi, in *@nodemask. */ static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, const struct numa_meminfo *mi) { int i; for (i = 0; i < ARRAY_SIZE(mi->blk); i++) if (mi->blk[i].start != mi->blk[i].end && mi->blk[i].nid != NUMA_NO_NODE) node_set(mi->blk[i].nid, *nodemask); } /** * numa_reset_distance - Reset NUMA distance table * * The current table is freed. The next numa_set_distance() call will * create a new one. */ void __init numa_reset_distance(void) { size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); /* numa_distance could be 1LU marking allocation failure, test cnt */ if (numa_distance_cnt) memblock_free(numa_distance, size); numa_distance_cnt = 0; numa_distance = NULL; /* enable table creation */ } static int __init numa_alloc_distance(void) { nodemask_t nodes_parsed; size_t size; int i, j, cnt = 0; /* size the new table and allocate it */ nodes_parsed = numa_nodes_parsed; numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); for_each_node_mask(i, nodes_parsed) cnt = i; cnt++; size = cnt * cnt * sizeof(numa_distance[0]); numa_distance = memblock_alloc(size, PAGE_SIZE); if (!numa_distance) { pr_warn("Warning: can't allocate distance table!\n"); /* don't retry until explicitly reset */ numa_distance = (void *)1LU; return -ENOMEM; } numa_distance_cnt = cnt; /* fill with the default distances */ for (i = 0; i < cnt; i++) for (j = 0; j < cnt; j++) numa_distance[i * cnt + j] = i == j ? LOCAL_DISTANCE : REMOTE_DISTANCE; printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); return 0; } /** * numa_set_distance - Set NUMA distance from one NUMA to another * @from: the 'from' node to set distance * @to: the 'to' node to set distance * @distance: NUMA distance * * Set the distance from node @from to @to to @distance. If distance table * doesn't exist, one which is large enough to accommodate all the currently * known nodes will be created. * * If such table cannot be allocated, a warning is printed and further * calls are ignored until the distance table is reset with * numa_reset_distance(). * * If @from or @to is higher than the highest known node or lower than zero * at the time of table creation or @distance doesn't make sense, the call * is ignored. * This is to allow simplification of specific NUMA config implementations. */ void __init numa_set_distance(int from, int to, int distance) { if (!numa_distance && numa_alloc_distance() < 0) return; if (from >= numa_distance_cnt || to >= numa_distance_cnt || from < 0 || to < 0) { pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", from, to, distance); return; } if ((u8)distance != distance || (from == to && distance != LOCAL_DISTANCE)) { pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", from, to, distance); return; } numa_distance[from * numa_distance_cnt + to] = distance; } int __node_distance(int from, int to) { if (from >= numa_distance_cnt || to >= numa_distance_cnt) return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; return numa_distance[from * numa_distance_cnt + to]; } EXPORT_SYMBOL(__node_distance); static int __init numa_add_memblk_to(int nid, u64 start, u64 end, struct numa_meminfo *mi) { /* ignore zero length blks */ if (start == end) return 0; /* whine about and ignore invalid blks */ if (start > end || nid < 0 || nid >= MAX_NUMNODES) { pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", nid, start, end - 1); return 0; } if (mi->nr_blks >= NR_NODE_MEMBLKS) { pr_err("too many memblk ranges\n"); return -EINVAL; } mi->blk[mi->nr_blks].start = start; mi->blk[mi->nr_blks].end = end; mi->blk[mi->nr_blks].nid = nid; mi->nr_blks++; return 0; } /** * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo * @idx: Index of memblk to remove * @mi: numa_meminfo to remove memblk from * * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and * decrementing @mi->nr_blks. */ void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) { mi->nr_blks--; memmove(&mi->blk[idx], &mi->blk[idx + 1], (mi->nr_blks - idx) * sizeof(mi->blk[0])); } /** * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another * @dst: numa_meminfo to append block to * @idx: Index of memblk to remove * @src: numa_meminfo to remove memblk from */ static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx, struct numa_meminfo *src) { dst->blk[dst->nr_blks++] = src->blk[idx]; numa_remove_memblk_from(idx, src); } /** * numa_add_memblk - Add one numa_memblk to numa_meminfo * @nid: NUMA node ID of the new memblk * @start: Start address of the new memblk * @end: End address of the new memblk * * Add a new memblk to the default numa_meminfo. * * RETURNS: * 0 on success, -errno on failure. */ int __init numa_add_memblk(int nid, u64 start, u64 end) { return numa_add_memblk_to(nid, start, end, &numa_meminfo); } /** * numa_cleanup_meminfo - Cleanup a numa_meminfo * @mi: numa_meminfo to clean up * * Sanitize @mi by merging and removing unnecessary memblks. Also check for * conflicts and clear unused memblks. * * RETURNS: * 0 on success, -errno on failure. */ int __init numa_cleanup_meminfo(struct numa_meminfo *mi) { const u64 low = memblock_start_of_DRAM(); const u64 high = memblock_end_of_DRAM(); int i, j, k; /* first, trim all entries */ for (i = 0; i < mi->nr_blks; i++) { struct numa_memblk *bi = &mi->blk[i]; /* move / save reserved memory ranges */ if (!memblock_overlaps_region(&memblock.memory, bi->start, bi->end - bi->start)) { numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi); continue; } /* make sure all non-reserved blocks are inside the limits */ bi->start = max(bi->start, low); /* preserve info for non-RAM areas above 'max_pfn': */ if (bi->end > high) { numa_add_memblk_to(bi->nid, high, bi->end, &numa_reserved_meminfo); bi->end = high; } /* and there's no empty block */ if (bi->start >= bi->end) numa_remove_memblk_from(i--, mi); } /* merge neighboring / overlapping entries */ for (i = 0; i < mi->nr_blks; i++) { struct numa_memblk *bi = &mi->blk[i]; for (j = i + 1; j < mi->nr_blks; j++) { struct numa_memblk *bj = &mi->blk[j]; u64 start, end; /* * See whether there are overlapping blocks. Whine * about but allow overlaps of the same nid. They * will be merged below. */ if (bi->end > bj->start && bi->start < bj->end) { if (bi->nid != bj->nid) { pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", bi->nid, bi->start, bi->end - 1, bj->nid, bj->start, bj->end - 1); return -EINVAL; } pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", bi->nid, bi->start, bi->end - 1, bj->start, bj->end - 1); } /* * Join together blocks on the same node, holes * between which don't overlap with memory on other * nodes. */ if (bi->nid != bj->nid) continue; start = min(bi->start, bj->start); end = max(bi->end, bj->end); for (k = 0; k < mi->nr_blks; k++) { struct numa_memblk *bk = &mi->blk[k]; if (bi->nid == bk->nid) continue; if (start < bk->end && end > bk->start) break; } if (k < mi->nr_blks) continue; pr_info("NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", bi->nid, bi->start, bi->end - 1, bj->start, bj->end - 1, start, end - 1); bi->start = start; bi->end = end; numa_remove_memblk_from(j--, mi); } } /* clear unused ones */ for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { mi->blk[i].start = mi->blk[i].end = 0; mi->blk[i].nid = NUMA_NO_NODE; } return 0; } /* * Mark all currently memblock-reserved physical memory (which covers the * kernel's own memory ranges) as hot-unswappable. */ static void __init numa_clear_kernel_node_hotplug(void) { nodemask_t reserved_nodemask = NODE_MASK_NONE; struct memblock_region *mb_region; int i; /* * We have to do some preprocessing of memblock regions, to * make them suitable for reservation. * * At this time, all memory regions reserved by memblock are * used by the kernel, but those regions are not split up * along node boundaries yet, and don't necessarily have their * node ID set yet either. * * So iterate over all parsed memory blocks and use those ranges to * set the nid in memblock.reserved. This will split up the * memblock regions along node boundaries and will set the node IDs * as well. */ for (i = 0; i < numa_meminfo.nr_blks; i++) { struct numa_memblk *mb = numa_meminfo.blk + i; int ret; ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); WARN_ON_ONCE(ret); } /* * Now go over all reserved memblock regions, to construct a * node mask of all kernel reserved memory areas. * * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, * numa_meminfo might not include all memblock.reserved * memory ranges, because quirks such as trim_snb_memory() * reserve specific pages for Sandy Bridge graphics. ] */ for_each_reserved_mem_region(mb_region) { int nid = memblock_get_region_node(mb_region); if (nid != MAX_NUMNODES) node_set(nid, reserved_nodemask); } /* * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory * belonging to the reserved node mask. * * Note that this will include memory regions that reside * on nodes that contain kernel memory - entire nodes * become hot-unpluggable: */ for (i = 0; i < numa_meminfo.nr_blks; i++) { struct numa_memblk *mb = numa_meminfo.blk + i; if (!node_isset(mb->nid, reserved_nodemask)) continue; memblock_clear_hotplug(mb->start, mb->end - mb->start); } } static int __init numa_register_meminfo(struct numa_meminfo *mi) { int i; /* Account for nodes with cpus and no memory */ node_possible_map = numa_nodes_parsed; numa_nodemask_from_meminfo(&node_possible_map, mi); if (WARN_ON(nodes_empty(node_possible_map))) return -EINVAL; for (i = 0; i < mi->nr_blks; i++) { struct numa_memblk *mb = &mi->blk[i]; memblock_set_node(mb->start, mb->end - mb->start, &memblock.memory, mb->nid); } /* * At very early time, the kernel have to use some memory such as * loading the kernel image. We cannot prevent this anyway. So any * node the kernel resides in should be un-hotpluggable. * * And when we come here, alloc node data won't fail. */ numa_clear_kernel_node_hotplug(); /* * If sections array is gonna be used for pfn -> nid mapping, check * whether its granularity is fine enough. */ if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) { unsigned long pfn_align = node_map_pfn_alignment(); if (pfn_align && pfn_align < PAGES_PER_SECTION) { unsigned long node_align_mb = PFN_PHYS(pfn_align) >> 20; unsigned long sect_align_mb = PFN_PHYS(PAGES_PER_SECTION) >> 20; pr_warn("Node alignment %luMB < min %luMB, rejecting NUMA config\n", node_align_mb, sect_align_mb); return -EINVAL; } } return 0; } int __init numa_memblks_init(int (*init_func)(void), bool memblock_force_top_down) { phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; int ret; nodes_clear(numa_nodes_parsed); nodes_clear(node_possible_map); nodes_clear(node_online_map); memset(&numa_meminfo, 0, sizeof(numa_meminfo)); WARN_ON(memblock_set_node(0, max_addr, &memblock.memory, NUMA_NO_NODE)); WARN_ON(memblock_set_node(0, max_addr, &memblock.reserved, NUMA_NO_NODE)); /* In case that parsing SRAT failed. */ WARN_ON(memblock_clear_hotplug(0, max_addr)); numa_reset_distance(); ret = init_func(); if (ret < 0) return ret; /* * We reset memblock back to the top-down direction * here because if we configured ACPI_NUMA, we have * parsed SRAT in init_func(). It is ok to have the * reset here even if we did't configure ACPI_NUMA * or acpi numa init fails and fallbacks to dummy * numa init. */ if (memblock_force_top_down) memblock_set_bottom_up(false); ret = numa_cleanup_meminfo(&numa_meminfo); if (ret < 0) return ret; numa_emulation(&numa_meminfo, numa_distance_cnt); return numa_register_meminfo(&numa_meminfo); } static int __init cmp_memblk(const void *a, const void *b) { const struct numa_memblk *ma = *(const struct numa_memblk **)a; const struct numa_memblk *mb = *(const struct numa_memblk **)b; return (ma->start > mb->start) - (ma->start < mb->start); } static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata; /** * numa_fill_memblks - Fill gaps in numa_meminfo memblks * @start: address to begin fill * @end: address to end fill * * Find and extend numa_meminfo memblks to cover the physical * address range @start-@end * * RETURNS: * 0 : Success * NUMA_NO_MEMBLK : No memblks exist in address range @start-@end */ int __init numa_fill_memblks(u64 start, u64 end) { struct numa_memblk **blk = &numa_memblk_list[0]; struct numa_meminfo *mi = &numa_meminfo; int count = 0; u64 prev_end; /* * Create a list of pointers to numa_meminfo memblks that * overlap start, end. The list is used to make in-place * changes that fill out the numa_meminfo memblks. */ for (int i = 0; i < mi->nr_blks; i++) { struct numa_memblk *bi = &mi->blk[i]; if (memblock_addrs_overlap(start, end - start, bi->start, bi->end - bi->start)) { blk[count] = &mi->blk[i]; count++; } } if (!count) return NUMA_NO_MEMBLK; /* Sort the list of pointers in memblk->start order */ sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL); /* Make sure the first/last memblks include start/end */ blk[0]->start = min(blk[0]->start, start); blk[count - 1]->end = max(blk[count - 1]->end, end); /* * Fill any gaps by tracking the previous memblks * end address and backfilling to it if needed. */ prev_end = blk[0]->end; for (int i = 1; i < count; i++) { struct numa_memblk *curr = blk[i]; if (prev_end >= curr->start) { if (prev_end < curr->end) prev_end = curr->end; } else { curr->start = prev_end; prev_end = curr->end; } } return 0; } #ifdef CONFIG_NUMA_KEEP_MEMINFO static int meminfo_to_nid(struct numa_meminfo *mi, u64 start) { int i; for (i = 0; i < mi->nr_blks; i++) if (mi->blk[i].start <= start && mi->blk[i].end > start) return mi->blk[i].nid; return NUMA_NO_NODE; } int phys_to_target_node(u64 start) { int nid = meminfo_to_nid(&numa_meminfo, start); /* * Prefer online nodes, but if reserved memory might be * hot-added continue the search with reserved ranges. */ if (nid != NUMA_NO_NODE) return nid; return meminfo_to_nid(&numa_reserved_meminfo, start); } EXPORT_SYMBOL_GPL(phys_to_target_node); int memory_add_physaddr_to_nid(u64 start) { int nid = meminfo_to_nid(&numa_meminfo, start); if (nid == NUMA_NO_NODE) nid = numa_meminfo.blk[0].nid; return nid; } EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); #endif /* CONFIG_NUMA_KEEP_MEMINFO */ |