Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 | // SPDX-License-Identifier: GPL-2.0+ /* * Freescale QuadSPI driver. * * Copyright (C) 2013 Freescale Semiconductor, Inc. * Copyright (C) 2018 Bootlin * Copyright (C) 2018 exceet electronics GmbH * Copyright (C) 2018 Kontron Electronics GmbH * * Transition to SPI MEM interface: * Authors: * Boris Brezillon <bbrezillon@kernel.org> * Frieder Schrempf <frieder.schrempf@kontron.de> * Yogesh Gaur <yogeshnarayan.gaur@nxp.com> * Suresh Gupta <suresh.gupta@nxp.com> * * Based on the original fsl-quadspi.c SPI NOR driver: * Author: Freescale Semiconductor, Inc. * */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_qos.h> #include <linux/sizes.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> /* * The driver only uses one single LUT entry, that is updated on * each call of exec_op(). Index 0 is preset at boot with a basic * read operation, so let's use the last entry (15). */ #define SEQID_LUT 15 /* Registers used by the driver */ #define QUADSPI_MCR 0x00 #define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16) #define QUADSPI_MCR_MDIS_MASK BIT(14) #define QUADSPI_MCR_CLR_TXF_MASK BIT(11) #define QUADSPI_MCR_CLR_RXF_MASK BIT(10) #define QUADSPI_MCR_DDR_EN_MASK BIT(7) #define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2) #define QUADSPI_MCR_SWRSTHD_MASK BIT(1) #define QUADSPI_MCR_SWRSTSD_MASK BIT(0) #define QUADSPI_IPCR 0x08 #define QUADSPI_IPCR_SEQID(x) ((x) << 24) #define QUADSPI_FLSHCR 0x0c #define QUADSPI_FLSHCR_TCSS_MASK GENMASK(3, 0) #define QUADSPI_FLSHCR_TCSH_MASK GENMASK(11, 8) #define QUADSPI_FLSHCR_TDH_MASK GENMASK(17, 16) #define QUADSPI_BUF0CR 0x10 #define QUADSPI_BUF1CR 0x14 #define QUADSPI_BUF2CR 0x18 #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe #define QUADSPI_BUF3CR 0x1c #define QUADSPI_BUF3CR_ALLMST_MASK BIT(31) #define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8) #define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8) #define QUADSPI_BFGENCR 0x20 #define QUADSPI_BFGENCR_SEQID(x) ((x) << 12) #define QUADSPI_BUF0IND 0x30 #define QUADSPI_BUF1IND 0x34 #define QUADSPI_BUF2IND 0x38 #define QUADSPI_SFAR 0x100 #define QUADSPI_SMPR 0x108 #define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16) #define QUADSPI_SMPR_FSDLY_MASK BIT(6) #define QUADSPI_SMPR_FSPHS_MASK BIT(5) #define QUADSPI_SMPR_HSENA_MASK BIT(0) #define QUADSPI_RBCT 0x110 #define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0) #define QUADSPI_RBCT_RXBRD_USEIPS BIT(8) #define QUADSPI_TBDR 0x154 #define QUADSPI_SR 0x15c #define QUADSPI_SR_IP_ACC_MASK BIT(1) #define QUADSPI_SR_AHB_ACC_MASK BIT(2) #define QUADSPI_FR 0x160 #define QUADSPI_FR_TFF_MASK BIT(0) #define QUADSPI_RSER 0x164 #define QUADSPI_RSER_TFIE BIT(0) #define QUADSPI_SPTRCLR 0x16c #define QUADSPI_SPTRCLR_IPPTRC BIT(8) #define QUADSPI_SPTRCLR_BFPTRC BIT(0) #define QUADSPI_SFA1AD 0x180 #define QUADSPI_SFA2AD 0x184 #define QUADSPI_SFB1AD 0x188 #define QUADSPI_SFB2AD 0x18c #define QUADSPI_RBDR(x) (0x200 + ((x) * 4)) #define QUADSPI_LUTKEY 0x300 #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 #define QUADSPI_LCKCR 0x304 #define QUADSPI_LCKER_LOCK BIT(0) #define QUADSPI_LCKER_UNLOCK BIT(1) #define QUADSPI_LUT_BASE 0x310 #define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) #define QUADSPI_LUT_REG(idx) \ (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4) /* Instruction set for the LUT register */ #define LUT_STOP 0 #define LUT_CMD 1 #define LUT_ADDR 2 #define LUT_DUMMY 3 #define LUT_MODE 4 #define LUT_MODE2 5 #define LUT_MODE4 6 #define LUT_FSL_READ 7 #define LUT_FSL_WRITE 8 #define LUT_JMP_ON_CS 9 #define LUT_ADDR_DDR 10 #define LUT_MODE_DDR 11 #define LUT_MODE2_DDR 12 #define LUT_MODE4_DDR 13 #define LUT_FSL_READ_DDR 14 #define LUT_FSL_WRITE_DDR 15 #define LUT_DATA_LEARN 16 /* * The PAD definitions for LUT register. * * The pad stands for the number of IO lines [0:3]. * For example, the quad read needs four IO lines, * so you should use LUT_PAD(4). */ #define LUT_PAD(x) (fls(x) - 1) /* * Macro for constructing the LUT entries with the following * register layout: * * --------------------------------------------------- * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | * --------------------------------------------------- */ #define LUT_DEF(idx, ins, pad, opr) \ ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16)) /* Controller needs driver to swap endianness */ #define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0) /* Controller needs 4x internal clock */ #define QUADSPI_QUIRK_4X_INT_CLK BIT(1) /* * TKT253890, the controller needs the driver to fill the txfifo with * 16 bytes at least to trigger a data transfer, even though the extra * data won't be transferred. */ #define QUADSPI_QUIRK_TKT253890 BIT(2) /* TKT245618, the controller cannot wake up from wait mode */ #define QUADSPI_QUIRK_TKT245618 BIT(3) /* * Controller adds QSPI_AMBA_BASE (base address of the mapped memory) * internally. No need to add it when setting SFXXAD and SFAR registers */ #define QUADSPI_QUIRK_BASE_INTERNAL BIT(4) /* * Controller uses TDH bits in register QUADSPI_FLSHCR. * They need to be set in accordance with the DDR/SDR mode. */ #define QUADSPI_QUIRK_USE_TDH_SETTING BIT(5) struct fsl_qspi_devtype_data { unsigned int rxfifo; unsigned int txfifo; int invalid_mstrid; unsigned int ahb_buf_size; unsigned int quirks; bool little_endian; }; static const struct fsl_qspi_devtype_data vybrid_data = { .rxfifo = SZ_128, .txfifo = SZ_64, .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID, .ahb_buf_size = SZ_1K, .quirks = QUADSPI_QUIRK_SWAP_ENDIAN, .little_endian = true, }; static const struct fsl_qspi_devtype_data imx6sx_data = { .rxfifo = SZ_128, .txfifo = SZ_512, .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID, .ahb_buf_size = SZ_1K, .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618, .little_endian = true, }; static const struct fsl_qspi_devtype_data imx7d_data = { .rxfifo = SZ_128, .txfifo = SZ_512, .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID, .ahb_buf_size = SZ_1K, .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_USE_TDH_SETTING, .little_endian = true, }; static const struct fsl_qspi_devtype_data imx6ul_data = { .rxfifo = SZ_128, .txfifo = SZ_512, .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID, .ahb_buf_size = SZ_1K, .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_USE_TDH_SETTING, .little_endian = true, }; static const struct fsl_qspi_devtype_data ls1021a_data = { .rxfifo = SZ_128, .txfifo = SZ_64, .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID, .ahb_buf_size = SZ_1K, .quirks = 0, .little_endian = false, }; static const struct fsl_qspi_devtype_data ls2080a_data = { .rxfifo = SZ_128, .txfifo = SZ_64, .ahb_buf_size = SZ_1K, .invalid_mstrid = 0x0, .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL, .little_endian = true, }; struct fsl_qspi { void __iomem *iobase; void __iomem *ahb_addr; u32 memmap_phy; struct clk *clk, *clk_en; struct device *dev; struct completion c; const struct fsl_qspi_devtype_data *devtype_data; struct mutex lock; struct pm_qos_request pm_qos_req; int selected; }; static inline int needs_swap_endian(struct fsl_qspi *q) { return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN; } static inline int needs_4x_clock(struct fsl_qspi *q) { return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK; } static inline int needs_fill_txfifo(struct fsl_qspi *q) { return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890; } static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) { return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618; } static inline int needs_amba_base_offset(struct fsl_qspi *q) { return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL); } static inline int needs_tdh_setting(struct fsl_qspi *q) { return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING; } /* * An IC bug makes it necessary to rearrange the 32-bit data. * Later chips, such as IMX6SLX, have fixed this bug. */ static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) { return needs_swap_endian(q) ? __swab32(a) : a; } /* * R/W functions for big- or little-endian registers: * The QSPI controller's endianness is independent of * the CPU core's endianness. So far, although the CPU * core is little-endian the QSPI controller can use * big-endian or little-endian. */ static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr) { if (q->devtype_data->little_endian) iowrite32(val, addr); else iowrite32be(val, addr); } static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) { if (q->devtype_data->little_endian) return ioread32(addr); return ioread32be(addr); } static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) { struct fsl_qspi *q = dev_id; u32 reg; /* clear interrupt */ reg = qspi_readl(q, q->iobase + QUADSPI_FR); qspi_writel(q, reg, q->iobase + QUADSPI_FR); if (reg & QUADSPI_FR_TFF_MASK) complete(&q->c); dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg); return IRQ_HANDLED; } static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width) { switch (width) { case 1: case 2: case 4: return 0; } return -ENOTSUPP; } static bool fsl_qspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller); int ret; ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth); if (op->addr.nbytes) ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth); if (op->dummy.nbytes) ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth); if (op->data.nbytes) ret |= fsl_qspi_check_buswidth(q, op->data.buswidth); if (ret) return false; /* * The number of instructions needed for the op, needs * to fit into a single LUT entry. */ if (op->addr.nbytes + (op->dummy.nbytes ? 1:0) + (op->data.nbytes ? 1:0) > 6) return false; /* Max 64 dummy clock cycles supported */ if (op->dummy.nbytes && (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) return false; /* Max data length, check controller limits and alignment */ if (op->data.dir == SPI_MEM_DATA_IN && (op->data.nbytes > q->devtype_data->ahb_buf_size || (op->data.nbytes > q->devtype_data->rxfifo - 4 && !IS_ALIGNED(op->data.nbytes, 8)))) return false; if (op->data.dir == SPI_MEM_DATA_OUT && op->data.nbytes > q->devtype_data->txfifo) return false; return spi_mem_default_supports_op(mem, op); } static void fsl_qspi_prepare_lut(struct fsl_qspi *q, const struct spi_mem_op *op) { void __iomem *base = q->iobase; u32 lutval[4] = {}; int lutidx = 1, i; lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), op->cmd.opcode); /* * For some unknown reason, using LUT_ADDR doesn't work in some * cases (at least with only one byte long addresses), so * let's use LUT_MODE to write the address bytes one by one */ for (i = 0; i < op->addr.nbytes; i++) { u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE, LUT_PAD(op->addr.buswidth), addrbyte); lutidx++; } if (op->dummy.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, LUT_PAD(op->dummy.buswidth), op->dummy.nbytes * 8 / op->dummy.buswidth); lutidx++; } if (op->data.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, op->data.dir == SPI_MEM_DATA_IN ? LUT_FSL_READ : LUT_FSL_WRITE, LUT_PAD(op->data.buswidth), 0); lutidx++; } lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); /* unlock LUT */ qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); /* fill LUT */ for (i = 0; i < ARRAY_SIZE(lutval); i++) qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i)); /* lock LUT */ qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); } static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) { int ret; ret = clk_prepare_enable(q->clk_en); if (ret) return ret; ret = clk_prepare_enable(q->clk); if (ret) { clk_disable_unprepare(q->clk_en); return ret; } if (needs_wakeup_wait_mode(q)) cpu_latency_qos_add_request(&q->pm_qos_req, 0); return 0; } static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) { if (needs_wakeup_wait_mode(q)) cpu_latency_qos_remove_request(&q->pm_qos_req); clk_disable_unprepare(q->clk); clk_disable_unprepare(q->clk_en); } /* * If we have changed the content of the flash by writing or erasing, or if we * read from flash with a different offset into the page buffer, we need to * invalidate the AHB buffer. If we do not do so, we may read out the wrong * data. The spec tells us reset the AHB domain and Serial Flash domain at * the same time. */ static void fsl_qspi_invalidate(struct fsl_qspi *q) { u32 reg; reg = qspi_readl(q, q->iobase + QUADSPI_MCR); reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; qspi_writel(q, reg, q->iobase + QUADSPI_MCR); /* * The minimum delay : 1 AHB + 2 SFCK clocks. * Delay 1 us is enough. */ udelay(1); reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); qspi_writel(q, reg, q->iobase + QUADSPI_MCR); } static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi) { unsigned long rate = spi->max_speed_hz; int ret; if (q->selected == spi_get_chipselect(spi, 0)) return; if (needs_4x_clock(q)) rate *= 4; fsl_qspi_clk_disable_unprep(q); ret = clk_set_rate(q->clk, rate); if (ret) return; ret = fsl_qspi_clk_prep_enable(q); if (ret) return; q->selected = spi_get_chipselect(spi, 0); fsl_qspi_invalidate(q); } static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op) { memcpy_fromio(op->data.buf.in, q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size, op->data.nbytes); } static void fsl_qspi_fill_txfifo(struct fsl_qspi *q, const struct spi_mem_op *op) { void __iomem *base = q->iobase; int i; u32 val; for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { memcpy(&val, op->data.buf.out + i, 4); val = fsl_qspi_endian_xchg(q, val); qspi_writel(q, val, base + QUADSPI_TBDR); } if (i < op->data.nbytes) { memcpy(&val, op->data.buf.out + i, op->data.nbytes - i); val = fsl_qspi_endian_xchg(q, val); qspi_writel(q, val, base + QUADSPI_TBDR); } if (needs_fill_txfifo(q)) { for (i = op->data.nbytes; i < 16; i += 4) qspi_writel(q, 0, base + QUADSPI_TBDR); } } static void fsl_qspi_read_rxfifo(struct fsl_qspi *q, const struct spi_mem_op *op) { void __iomem *base = q->iobase; int i; u8 *buf = op->data.buf.in; u32 val; for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); val = fsl_qspi_endian_xchg(q, val); memcpy(buf + i, &val, 4); } if (i < op->data.nbytes) { val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); val = fsl_qspi_endian_xchg(q, val); memcpy(buf + i, &val, op->data.nbytes - i); } } static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op) { void __iomem *base = q->iobase; int err = 0; init_completion(&q->c); /* * Always start the sequence at the same index since we update * the LUT at each exec_op() call. And also specify the DATA * length, since it's has not been specified in the LUT. */ qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT), base + QUADSPI_IPCR); /* Wait for the interrupt. */ if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) err = -ETIMEDOUT; if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) fsl_qspi_read_rxfifo(q, op); return err; } static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base, u32 mask, u32 delay_us, u32 timeout_us) { u32 reg; if (!q->devtype_data->little_endian) mask = (u32)cpu_to_be32(mask); return readl_poll_timeout(base, reg, !(reg & mask), delay_us, timeout_us); } static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller); void __iomem *base = q->iobase; u32 addr_offset = 0; int err = 0; int invalid_mstrid = q->devtype_data->invalid_mstrid; mutex_lock(&q->lock); /* wait for the controller being ready */ fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK), 10, 1000); fsl_qspi_select_mem(q, mem->spi); if (needs_amba_base_offset(q)) addr_offset = q->memmap_phy; qspi_writel(q, q->selected * q->devtype_data->ahb_buf_size + addr_offset, base + QUADSPI_SFAR); qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) | QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK, base + QUADSPI_MCR); qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC, base + QUADSPI_SPTRCLR); qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF0CR); qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF1CR); qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF2CR); fsl_qspi_prepare_lut(q, op); /* * If we have large chunks of data, we read them through the AHB bus * by accessing the mapped memory. In all other cases we use * IP commands to access the flash. */ if (op->data.nbytes > (q->devtype_data->rxfifo - 4) && op->data.dir == SPI_MEM_DATA_IN) { fsl_qspi_read_ahb(q, op); } else { qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT); if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) fsl_qspi_fill_txfifo(q, op); err = fsl_qspi_do_op(q, op); } /* Invalidate the data in the AHB buffer. */ fsl_qspi_invalidate(q); mutex_unlock(&q->lock); return err; } static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller); if (op->data.dir == SPI_MEM_DATA_OUT) { if (op->data.nbytes > q->devtype_data->txfifo) op->data.nbytes = q->devtype_data->txfifo; } else { if (op->data.nbytes > q->devtype_data->ahb_buf_size) op->data.nbytes = q->devtype_data->ahb_buf_size; else if (op->data.nbytes > (q->devtype_data->rxfifo - 4)) op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); } return 0; } static int fsl_qspi_default_setup(struct fsl_qspi *q) { void __iomem *base = q->iobase; u32 reg, addr_offset = 0; int ret; /* disable and unprepare clock to avoid glitch pass to controller */ fsl_qspi_clk_disable_unprep(q); /* the default frequency, we will change it later if necessary. */ ret = clk_set_rate(q->clk, 66000000); if (ret) return ret; ret = fsl_qspi_clk_prep_enable(q); if (ret) return ret; /* Reset the module */ qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK, base + QUADSPI_MCR); udelay(1); /* Disable the module */ qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, base + QUADSPI_MCR); /* * Previous boot stages (BootROM, bootloader) might have used DDR * mode and did not clear the TDH bits. As we currently use SDR mode * only, clear the TDH bits if necessary. */ if (needs_tdh_setting(q)) qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) & ~QUADSPI_FLSHCR_TDH_MASK, base + QUADSPI_FLSHCR); reg = qspi_readl(q, base + QUADSPI_SMPR); qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK | QUADSPI_SMPR_FSPHS_MASK | QUADSPI_SMPR_HSENA_MASK | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); /* We only use the buffer3 for AHB read */ qspi_writel(q, 0, base + QUADSPI_BUF0IND); qspi_writel(q, 0, base + QUADSPI_BUF1IND); qspi_writel(q, 0, base + QUADSPI_BUF2IND); qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT), q->iobase + QUADSPI_BFGENCR); qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT); qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK | QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8), base + QUADSPI_BUF3CR); if (needs_amba_base_offset(q)) addr_offset = q->memmap_phy; /* * In HW there can be a maximum of four chips on two buses with * two chip selects on each bus. We use four chip selects in SW * to differentiate between the four chips. * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD, * SFB2AD accordingly. */ qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset, base + QUADSPI_SFA1AD); qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset, base + QUADSPI_SFA2AD); qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset, base + QUADSPI_SFB1AD); qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset, base + QUADSPI_SFB2AD); q->selected = -1; /* Enable the module */ qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, base + QUADSPI_MCR); /* clear all interrupt status */ qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR); /* enable the interrupt */ qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); return 0; } static const char *fsl_qspi_get_name(struct spi_mem *mem) { struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller); struct device *dev = &mem->spi->dev; const char *name; /* * In order to keep mtdparts compatible with the old MTD driver at * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the * platform_device of the controller. */ if (of_get_available_child_count(q->dev->of_node) == 1) return dev_name(q->dev); name = devm_kasprintf(dev, GFP_KERNEL, "%s-%d", dev_name(q->dev), spi_get_chipselect(mem->spi, 0)); if (!name) { dev_err(dev, "failed to get memory for custom flash name\n"); return ERR_PTR(-ENOMEM); } return name; } static const struct spi_controller_mem_ops fsl_qspi_mem_ops = { .adjust_op_size = fsl_qspi_adjust_op_size, .supports_op = fsl_qspi_supports_op, .exec_op = fsl_qspi_exec_op, .get_name = fsl_qspi_get_name, }; static int fsl_qspi_probe(struct platform_device *pdev) { struct spi_controller *ctlr; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct resource *res; struct fsl_qspi *q; int ret; ctlr = spi_alloc_host(&pdev->dev, sizeof(*q)); if (!ctlr) return -ENOMEM; ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; q = spi_controller_get_devdata(ctlr); q->dev = dev; q->devtype_data = of_device_get_match_data(dev); if (!q->devtype_data) { ret = -ENODEV; goto err_put_ctrl; } platform_set_drvdata(pdev, q); /* find the resources */ q->iobase = devm_platform_ioremap_resource_byname(pdev, "QuadSPI"); if (IS_ERR(q->iobase)) { ret = PTR_ERR(q->iobase); goto err_put_ctrl; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI-memory"); if (!res) { ret = -EINVAL; goto err_put_ctrl; } q->memmap_phy = res->start; /* Since there are 4 cs, map size required is 4 times ahb_buf_size */ q->ahb_addr = devm_ioremap(dev, q->memmap_phy, (q->devtype_data->ahb_buf_size * 4)); if (!q->ahb_addr) { ret = -ENOMEM; goto err_put_ctrl; } /* find the clocks */ q->clk_en = devm_clk_get(dev, "qspi_en"); if (IS_ERR(q->clk_en)) { ret = PTR_ERR(q->clk_en); goto err_put_ctrl; } q->clk = devm_clk_get(dev, "qspi"); if (IS_ERR(q->clk)) { ret = PTR_ERR(q->clk); goto err_put_ctrl; } ret = fsl_qspi_clk_prep_enable(q); if (ret) { dev_err(dev, "can not enable the clock\n"); goto err_put_ctrl; } /* find the irq */ ret = platform_get_irq(pdev, 0); if (ret < 0) goto err_disable_clk; ret = devm_request_irq(dev, ret, fsl_qspi_irq_handler, 0, pdev->name, q); if (ret) { dev_err(dev, "failed to request irq: %d\n", ret); goto err_disable_clk; } mutex_init(&q->lock); ctlr->bus_num = -1; ctlr->num_chipselect = 4; ctlr->mem_ops = &fsl_qspi_mem_ops; fsl_qspi_default_setup(q); ctlr->dev.of_node = np; ret = devm_spi_register_controller(dev, ctlr); if (ret) goto err_destroy_mutex; return 0; err_destroy_mutex: mutex_destroy(&q->lock); err_disable_clk: fsl_qspi_clk_disable_unprep(q); err_put_ctrl: spi_controller_put(ctlr); dev_err(dev, "Freescale QuadSPI probe failed\n"); return ret; } static void fsl_qspi_remove(struct platform_device *pdev) { struct fsl_qspi *q = platform_get_drvdata(pdev); /* disable the hardware */ qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER); fsl_qspi_clk_disable_unprep(q); mutex_destroy(&q->lock); } static int fsl_qspi_suspend(struct device *dev) { return 0; } static int fsl_qspi_resume(struct device *dev) { struct fsl_qspi *q = dev_get_drvdata(dev); fsl_qspi_default_setup(q); return 0; } static const struct of_device_id fsl_qspi_dt_ids[] = { { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, }, { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, }, { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, }, { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, }, { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, }, { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); static const struct dev_pm_ops fsl_qspi_pm_ops = { .suspend = fsl_qspi_suspend, .resume = fsl_qspi_resume, }; static struct platform_driver fsl_qspi_driver = { .driver = { .name = "fsl-quadspi", .of_match_table = fsl_qspi_dt_ids, .pm = &fsl_qspi_pm_ops, }, .probe = fsl_qspi_probe, .remove_new = fsl_qspi_remove, }; module_platform_driver(fsl_qspi_driver); MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); MODULE_AUTHOR("Freescale Semiconductor Inc."); MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>"); MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>"); MODULE_LICENSE("GPL v2"); |