Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 | /* * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_vlan.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/prefetch.h> #include <net/arp.h> #include "common.h" #include "regs.h" #include "sge_defs.h" #include "t3_cpl.h" #include "firmware_exports.h" #include "cxgb3_offload.h" #define USE_GTS 0 #define SGE_RX_SM_BUF_SIZE 1536 #define SGE_RX_COPY_THRES 256 #define SGE_RX_PULL_LEN 128 #define SGE_PG_RSVD SMP_CACHE_BYTES /* * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks. * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs * directly. */ #define FL0_PG_CHUNK_SIZE 2048 #define FL0_PG_ORDER 0 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER) #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192) #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1) #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER) #define SGE_RX_DROP_THRES 16 #define RX_RECLAIM_PERIOD (HZ/4) /* * Max number of Rx buffers we replenish at a time. */ #define MAX_RX_REFILL 16U /* * Period of the Tx buffer reclaim timer. This timer does not need to run * frequently as Tx buffers are usually reclaimed by new Tx packets. */ #define TX_RECLAIM_PERIOD (HZ / 4) #define TX_RECLAIM_TIMER_CHUNK 64U #define TX_RECLAIM_CHUNK 16U /* WR size in bytes */ #define WR_LEN (WR_FLITS * 8) /* * Types of Tx queues in each queue set. Order here matters, do not change. */ enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; /* Values for sge_txq.flags */ enum { TXQ_RUNNING = 1 << 0, /* fetch engine is running */ TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ }; struct tx_desc { __be64 flit[TX_DESC_FLITS]; }; struct rx_desc { __be32 addr_lo; __be32 len_gen; __be32 gen2; __be32 addr_hi; }; struct tx_sw_desc { /* SW state per Tx descriptor */ struct sk_buff *skb; u8 eop; /* set if last descriptor for packet */ u8 addr_idx; /* buffer index of first SGL entry in descriptor */ u8 fragidx; /* first page fragment associated with descriptor */ s8 sflit; /* start flit of first SGL entry in descriptor */ }; struct rx_sw_desc { /* SW state per Rx descriptor */ union { struct sk_buff *skb; struct fl_pg_chunk pg_chunk; }; DEFINE_DMA_UNMAP_ADDR(dma_addr); }; struct rsp_desc { /* response queue descriptor */ struct rss_header rss_hdr; __be32 flags; __be32 len_cq; struct_group(immediate, u8 imm_data[47]; u8 intr_gen; ); }; /* * Holds unmapping information for Tx packets that need deferred unmapping. * This structure lives at skb->head and must be allocated by callers. */ struct deferred_unmap_info { struct pci_dev *pdev; dma_addr_t addr[MAX_SKB_FRAGS + 1]; }; /* * Maps a number of flits to the number of Tx descriptors that can hold them. * The formula is * * desc = 1 + (flits - 2) / (WR_FLITS - 1). * * HW allows up to 4 descriptors to be combined into a WR. */ static u8 flit_desc_map[] = { 0, #if SGE_NUM_GENBITS == 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 #elif SGE_NUM_GENBITS == 2 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, #else # error "SGE_NUM_GENBITS must be 1 or 2" #endif }; static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) { return container_of(q, struct sge_qset, rspq); } static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) { return container_of(q, struct sge_qset, txq[qidx]); } /** * refill_rspq - replenish an SGE response queue * @adapter: the adapter * @q: the response queue to replenish * @credits: how many new responses to make available * * Replenishes a response queue by making the supplied number of responses * available to HW. */ static inline void refill_rspq(struct adapter *adapter, const struct sge_rspq *q, unsigned int credits) { rmb(); t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); } /** * need_skb_unmap - does the platform need unmapping of sk_buffs? * * Returns true if the platform needs sk_buff unmapping. The compiler * optimizes away unnecessary code if this returns true. */ static inline int need_skb_unmap(void) { #ifdef CONFIG_NEED_DMA_MAP_STATE return 1; #else return 0; #endif } /** * unmap_skb - unmap a packet main body and its page fragments * @skb: the packet * @q: the Tx queue containing Tx descriptors for the packet * @cidx: index of Tx descriptor * @pdev: the PCI device * * Unmap the main body of an sk_buff and its page fragments, if any. * Because of the fairly complicated structure of our SGLs and the desire * to conserve space for metadata, the information necessary to unmap an * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx * descriptors (the physical addresses of the various data buffers), and * the SW descriptor state (assorted indices). The send functions * initialize the indices for the first packet descriptor so we can unmap * the buffers held in the first Tx descriptor here, and we have enough * information at this point to set the state for the next Tx descriptor. * * Note that it is possible to clean up the first descriptor of a packet * before the send routines have written the next descriptors, but this * race does not cause any problem. We just end up writing the unmapping * info for the descriptor first. */ static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, unsigned int cidx, struct pci_dev *pdev) { const struct sg_ent *sgp; struct tx_sw_desc *d = &q->sdesc[cidx]; int nfrags, frag_idx, curflit, j = d->addr_idx; sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit]; frag_idx = d->fragidx; if (frag_idx == 0 && skb_headlen(skb)) { dma_unmap_single(&pdev->dev, be64_to_cpu(sgp->addr[0]), skb_headlen(skb), DMA_TO_DEVICE); j = 1; } curflit = d->sflit + 1 + j; nfrags = skb_shinfo(skb)->nr_frags; while (frag_idx < nfrags && curflit < WR_FLITS) { dma_unmap_page(&pdev->dev, be64_to_cpu(sgp->addr[j]), skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]), DMA_TO_DEVICE); j ^= 1; if (j == 0) { sgp++; curflit++; } curflit++; frag_idx++; } if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ d = cidx + 1 == q->size ? q->sdesc : d + 1; d->fragidx = frag_idx; d->addr_idx = j; d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ } } /** * free_tx_desc - reclaims Tx descriptors and their buffers * @adapter: the adapter * @q: the Tx queue to reclaim descriptors from * @n: the number of descriptors to reclaim * * Reclaims Tx descriptors from an SGE Tx queue and frees the associated * Tx buffers. Called with the Tx queue lock held. */ static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, unsigned int n) { struct tx_sw_desc *d; struct pci_dev *pdev = adapter->pdev; unsigned int cidx = q->cidx; const int need_unmap = need_skb_unmap() && q->cntxt_id >= FW_TUNNEL_SGEEC_START; d = &q->sdesc[cidx]; while (n--) { if (d->skb) { /* an SGL is present */ if (need_unmap) unmap_skb(d->skb, q, cidx, pdev); if (d->eop) { dev_consume_skb_any(d->skb); d->skb = NULL; } } ++d; if (++cidx == q->size) { cidx = 0; d = q->sdesc; } } q->cidx = cidx; } /** * reclaim_completed_tx - reclaims completed Tx descriptors * @adapter: the adapter * @q: the Tx queue to reclaim completed descriptors from * @chunk: maximum number of descriptors to reclaim * * Reclaims Tx descriptors that the SGE has indicated it has processed, * and frees the associated buffers if possible. Called with the Tx * queue's lock held. */ static inline unsigned int reclaim_completed_tx(struct adapter *adapter, struct sge_txq *q, unsigned int chunk) { unsigned int reclaim = q->processed - q->cleaned; reclaim = min(chunk, reclaim); if (reclaim) { free_tx_desc(adapter, q, reclaim); q->cleaned += reclaim; q->in_use -= reclaim; } return q->processed - q->cleaned; } /** * should_restart_tx - are there enough resources to restart a Tx queue? * @q: the Tx queue * * Checks if there are enough descriptors to restart a suspended Tx queue. */ static inline int should_restart_tx(const struct sge_txq *q) { unsigned int r = q->processed - q->cleaned; return q->in_use - r < (q->size >> 1); } static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q, struct rx_sw_desc *d) { if (q->use_pages && d->pg_chunk.page) { (*d->pg_chunk.p_cnt)--; if (!*d->pg_chunk.p_cnt) dma_unmap_page(&pdev->dev, d->pg_chunk.mapping, q->alloc_size, DMA_FROM_DEVICE); put_page(d->pg_chunk.page); d->pg_chunk.page = NULL; } else { dma_unmap_single(&pdev->dev, dma_unmap_addr(d, dma_addr), q->buf_size, DMA_FROM_DEVICE); kfree_skb(d->skb); d->skb = NULL; } } /** * free_rx_bufs - free the Rx buffers on an SGE free list * @pdev: the PCI device associated with the adapter * @q: the SGE free list to clean up * * Release the buffers on an SGE free-buffer Rx queue. HW fetching from * this queue should be stopped before calling this function. */ static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) { unsigned int cidx = q->cidx; while (q->credits--) { struct rx_sw_desc *d = &q->sdesc[cidx]; clear_rx_desc(pdev, q, d); if (++cidx == q->size) cidx = 0; } if (q->pg_chunk.page) { __free_pages(q->pg_chunk.page, q->order); q->pg_chunk.page = NULL; } } /** * add_one_rx_buf - add a packet buffer to a free-buffer list * @va: buffer start VA * @len: the buffer length * @d: the HW Rx descriptor to write * @sd: the SW Rx descriptor to write * @gen: the generation bit value * @pdev: the PCI device associated with the adapter * * Add a buffer of the given length to the supplied HW and SW Rx * descriptors. */ static inline int add_one_rx_buf(void *va, unsigned int len, struct rx_desc *d, struct rx_sw_desc *sd, unsigned int gen, struct pci_dev *pdev) { dma_addr_t mapping; mapping = dma_map_single(&pdev->dev, va, len, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&pdev->dev, mapping))) return -ENOMEM; dma_unmap_addr_set(sd, dma_addr, mapping); d->addr_lo = cpu_to_be32(mapping); d->addr_hi = cpu_to_be32((u64) mapping >> 32); dma_wmb(); d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); return 0; } static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d, unsigned int gen) { d->addr_lo = cpu_to_be32(mapping); d->addr_hi = cpu_to_be32((u64) mapping >> 32); dma_wmb(); d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); return 0; } static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp, unsigned int order) { if (!q->pg_chunk.page) { dma_addr_t mapping; q->pg_chunk.page = alloc_pages(gfp, order); if (unlikely(!q->pg_chunk.page)) return -ENOMEM; q->pg_chunk.va = page_address(q->pg_chunk.page); q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) - SGE_PG_RSVD; q->pg_chunk.offset = 0; mapping = dma_map_page(&adapter->pdev->dev, q->pg_chunk.page, 0, q->alloc_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&adapter->pdev->dev, mapping))) { __free_pages(q->pg_chunk.page, order); q->pg_chunk.page = NULL; return -EIO; } q->pg_chunk.mapping = mapping; } sd->pg_chunk = q->pg_chunk; prefetch(sd->pg_chunk.p_cnt); q->pg_chunk.offset += q->buf_size; if (q->pg_chunk.offset == (PAGE_SIZE << order)) q->pg_chunk.page = NULL; else { q->pg_chunk.va += q->buf_size; get_page(q->pg_chunk.page); } if (sd->pg_chunk.offset == 0) *sd->pg_chunk.p_cnt = 1; else *sd->pg_chunk.p_cnt += 1; return 0; } static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) { if (q->pend_cred >= q->credits / 4) { q->pend_cred = 0; wmb(); t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); } } /** * refill_fl - refill an SGE free-buffer list * @adap: the adapter * @q: the free-list to refill * @n: the number of new buffers to allocate * @gfp: the gfp flags for allocating new buffers * * (Re)populate an SGE free-buffer list with up to @n new packet buffers, * allocated with the supplied gfp flags. The caller must assure that * @n does not exceed the queue's capacity. */ static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) { struct rx_sw_desc *sd = &q->sdesc[q->pidx]; struct rx_desc *d = &q->desc[q->pidx]; unsigned int count = 0; while (n--) { dma_addr_t mapping; int err; if (q->use_pages) { if (unlikely(alloc_pg_chunk(adap, q, sd, gfp, q->order))) { nomem: q->alloc_failed++; break; } mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset; dma_unmap_addr_set(sd, dma_addr, mapping); add_one_rx_chunk(mapping, d, q->gen); dma_sync_single_for_device(&adap->pdev->dev, mapping, q->buf_size - SGE_PG_RSVD, DMA_FROM_DEVICE); } else { void *buf_start; struct sk_buff *skb = alloc_skb(q->buf_size, gfp); if (!skb) goto nomem; sd->skb = skb; buf_start = skb->data; err = add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen, adap->pdev); if (unlikely(err)) { clear_rx_desc(adap->pdev, q, sd); break; } } d++; sd++; if (++q->pidx == q->size) { q->pidx = 0; q->gen ^= 1; sd = q->sdesc; d = q->desc; } count++; } q->credits += count; q->pend_cred += count; ring_fl_db(adap, q); return count; } static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) { refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits), GFP_ATOMIC | __GFP_COMP); } /** * recycle_rx_buf - recycle a receive buffer * @adap: the adapter * @q: the SGE free list * @idx: index of buffer to recycle * * Recycles the specified buffer on the given free list by adding it at * the next available slot on the list. */ static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, unsigned int idx) { struct rx_desc *from = &q->desc[idx]; struct rx_desc *to = &q->desc[q->pidx]; q->sdesc[q->pidx] = q->sdesc[idx]; to->addr_lo = from->addr_lo; /* already big endian */ to->addr_hi = from->addr_hi; /* likewise */ dma_wmb(); to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); if (++q->pidx == q->size) { q->pidx = 0; q->gen ^= 1; } q->credits++; q->pend_cred++; ring_fl_db(adap, q); } /** * alloc_ring - allocate resources for an SGE descriptor ring * @pdev: the PCI device * @nelem: the number of descriptors * @elem_size: the size of each descriptor * @sw_size: the size of the SW state associated with each ring element * @phys: the physical address of the allocated ring * @metadata: address of the array holding the SW state for the ring * * Allocates resources for an SGE descriptor ring, such as Tx queues, * free buffer lists, or response queues. Each SGE ring requires * space for its HW descriptors plus, optionally, space for the SW state * associated with each HW entry (the metadata). The function returns * three values: the virtual address for the HW ring (the return value * of the function), the physical address of the HW ring, and the address * of the SW ring. */ static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, size_t sw_size, dma_addr_t * phys, void *metadata) { size_t len = nelem * elem_size; void *s = NULL; void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); if (!p) return NULL; if (sw_size && metadata) { s = kcalloc(nelem, sw_size, GFP_KERNEL); if (!s) { dma_free_coherent(&pdev->dev, len, p, *phys); return NULL; } *(void **)metadata = s; } return p; } /** * t3_reset_qset - reset a sge qset * @q: the queue set * * Reset the qset structure. * the NAPI structure is preserved in the event of * the qset's reincarnation, for example during EEH recovery. */ static void t3_reset_qset(struct sge_qset *q) { if (q->adap && !(q->adap->flags & NAPI_INIT)) { memset(q, 0, sizeof(*q)); return; } q->adap = NULL; memset(&q->rspq, 0, sizeof(q->rspq)); memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET); memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET); q->txq_stopped = 0; q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */ q->rx_reclaim_timer.function = NULL; q->nomem = 0; napi_free_frags(&q->napi); } /** * t3_free_qset - free the resources of an SGE queue set * @adapter: the adapter owning the queue set * @q: the queue set * * Release the HW and SW resources associated with an SGE queue set, such * as HW contexts, packet buffers, and descriptor rings. Traffic to the * queue set must be quiesced prior to calling this. */ static void t3_free_qset(struct adapter *adapter, struct sge_qset *q) { int i; struct pci_dev *pdev = adapter->pdev; for (i = 0; i < SGE_RXQ_PER_SET; ++i) if (q->fl[i].desc) { spin_lock_irq(&adapter->sge.reg_lock); t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); spin_unlock_irq(&adapter->sge.reg_lock); free_rx_bufs(pdev, &q->fl[i]); kfree(q->fl[i].sdesc); dma_free_coherent(&pdev->dev, q->fl[i].size * sizeof(struct rx_desc), q->fl[i].desc, q->fl[i].phys_addr); } for (i = 0; i < SGE_TXQ_PER_SET; ++i) if (q->txq[i].desc) { spin_lock_irq(&adapter->sge.reg_lock); t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); spin_unlock_irq(&adapter->sge.reg_lock); if (q->txq[i].sdesc) { free_tx_desc(adapter, &q->txq[i], q->txq[i].in_use); kfree(q->txq[i].sdesc); } dma_free_coherent(&pdev->dev, q->txq[i].size * sizeof(struct tx_desc), q->txq[i].desc, q->txq[i].phys_addr); __skb_queue_purge(&q->txq[i].sendq); } if (q->rspq.desc) { spin_lock_irq(&adapter->sge.reg_lock); t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); spin_unlock_irq(&adapter->sge.reg_lock); dma_free_coherent(&pdev->dev, q->rspq.size * sizeof(struct rsp_desc), q->rspq.desc, q->rspq.phys_addr); } t3_reset_qset(q); } /** * init_qset_cntxt - initialize an SGE queue set context info * @qs: the queue set * @id: the queue set id * * Initializes the TIDs and context ids for the queues of a queue set. */ static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) { qs->rspq.cntxt_id = id; qs->fl[0].cntxt_id = 2 * id; qs->fl[1].cntxt_id = 2 * id + 1; qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; } /** * sgl_len - calculates the size of an SGL of the given capacity * @n: the number of SGL entries * * Calculates the number of flits needed for a scatter/gather list that * can hold the given number of entries. */ static inline unsigned int sgl_len(unsigned int n) { /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ return (3 * n) / 2 + (n & 1); } /** * flits_to_desc - returns the num of Tx descriptors for the given flits * @n: the number of flits * * Calculates the number of Tx descriptors needed for the supplied number * of flits. */ static inline unsigned int flits_to_desc(unsigned int n) { BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); return flit_desc_map[n]; } /** * get_packet - return the next ingress packet buffer from a free list * @adap: the adapter that received the packet * @fl: the SGE free list holding the packet * @len: the packet length including any SGE padding * @drop_thres: # of remaining buffers before we start dropping packets * * Get the next packet from a free list and complete setup of the * sk_buff. If the packet is small we make a copy and recycle the * original buffer, otherwise we use the original buffer itself. If a * positive drop threshold is supplied packets are dropped and their * buffers recycled if (a) the number of remaining buffers is under the * threshold and the packet is too big to copy, or (b) the packet should * be copied but there is no memory for the copy. */ static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, unsigned int len, unsigned int drop_thres) { struct sk_buff *skb = NULL; struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; prefetch(sd->skb->data); fl->credits--; if (len <= SGE_RX_COPY_THRES) { skb = alloc_skb(len, GFP_ATOMIC); if (likely(skb != NULL)) { __skb_put(skb, len); dma_sync_single_for_cpu(&adap->pdev->dev, dma_unmap_addr(sd, dma_addr), len, DMA_FROM_DEVICE); memcpy(skb->data, sd->skb->data, len); dma_sync_single_for_device(&adap->pdev->dev, dma_unmap_addr(sd, dma_addr), len, DMA_FROM_DEVICE); } else if (!drop_thres) goto use_orig_buf; recycle: recycle_rx_buf(adap, fl, fl->cidx); return skb; } if (unlikely(fl->credits < drop_thres) && refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1), GFP_ATOMIC | __GFP_COMP) == 0) goto recycle; use_orig_buf: dma_unmap_single(&adap->pdev->dev, dma_unmap_addr(sd, dma_addr), fl->buf_size, DMA_FROM_DEVICE); skb = sd->skb; skb_put(skb, len); __refill_fl(adap, fl); return skb; } /** * get_packet_pg - return the next ingress packet buffer from a free list * @adap: the adapter that received the packet * @fl: the SGE free list holding the packet * @q: the queue * @len: the packet length including any SGE padding * @drop_thres: # of remaining buffers before we start dropping packets * * Get the next packet from a free list populated with page chunks. * If the packet is small we make a copy and recycle the original buffer, * otherwise we attach the original buffer as a page fragment to a fresh * sk_buff. If a positive drop threshold is supplied packets are dropped * and their buffers recycled if (a) the number of remaining buffers is * under the threshold and the packet is too big to copy, or (b) there's * no system memory. * * Note: this function is similar to @get_packet but deals with Rx buffers * that are page chunks rather than sk_buffs. */ static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl, struct sge_rspq *q, unsigned int len, unsigned int drop_thres) { struct sk_buff *newskb, *skb; struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr); newskb = skb = q->pg_skb; if (!skb && (len <= SGE_RX_COPY_THRES)) { newskb = alloc_skb(len, GFP_ATOMIC); if (likely(newskb != NULL)) { __skb_put(newskb, len); dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr, len, DMA_FROM_DEVICE); memcpy(newskb->data, sd->pg_chunk.va, len); dma_sync_single_for_device(&adap->pdev->dev, dma_addr, len, DMA_FROM_DEVICE); } else if (!drop_thres) return NULL; recycle: fl->credits--; recycle_rx_buf(adap, fl, fl->cidx); q->rx_recycle_buf++; return newskb; } if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres))) goto recycle; prefetch(sd->pg_chunk.p_cnt); if (!skb) newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC); if (unlikely(!newskb)) { if (!drop_thres) return NULL; goto recycle; } dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr, len, DMA_FROM_DEVICE); (*sd->pg_chunk.p_cnt)--; if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping, fl->alloc_size, DMA_FROM_DEVICE); if (!skb) { __skb_put(newskb, SGE_RX_PULL_LEN); memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN); skb_fill_page_desc(newskb, 0, sd->pg_chunk.page, sd->pg_chunk.offset + SGE_RX_PULL_LEN, len - SGE_RX_PULL_LEN); newskb->len = len; newskb->data_len = len - SGE_RX_PULL_LEN; newskb->truesize += newskb->data_len; } else { skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags, sd->pg_chunk.page, sd->pg_chunk.offset, len); newskb->len += len; newskb->data_len += len; newskb->truesize += len; } fl->credits--; /* * We do not refill FLs here, we let the caller do it to overlap a * prefetch. */ return newskb; } /** * get_imm_packet - return the next ingress packet buffer from a response * @resp: the response descriptor containing the packet data * * Return a packet containing the immediate data of the given response. */ static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) { struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); if (skb) { __skb_put(skb, IMMED_PKT_SIZE); BUILD_BUG_ON(IMMED_PKT_SIZE != sizeof(resp->immediate)); skb_copy_to_linear_data(skb, &resp->immediate, IMMED_PKT_SIZE); } return skb; } /** * calc_tx_descs - calculate the number of Tx descriptors for a packet * @skb: the packet * * Returns the number of Tx descriptors needed for the given Ethernet * packet. Ethernet packets require addition of WR and CPL headers. */ static inline unsigned int calc_tx_descs(const struct sk_buff *skb) { unsigned int flits; if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) return 1; flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; if (skb_shinfo(skb)->gso_size) flits++; return flits_to_desc(flits); } /* map_skb - map a packet main body and its page fragments * @pdev: the PCI device * @skb: the packet * @addr: placeholder to save the mapped addresses * * map the main body of an sk_buff and its page fragments, if any. */ static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb, dma_addr_t *addr) { const skb_frag_t *fp, *end; const struct skb_shared_info *si; if (skb_headlen(skb)) { *addr = dma_map_single(&pdev->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(&pdev->dev, *addr)) goto out_err; addr++; } si = skb_shinfo(skb); end = &si->frags[si->nr_frags]; for (fp = si->frags; fp < end; fp++) { *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp), DMA_TO_DEVICE); if (dma_mapping_error(&pdev->dev, *addr)) goto unwind; addr++; } return 0; unwind: while (fp-- > si->frags) dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); dma_unmap_single(&pdev->dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); out_err: return -ENOMEM; } /** * write_sgl - populate a scatter/gather list for a packet * @skb: the packet * @sgp: the SGL to populate * @start: start address of skb main body data to include in the SGL * @len: length of skb main body data to include in the SGL * @addr: the list of the mapped addresses * * Copies the scatter/gather list for the buffers that make up a packet * and returns the SGL size in 8-byte words. The caller must size the SGL * appropriately. */ static inline unsigned int write_sgl(const struct sk_buff *skb, struct sg_ent *sgp, unsigned char *start, unsigned int len, const dma_addr_t *addr) { unsigned int i, j = 0, k = 0, nfrags; if (len) { sgp->len[0] = cpu_to_be32(len); sgp->addr[j++] = cpu_to_be64(addr[k++]); } nfrags = skb_shinfo(skb)->nr_frags; for (i = 0; i < nfrags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; sgp->len[j] = cpu_to_be32(skb_frag_size(frag)); sgp->addr[j] = cpu_to_be64(addr[k++]); j ^= 1; if (j == 0) ++sgp; } if (j) sgp->len[j] = 0; return ((nfrags + (len != 0)) * 3) / 2 + j; } /** * check_ring_tx_db - check and potentially ring a Tx queue's doorbell * @adap: the adapter * @q: the Tx queue * * Ring the doorbel if a Tx queue is asleep. There is a natural race, * where the HW is going to sleep just after we checked, however, * then the interrupt handler will detect the outstanding TX packet * and ring the doorbell for us. * * When GTS is disabled we unconditionally ring the doorbell. */ static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) { #if USE_GTS clear_bit(TXQ_LAST_PKT_DB, &q->flags); if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { set_bit(TXQ_LAST_PKT_DB, &q->flags); t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); } #else wmb(); /* write descriptors before telling HW */ t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); #endif } static inline void wr_gen2(struct tx_desc *d, unsigned int gen) { #if SGE_NUM_GENBITS == 2 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); #endif } /** * write_wr_hdr_sgl - write a WR header and, optionally, SGL * @ndesc: number of Tx descriptors spanned by the SGL * @skb: the packet corresponding to the WR * @d: first Tx descriptor to be written * @pidx: index of above descriptors * @q: the SGE Tx queue * @sgl: the SGL * @flits: number of flits to the start of the SGL in the first descriptor * @sgl_flits: the SGL size in flits * @gen: the Tx descriptor generation * @wr_hi: top 32 bits of WR header based on WR type (big endian) * @wr_lo: low 32 bits of WR header based on WR type (big endian) * * Write a work request header and an associated SGL. If the SGL is * small enough to fit into one Tx descriptor it has already been written * and we just need to write the WR header. Otherwise we distribute the * SGL across the number of descriptors it spans. */ static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, struct tx_desc *d, unsigned int pidx, const struct sge_txq *q, const struct sg_ent *sgl, unsigned int flits, unsigned int sgl_flits, unsigned int gen, __be32 wr_hi, __be32 wr_lo) { struct work_request_hdr *wrp = (struct work_request_hdr *)d; struct tx_sw_desc *sd = &q->sdesc[pidx]; sd->skb = skb; if (need_skb_unmap()) { sd->fragidx = 0; sd->addr_idx = 0; sd->sflit = flits; } if (likely(ndesc == 1)) { sd->eop = 1; wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | V_WR_SGLSFLT(flits)) | wr_hi; dma_wmb(); wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | V_WR_GEN(gen)) | wr_lo; wr_gen2(d, gen); } else { unsigned int ogen = gen; const u64 *fp = (const u64 *)sgl; struct work_request_hdr *wp = wrp; wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | V_WR_SGLSFLT(flits)) | wr_hi; while (sgl_flits) { unsigned int avail = WR_FLITS - flits; if (avail > sgl_flits) avail = sgl_flits; memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); sgl_flits -= avail; ndesc--; if (!sgl_flits) break; fp += avail; d++; sd->eop = 0; sd++; if (++pidx == q->size) { pidx = 0; gen ^= 1; d = q->desc; sd = q->sdesc; } sd->skb = skb; wrp = (struct work_request_hdr *)d; wrp->wr_hi = htonl(V_WR_DATATYPE(1) | V_WR_SGLSFLT(1)) | wr_hi; wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, sgl_flits + 1)) | V_WR_GEN(gen)) | wr_lo; wr_gen2(d, gen); flits = 1; } sd->eop = 1; wrp->wr_hi |= htonl(F_WR_EOP); dma_wmb(); wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; wr_gen2((struct tx_desc *)wp, ogen); WARN_ON(ndesc != 0); } } /** * write_tx_pkt_wr - write a TX_PKT work request * @adap: the adapter * @skb: the packet to send * @pi: the egress interface * @pidx: index of the first Tx descriptor to write * @gen: the generation value to use * @q: the Tx queue * @ndesc: number of descriptors the packet will occupy * @compl: the value of the COMPL bit to use * @addr: address * * Generate a TX_PKT work request to send the supplied packet. */ static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, const struct port_info *pi, unsigned int pidx, unsigned int gen, struct sge_txq *q, unsigned int ndesc, unsigned int compl, const dma_addr_t *addr) { unsigned int flits, sgl_flits, cntrl, tso_info; struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; struct tx_desc *d = &q->desc[pidx]; struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; cpl->len = htonl(skb->len); cntrl = V_TXPKT_INTF(pi->port_id); if (skb_vlan_tag_present(skb)) cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb)); tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); if (tso_info) { int eth_type; struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; d->flit[2] = 0; cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); hdr->cntrl = htonl(cntrl); eth_type = skb_network_offset(skb) == ETH_HLEN ? CPL_ETH_II : CPL_ETH_II_VLAN; tso_info |= V_LSO_ETH_TYPE(eth_type) | V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) | V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff); hdr->lso_info = htonl(tso_info); flits = 3; } else { cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); cpl->cntrl = htonl(cntrl); if (skb->len <= WR_LEN - sizeof(*cpl)) { q->sdesc[pidx].skb = NULL; if (!skb->data_len) skb_copy_from_linear_data(skb, &d->flit[2], skb->len); else skb_copy_bits(skb, 0, &d->flit[2], skb->len); flits = (skb->len + 7) / 8 + 2; cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | F_WR_SOP | F_WR_EOP | compl); dma_wmb(); cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | V_WR_TID(q->token)); wr_gen2(d, gen); dev_consume_skb_any(skb); return; } flits = 2; } sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr); write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), htonl(V_WR_TID(q->token))); } static inline void t3_stop_tx_queue(struct netdev_queue *txq, struct sge_qset *qs, struct sge_txq *q) { netif_tx_stop_queue(txq); set_bit(TXQ_ETH, &qs->txq_stopped); q->stops++; } /** * t3_eth_xmit - add a packet to the Ethernet Tx queue * @skb: the packet * @dev: the egress net device * * Add a packet to an SGE Tx queue. Runs with softirqs disabled. */ netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) { int qidx; unsigned int ndesc, pidx, credits, gen, compl; const struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; struct netdev_queue *txq; struct sge_qset *qs; struct sge_txq *q; dma_addr_t addr[MAX_SKB_FRAGS + 1]; /* * The chip min packet length is 9 octets but play safe and reject * anything shorter than an Ethernet header. */ if (unlikely(skb->len < ETH_HLEN)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } qidx = skb_get_queue_mapping(skb); qs = &pi->qs[qidx]; q = &qs->txq[TXQ_ETH]; txq = netdev_get_tx_queue(dev, qidx); reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); credits = q->size - q->in_use; ndesc = calc_tx_descs(skb); if (unlikely(credits < ndesc)) { t3_stop_tx_queue(txq, qs, q); dev_err(&adap->pdev->dev, "%s: Tx ring %u full while queue awake!\n", dev->name, q->cntxt_id & 7); return NETDEV_TX_BUSY; } /* Check if ethernet packet can't be sent as immediate data */ if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) { if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) { dev_kfree_skb(skb); return NETDEV_TX_OK; } } q->in_use += ndesc; if (unlikely(credits - ndesc < q->stop_thres)) { t3_stop_tx_queue(txq, qs, q); if (should_restart_tx(q) && test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { q->restarts++; netif_tx_start_queue(txq); } } gen = q->gen; q->unacked += ndesc; compl = (q->unacked & 8) << (S_WR_COMPL - 3); q->unacked &= 7; pidx = q->pidx; q->pidx += ndesc; if (q->pidx >= q->size) { q->pidx -= q->size; q->gen ^= 1; } /* update port statistics */ if (skb->ip_summed == CHECKSUM_PARTIAL) qs->port_stats[SGE_PSTAT_TX_CSUM]++; if (skb_shinfo(skb)->gso_size) qs->port_stats[SGE_PSTAT_TSO]++; if (skb_vlan_tag_present(skb)) qs->port_stats[SGE_PSTAT_VLANINS]++; /* * We do not use Tx completion interrupts to free DMAd Tx packets. * This is good for performance but means that we rely on new Tx * packets arriving to run the destructors of completed packets, * which open up space in their sockets' send queues. Sometimes * we do not get such new packets causing Tx to stall. A single * UDP transmitter is a good example of this situation. We have * a clean up timer that periodically reclaims completed packets * but it doesn't run often enough (nor do we want it to) to prevent * lengthy stalls. A solution to this problem is to run the * destructor early, after the packet is queued but before it's DMAd. * A cons is that we lie to socket memory accounting, but the amount * of extra memory is reasonable (limited by the number of Tx * descriptors), the packets do actually get freed quickly by new * packets almost always, and for protocols like TCP that wait for * acks to really free up the data the extra memory is even less. * On the positive side we run the destructors on the sending CPU * rather than on a potentially different completing CPU, usually a * good thing. We also run them without holding our Tx queue lock, * unlike what reclaim_completed_tx() would otherwise do. * * Run the destructor before telling the DMA engine about the packet * to make sure it doesn't complete and get freed prematurely. */ if (likely(!skb_shared(skb))) skb_orphan(skb); write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr); check_ring_tx_db(adap, q); return NETDEV_TX_OK; } /** * write_imm - write a packet into a Tx descriptor as immediate data * @d: the Tx descriptor to write * @skb: the packet * @len: the length of packet data to write as immediate data * @gen: the generation bit value to write * * Writes a packet as immediate data into a Tx descriptor. The packet * contains a work request at its beginning. We must write the packet * carefully so the SGE doesn't read it accidentally before it's written * in its entirety. */ static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, unsigned int len, unsigned int gen) { struct work_request_hdr *from = (struct work_request_hdr *)skb->data; struct work_request_hdr *to = (struct work_request_hdr *)d; if (likely(!skb->data_len)) memcpy(&to[1], &from[1], len - sizeof(*from)); else skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from)); to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | V_WR_BCNTLFLT(len & 7)); dma_wmb(); to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | V_WR_LEN((len + 7) / 8)); wr_gen2(d, gen); kfree_skb(skb); } /** * check_desc_avail - check descriptor availability on a send queue * @adap: the adapter * @q: the send queue * @skb: the packet needing the descriptors * @ndesc: the number of Tx descriptors needed * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) * * Checks if the requested number of Tx descriptors is available on an * SGE send queue. If the queue is already suspended or not enough * descriptors are available the packet is queued for later transmission. * Must be called with the Tx queue locked. * * Returns 0 if enough descriptors are available, 1 if there aren't * enough descriptors and the packet has been queued, and 2 if the caller * needs to retry because there weren't enough descriptors at the * beginning of the call but some freed up in the mean time. */ static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, struct sk_buff *skb, unsigned int ndesc, unsigned int qid) { if (unlikely(!skb_queue_empty(&q->sendq))) { addq_exit:__skb_queue_tail(&q->sendq, skb); return 1; } if (unlikely(q->size - q->in_use < ndesc)) { struct sge_qset *qs = txq_to_qset(q, qid); set_bit(qid, &qs->txq_stopped); smp_mb__after_atomic(); if (should_restart_tx(q) && test_and_clear_bit(qid, &qs->txq_stopped)) return 2; q->stops++; goto addq_exit; } return 0; } /** * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs * @q: the SGE control Tx queue * * This is a variant of reclaim_completed_tx() that is used for Tx queues * that send only immediate data (presently just the control queues) and * thus do not have any sk_buffs to release. */ static inline void reclaim_completed_tx_imm(struct sge_txq *q) { unsigned int reclaim = q->processed - q->cleaned; q->in_use -= reclaim; q->cleaned += reclaim; } static inline int immediate(const struct sk_buff *skb) { return skb->len <= WR_LEN; } /** * ctrl_xmit - send a packet through an SGE control Tx queue * @adap: the adapter * @q: the control queue * @skb: the packet * * Send a packet through an SGE control Tx queue. Packets sent through * a control queue must fit entirely as immediate data in a single Tx * descriptor and have no page fragments. */ static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, struct sk_buff *skb) { int ret; struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; if (unlikely(!immediate(skb))) { WARN_ON(1); dev_kfree_skb(skb); return NET_XMIT_SUCCESS; } wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); wrp->wr_lo = htonl(V_WR_TID(q->token)); spin_lock(&q->lock); again:reclaim_completed_tx_imm(q); ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); if (unlikely(ret)) { if (ret == 1) { spin_unlock(&q->lock); return NET_XMIT_CN; } goto again; } write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); q->in_use++; if (++q->pidx >= q->size) { q->pidx = 0; q->gen ^= 1; } spin_unlock(&q->lock); wmb(); t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); return NET_XMIT_SUCCESS; } /** * restart_ctrlq - restart a suspended control queue * @w: pointer to the work associated with this handler * * Resumes transmission on a suspended Tx control queue. */ static void restart_ctrlq(struct work_struct *w) { struct sk_buff *skb; struct sge_qset *qs = container_of(w, struct sge_qset, txq[TXQ_CTRL].qresume_task); struct sge_txq *q = &qs->txq[TXQ_CTRL]; spin_lock(&q->lock); again:reclaim_completed_tx_imm(q); while (q->in_use < q->size && (skb = __skb_dequeue(&q->sendq)) != NULL) { write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); if (++q->pidx >= q->size) { q->pidx = 0; q->gen ^= 1; } q->in_use++; } if (!skb_queue_empty(&q->sendq)) { set_bit(TXQ_CTRL, &qs->txq_stopped); smp_mb__after_atomic(); if (should_restart_tx(q) && test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) goto again; q->stops++; } spin_unlock(&q->lock); wmb(); t3_write_reg(qs->adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); } /* * Send a management message through control queue 0 */ int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb) { int ret; local_bh_disable(); ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb); local_bh_enable(); return ret; } /** * deferred_unmap_destructor - unmap a packet when it is freed * @skb: the packet * * This is the packet destructor used for Tx packets that need to remain * mapped until they are freed rather than until their Tx descriptors are * freed. */ static void deferred_unmap_destructor(struct sk_buff *skb) { int i; const dma_addr_t *p; const struct skb_shared_info *si; const struct deferred_unmap_info *dui; dui = (struct deferred_unmap_info *)skb->head; p = dui->addr; if (skb_tail_pointer(skb) - skb_transport_header(skb)) dma_unmap_single(&dui->pdev->dev, *p++, skb_tail_pointer(skb) - skb_transport_header(skb), DMA_TO_DEVICE); si = skb_shinfo(skb); for (i = 0; i < si->nr_frags; i++) dma_unmap_page(&dui->pdev->dev, *p++, skb_frag_size(&si->frags[i]), DMA_TO_DEVICE); } static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev, const struct sg_ent *sgl, int sgl_flits) { dma_addr_t *p; struct deferred_unmap_info *dui; dui = (struct deferred_unmap_info *)skb->head; dui->pdev = pdev; for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) { *p++ = be64_to_cpu(sgl->addr[0]); *p++ = be64_to_cpu(sgl->addr[1]); } if (sgl_flits) *p = be64_to_cpu(sgl->addr[0]); } /** * write_ofld_wr - write an offload work request * @adap: the adapter * @skb: the packet to send * @q: the Tx queue * @pidx: index of the first Tx descriptor to write * @gen: the generation value to use * @ndesc: number of descriptors the packet will occupy * @addr: the address * * Write an offload work request to send the supplied packet. The packet * data already carry the work request with most fields populated. */ static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, struct sge_txq *q, unsigned int pidx, unsigned int gen, unsigned int ndesc, const dma_addr_t *addr) { unsigned int sgl_flits, flits; struct work_request_hdr *from; struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; struct tx_desc *d = &q->desc[pidx]; if (immediate(skb)) { q->sdesc[pidx].skb = NULL; write_imm(d, skb, skb->len, gen); return; } /* Only TX_DATA builds SGLs */ from = (struct work_request_hdr *)skb->data; memcpy(&d->flit[1], &from[1], skb_transport_offset(skb) - sizeof(*from)); flits = skb_transport_offset(skb) / 8; sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb), skb_tail_pointer(skb) - skb_transport_header(skb), addr); if (need_skb_unmap()) { setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits); skb->destructor = deferred_unmap_destructor; } write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, from->wr_hi, from->wr_lo); } /** * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet * @skb: the packet * * Returns the number of Tx descriptors needed for the given offload * packet. These packets are already fully constructed. */ static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) { unsigned int flits, cnt; if (skb->len <= WR_LEN) return 1; /* packet fits as immediate data */ flits = skb_transport_offset(skb) / 8; /* headers */ cnt = skb_shinfo(skb)->nr_frags; if (skb_tail_pointer(skb) != skb_transport_header(skb)) cnt++; return flits_to_desc(flits + sgl_len(cnt)); } /** * ofld_xmit - send a packet through an offload queue * @adap: the adapter * @q: the Tx offload queue * @skb: the packet * * Send an offload packet through an SGE offload queue. */ static int ofld_xmit(struct adapter *adap, struct sge_txq *q, struct sk_buff *skb) { int ret; unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; spin_lock(&q->lock); again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); if (unlikely(ret)) { if (ret == 1) { skb->priority = ndesc; /* save for restart */ spin_unlock(&q->lock); return NET_XMIT_CN; } goto again; } if (!immediate(skb) && map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) { spin_unlock(&q->lock); return NET_XMIT_SUCCESS; } gen = q->gen; q->in_use += ndesc; pidx = q->pidx; q->pidx += ndesc; if (q->pidx >= q->size) { q->pidx -= q->size; q->gen ^= 1; } spin_unlock(&q->lock); write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head); check_ring_tx_db(adap, q); return NET_XMIT_SUCCESS; } /** * restart_offloadq - restart a suspended offload queue * @w: pointer to the work associated with this handler * * Resumes transmission on a suspended Tx offload queue. */ static void restart_offloadq(struct work_struct *w) { struct sk_buff *skb; struct sge_qset *qs = container_of(w, struct sge_qset, txq[TXQ_OFLD].qresume_task); struct sge_txq *q = &qs->txq[TXQ_OFLD]; const struct port_info *pi = netdev_priv(qs->netdev); struct adapter *adap = pi->adapter; unsigned int written = 0; spin_lock(&q->lock); again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); while ((skb = skb_peek(&q->sendq)) != NULL) { unsigned int gen, pidx; unsigned int ndesc = skb->priority; if (unlikely(q->size - q->in_use < ndesc)) { set_bit(TXQ_OFLD, &qs->txq_stopped); smp_mb__after_atomic(); if (should_restart_tx(q) && test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) goto again; q->stops++; break; } if (!immediate(skb) && map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) break; gen = q->gen; q->in_use += ndesc; pidx = q->pidx; q->pidx += ndesc; written += ndesc; if (q->pidx >= q->size) { q->pidx -= q->size; q->gen ^= 1; } __skb_unlink(skb, &q->sendq); spin_unlock(&q->lock); write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head); spin_lock(&q->lock); } spin_unlock(&q->lock); #if USE_GTS set_bit(TXQ_RUNNING, &q->flags); set_bit(TXQ_LAST_PKT_DB, &q->flags); #endif wmb(); if (likely(written)) t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); } /** * queue_set - return the queue set a packet should use * @skb: the packet * * Maps a packet to the SGE queue set it should use. The desired queue * set is carried in bits 1-3 in the packet's priority. */ static inline int queue_set(const struct sk_buff *skb) { return skb->priority >> 1; } /** * is_ctrl_pkt - return whether an offload packet is a control packet * @skb: the packet * * Determines whether an offload packet should use an OFLD or a CTRL * Tx queue. This is indicated by bit 0 in the packet's priority. */ static inline int is_ctrl_pkt(const struct sk_buff *skb) { return skb->priority & 1; } /** * t3_offload_tx - send an offload packet * @tdev: the offload device to send to * @skb: the packet * * Sends an offload packet. We use the packet priority to select the * appropriate Tx queue as follows: bit 0 indicates whether the packet * should be sent as regular or control, bits 1-3 select the queue set. */ int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) { struct adapter *adap = tdev2adap(tdev); struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; if (unlikely(is_ctrl_pkt(skb))) return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); } /** * offload_enqueue - add an offload packet to an SGE offload receive queue * @q: the SGE response queue * @skb: the packet * * Add a new offload packet to an SGE response queue's offload packet * queue. If the packet is the first on the queue it schedules the RX * softirq to process the queue. */ static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) { int was_empty = skb_queue_empty(&q->rx_queue); __skb_queue_tail(&q->rx_queue, skb); if (was_empty) { struct sge_qset *qs = rspq_to_qset(q); napi_schedule(&qs->napi); } } /** * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts * @tdev: the offload device that will be receiving the packets * @q: the SGE response queue that assembled the bundle * @skbs: the partial bundle * @n: the number of packets in the bundle * * Delivers a (partial) bundle of Rx offload packets to an offload device. */ static inline void deliver_partial_bundle(struct t3cdev *tdev, struct sge_rspq *q, struct sk_buff *skbs[], int n) { if (n) { q->offload_bundles++; tdev->recv(tdev, skbs, n); } } /** * ofld_poll - NAPI handler for offload packets in interrupt mode * @napi: the network device doing the polling * @budget: polling budget * * The NAPI handler for offload packets when a response queue is serviced * by the hard interrupt handler, i.e., when it's operating in non-polling * mode. Creates small packet batches and sends them through the offload * receive handler. Batches need to be of modest size as we do prefetches * on the packets in each. */ static int ofld_poll(struct napi_struct *napi, int budget) { struct sge_qset *qs = container_of(napi, struct sge_qset, napi); struct sge_rspq *q = &qs->rspq; struct adapter *adapter = qs->adap; int work_done = 0; while (work_done < budget) { struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE]; struct sk_buff_head queue; int ngathered; spin_lock_irq(&q->lock); __skb_queue_head_init(&queue); skb_queue_splice_init(&q->rx_queue, &queue); if (skb_queue_empty(&queue)) { napi_complete_done(napi, work_done); spin_unlock_irq(&q->lock); return work_done; } spin_unlock_irq(&q->lock); ngathered = 0; skb_queue_walk_safe(&queue, skb, tmp) { if (work_done >= budget) break; work_done++; __skb_unlink(skb, &queue); prefetch(skb->data); skbs[ngathered] = skb; if (++ngathered == RX_BUNDLE_SIZE) { q->offload_bundles++; adapter->tdev.recv(&adapter->tdev, skbs, ngathered); ngathered = 0; } } if (!skb_queue_empty(&queue)) { /* splice remaining packets back onto Rx queue */ spin_lock_irq(&q->lock); skb_queue_splice(&queue, &q->rx_queue); spin_unlock_irq(&q->lock); } deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); } return work_done; } /** * rx_offload - process a received offload packet * @tdev: the offload device receiving the packet * @rq: the response queue that received the packet * @skb: the packet * @rx_gather: a gather list of packets if we are building a bundle * @gather_idx: index of the next available slot in the bundle * * Process an ingress offload packet and add it to the offload ingress * queue. Returns the index of the next available slot in the bundle. */ static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, struct sk_buff *skb, struct sk_buff *rx_gather[], unsigned int gather_idx) { skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); if (rq->polling) { rx_gather[gather_idx++] = skb; if (gather_idx == RX_BUNDLE_SIZE) { tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); gather_idx = 0; rq->offload_bundles++; } } else offload_enqueue(rq, skb); return gather_idx; } /** * restart_tx - check whether to restart suspended Tx queues * @qs: the queue set to resume * * Restarts suspended Tx queues of an SGE queue set if they have enough * free resources to resume operation. */ static void restart_tx(struct sge_qset *qs) { if (test_bit(TXQ_ETH, &qs->txq_stopped) && should_restart_tx(&qs->txq[TXQ_ETH]) && test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { qs->txq[TXQ_ETH].restarts++; if (netif_running(qs->netdev)) netif_tx_wake_queue(qs->tx_q); } if (test_bit(TXQ_OFLD, &qs->txq_stopped) && should_restart_tx(&qs->txq[TXQ_OFLD]) && test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { qs->txq[TXQ_OFLD].restarts++; /* The work can be quite lengthy so we use driver's own queue */ queue_work(cxgb3_wq, &qs->txq[TXQ_OFLD].qresume_task); } if (test_bit(TXQ_CTRL, &qs->txq_stopped) && should_restart_tx(&qs->txq[TXQ_CTRL]) && test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { qs->txq[TXQ_CTRL].restarts++; /* The work can be quite lengthy so we use driver's own queue */ queue_work(cxgb3_wq, &qs->txq[TXQ_CTRL].qresume_task); } } /** * cxgb3_arp_process - process an ARP request probing a private IP address * @pi: the port info * @skb: the skbuff containing the ARP request * * Check if the ARP request is probing the private IP address * dedicated to iSCSI, generate an ARP reply if so. */ static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb) { struct net_device *dev = skb->dev; struct arphdr *arp; unsigned char *arp_ptr; unsigned char *sha; __be32 sip, tip; if (!dev) return; skb_reset_network_header(skb); arp = arp_hdr(skb); if (arp->ar_op != htons(ARPOP_REQUEST)) return; arp_ptr = (unsigned char *)(arp + 1); sha = arp_ptr; arp_ptr += dev->addr_len; memcpy(&sip, arp_ptr, sizeof(sip)); arp_ptr += sizeof(sip); arp_ptr += dev->addr_len; memcpy(&tip, arp_ptr, sizeof(tip)); if (tip != pi->iscsi_ipv4addr) return; arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, pi->iscsic.mac_addr, sha); } static inline int is_arp(struct sk_buff *skb) { return skb->protocol == htons(ETH_P_ARP); } static void cxgb3_process_iscsi_prov_pack(struct port_info *pi, struct sk_buff *skb) { if (is_arp(skb)) { cxgb3_arp_process(pi, skb); return; } if (pi->iscsic.recv) pi->iscsic.recv(pi, skb); } /** * rx_eth - process an ingress ethernet packet * @adap: the adapter * @rq: the response queue that received the packet * @skb: the packet * @pad: padding * @lro: large receive offload * * Process an ingress ethernet packet and deliver it to the stack. * The padding is 2 if the packet was delivered in an Rx buffer and 0 * if it was immediate data in a response. */ static void rx_eth(struct adapter *adap, struct sge_rspq *rq, struct sk_buff *skb, int pad, int lro) { struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); struct sge_qset *qs = rspq_to_qset(rq); struct port_info *pi; skb_pull(skb, sizeof(*p) + pad); skb->protocol = eth_type_trans(skb, adap->port[p->iff]); pi = netdev_priv(skb->dev); if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid && p->csum == htons(0xffff) && !p->fragment) { qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; skb->ip_summed = CHECKSUM_UNNECESSARY; } else skb_checksum_none_assert(skb); skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); if (p->vlan_valid) { qs->port_stats[SGE_PSTAT_VLANEX]++; __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan)); } if (rq->polling) { if (lro) napi_gro_receive(&qs->napi, skb); else { if (unlikely(pi->iscsic.flags)) cxgb3_process_iscsi_prov_pack(pi, skb); netif_receive_skb(skb); } } else netif_rx(skb); } static inline int is_eth_tcp(u32 rss) { return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE; } /** * lro_add_page - add a page chunk to an LRO session * @adap: the adapter * @qs: the associated queue set * @fl: the free list containing the page chunk to add * @len: packet length * @complete: Indicates the last fragment of a frame * * Add a received packet contained in a page chunk to an existing LRO * session. */ static void lro_add_page(struct adapter *adap, struct sge_qset *qs, struct sge_fl *fl, int len, int complete) { struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; struct port_info *pi = netdev_priv(qs->netdev); struct sk_buff *skb = NULL; struct cpl_rx_pkt *cpl; skb_frag_t *rx_frag; int nr_frags; int offset = 0; if (!qs->nomem) { skb = napi_get_frags(&qs->napi); qs->nomem = !skb; } fl->credits--; dma_sync_single_for_cpu(&adap->pdev->dev, dma_unmap_addr(sd, dma_addr), fl->buf_size - SGE_PG_RSVD, DMA_FROM_DEVICE); (*sd->pg_chunk.p_cnt)--; if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping, fl->alloc_size, DMA_FROM_DEVICE); if (!skb) { put_page(sd->pg_chunk.page); if (complete) qs->nomem = 0; return; } rx_frag = skb_shinfo(skb)->frags; nr_frags = skb_shinfo(skb)->nr_frags; if (!nr_frags) { offset = 2 + sizeof(struct cpl_rx_pkt); cpl = qs->lro_va = sd->pg_chunk.va + 2; if ((qs->netdev->features & NETIF_F_RXCSUM) && cpl->csum_valid && cpl->csum == htons(0xffff)) { skb->ip_summed = CHECKSUM_UNNECESSARY; qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; } else skb->ip_summed = CHECKSUM_NONE; } else cpl = qs->lro_va; len -= offset; rx_frag += nr_frags; skb_frag_fill_page_desc(rx_frag, sd->pg_chunk.page, sd->pg_chunk.offset + offset, len); skb->len += len; skb->data_len += len; skb->truesize += len; skb_shinfo(skb)->nr_frags++; if (!complete) return; skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); if (cpl->vlan_valid) { qs->port_stats[SGE_PSTAT_VLANEX]++; __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); } napi_gro_frags(&qs->napi); } /** * handle_rsp_cntrl_info - handles control information in a response * @qs: the queue set corresponding to the response * @flags: the response control flags * * Handles the control information of an SGE response, such as GTS * indications and completion credits for the queue set's Tx queues. * HW coalesces credits, we don't do any extra SW coalescing. */ static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags) { unsigned int credits; #if USE_GTS if (flags & F_RSPD_TXQ0_GTS) clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); #endif credits = G_RSPD_TXQ0_CR(flags); if (credits) qs->txq[TXQ_ETH].processed += credits; credits = G_RSPD_TXQ2_CR(flags); if (credits) qs->txq[TXQ_CTRL].processed += credits; # if USE_GTS if (flags & F_RSPD_TXQ1_GTS) clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); # endif credits = G_RSPD_TXQ1_CR(flags); if (credits) qs->txq[TXQ_OFLD].processed += credits; } /** * check_ring_db - check if we need to ring any doorbells * @adap: the adapter * @qs: the queue set whose Tx queues are to be examined * @sleeping: indicates which Tx queue sent GTS * * Checks if some of a queue set's Tx queues need to ring their doorbells * to resume transmission after idling while they still have unprocessed * descriptors. */ static void check_ring_db(struct adapter *adap, struct sge_qset *qs, unsigned int sleeping) { if (sleeping & F_RSPD_TXQ0_GTS) { struct sge_txq *txq = &qs->txq[TXQ_ETH]; if (txq->cleaned + txq->in_use != txq->processed && !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { set_bit(TXQ_RUNNING, &txq->flags); t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(txq->cntxt_id)); } } if (sleeping & F_RSPD_TXQ1_GTS) { struct sge_txq *txq = &qs->txq[TXQ_OFLD]; if (txq->cleaned + txq->in_use != txq->processed && !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { set_bit(TXQ_RUNNING, &txq->flags); t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(txq->cntxt_id)); } } } /** * is_new_response - check if a response is newly written * @r: the response descriptor * @q: the response queue * * Returns true if a response descriptor contains a yet unprocessed * response. */ static inline int is_new_response(const struct rsp_desc *r, const struct sge_rspq *q) { return (r->intr_gen & F_RSPD_GEN2) == q->gen; } static inline void clear_rspq_bufstate(struct sge_rspq * const q) { q->pg_skb = NULL; q->rx_recycle_buf = 0; } #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ #define NOMEM_INTR_DELAY 2500 /** * process_responses - process responses from an SGE response queue * @adap: the adapter * @qs: the queue set to which the response queue belongs * @budget: how many responses can be processed in this round * * Process responses from an SGE response queue up to the supplied budget. * Responses include received packets as well as credits and other events * for the queues that belong to the response queue's queue set. * A negative budget is effectively unlimited. * * Additionally choose the interrupt holdoff time for the next interrupt * on this queue. If the system is under memory shortage use a fairly * long delay to help recovery. */ static int process_responses(struct adapter *adap, struct sge_qset *qs, int budget) { struct sge_rspq *q = &qs->rspq; struct rsp_desc *r = &q->desc[q->cidx]; int budget_left = budget; unsigned int sleeping = 0; struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; int ngathered = 0; q->next_holdoff = q->holdoff_tmr; while (likely(budget_left && is_new_response(r, q))) { int packet_complete, eth, ethpad = 2; int lro = !!(qs->netdev->features & NETIF_F_GRO); struct sk_buff *skb = NULL; u32 len, flags; __be32 rss_hi, rss_lo; dma_rmb(); eth = r->rss_hdr.opcode == CPL_RX_PKT; rss_hi = *(const __be32 *)r; rss_lo = r->rss_hdr.rss_hash_val; flags = ntohl(r->flags); if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); if (!skb) goto no_mem; __skb_put_data(skb, r, AN_PKT_SIZE); skb->data[0] = CPL_ASYNC_NOTIF; rss_hi = htonl(CPL_ASYNC_NOTIF << 24); q->async_notif++; } else if (flags & F_RSPD_IMM_DATA_VALID) { skb = get_imm_packet(r); if (unlikely(!skb)) { no_mem: q->next_holdoff = NOMEM_INTR_DELAY; q->nomem++; /* consume one credit since we tried */ budget_left--; break; } q->imm_data++; ethpad = 0; } else if ((len = ntohl(r->len_cq)) != 0) { struct sge_fl *fl; lro &= eth && is_eth_tcp(rss_hi); fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; if (fl->use_pages) { void *addr = fl->sdesc[fl->cidx].pg_chunk.va; net_prefetch(addr); __refill_fl(adap, fl); if (lro > 0) { lro_add_page(adap, qs, fl, G_RSPD_LEN(len), flags & F_RSPD_EOP); goto next_fl; } skb = get_packet_pg(adap, fl, q, G_RSPD_LEN(len), eth ? SGE_RX_DROP_THRES : 0); q->pg_skb = skb; } else skb = get_packet(adap, fl, G_RSPD_LEN(len), eth ? SGE_RX_DROP_THRES : 0); if (unlikely(!skb)) { if (!eth) goto no_mem; q->rx_drops++; } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT)) __skb_pull(skb, 2); next_fl: if (++fl->cidx == fl->size) fl->cidx = 0; } else q->pure_rsps++; if (flags & RSPD_CTRL_MASK) { sleeping |= flags & RSPD_GTS_MASK; handle_rsp_cntrl_info(qs, flags); } r++; if (unlikely(++q->cidx == q->size)) { q->cidx = 0; q->gen ^= 1; r = q->desc; } prefetch(r); if (++q->credits >= (q->size / 4)) { refill_rspq(adap, q, q->credits); q->credits = 0; } packet_complete = flags & (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID | F_RSPD_ASYNC_NOTIF); if (skb != NULL && packet_complete) { if (eth) rx_eth(adap, q, skb, ethpad, lro); else { q->offload_pkts++; /* Preserve the RSS info in csum & priority */ skb->csum = rss_hi; skb->priority = rss_lo; ngathered = rx_offload(&adap->tdev, q, skb, offload_skbs, ngathered); } if (flags & F_RSPD_EOP) clear_rspq_bufstate(q); } --budget_left; } deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); if (sleeping) check_ring_db(adap, qs, sleeping); smp_mb(); /* commit Tx queue .processed updates */ if (unlikely(qs->txq_stopped != 0)) restart_tx(qs); budget -= budget_left; return budget; } static inline int is_pure_response(const struct rsp_desc *r) { __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); return (n | r->len_cq) == 0; } /** * napi_rx_handler - the NAPI handler for Rx processing * @napi: the napi instance * @budget: how many packets we can process in this round * * Handler for new data events when using NAPI. */ static int napi_rx_handler(struct napi_struct *napi, int budget) { struct sge_qset *qs = container_of(napi, struct sge_qset, napi); struct adapter *adap = qs->adap; int work_done = process_responses(adap, qs, budget); if (likely(work_done < budget)) { napi_complete_done(napi, work_done); /* * Because we don't atomically flush the following * write it is possible that in very rare cases it can * reach the device in a way that races with a new * response being written plus an error interrupt * causing the NAPI interrupt handler below to return * unhandled status to the OS. To protect against * this would require flushing the write and doing * both the write and the flush with interrupts off. * Way too expensive and unjustifiable given the * rarity of the race. * * The race cannot happen at all with MSI-X. */ t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | V_NEWTIMER(qs->rspq.next_holdoff) | V_NEWINDEX(qs->rspq.cidx)); } return work_done; } /** * process_pure_responses - process pure responses from a response queue * @adap: the adapter * @qs: the queue set owning the response queue * @r: the first pure response to process * * A simpler version of process_responses() that handles only pure (i.e., * non data-carrying) responses. Such respones are too light-weight to * justify calling a softirq under NAPI, so we handle them specially in * the interrupt handler. The function is called with a pointer to a * response, which the caller must ensure is a valid pure response. * * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. */ static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, struct rsp_desc *r) { struct sge_rspq *q = &qs->rspq; unsigned int sleeping = 0; do { u32 flags = ntohl(r->flags); r++; if (unlikely(++q->cidx == q->size)) { q->cidx = 0; q->gen ^= 1; r = q->desc; } prefetch(r); if (flags & RSPD_CTRL_MASK) { sleeping |= flags & RSPD_GTS_MASK; handle_rsp_cntrl_info(qs, flags); } q->pure_rsps++; if (++q->credits >= (q->size / 4)) { refill_rspq(adap, q, q->credits); q->credits = 0; } if (!is_new_response(r, q)) break; dma_rmb(); } while (is_pure_response(r)); if (sleeping) check_ring_db(adap, qs, sleeping); smp_mb(); /* commit Tx queue .processed updates */ if (unlikely(qs->txq_stopped != 0)) restart_tx(qs); return is_new_response(r, q); } /** * handle_responses - decide what to do with new responses in NAPI mode * @adap: the adapter * @q: the response queue * * This is used by the NAPI interrupt handlers to decide what to do with * new SGE responses. If there are no new responses it returns -1. If * there are new responses and they are pure (i.e., non-data carrying) * it handles them straight in hard interrupt context as they are very * cheap and don't deliver any packets. Finally, if there are any data * signaling responses it schedules the NAPI handler. Returns 1 if it * schedules NAPI, 0 if all new responses were pure. * * The caller must ascertain NAPI is not already running. */ static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) { struct sge_qset *qs = rspq_to_qset(q); struct rsp_desc *r = &q->desc[q->cidx]; if (!is_new_response(r, q)) return -1; dma_rmb(); if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); return 0; } napi_schedule(&qs->napi); return 1; } /* * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case * (i.e., response queue serviced in hard interrupt). */ static irqreturn_t t3_sge_intr_msix(int irq, void *cookie) { struct sge_qset *qs = cookie; struct adapter *adap = qs->adap; struct sge_rspq *q = &qs->rspq; spin_lock(&q->lock); if (process_responses(adap, qs, -1) == 0) q->unhandled_irqs++; t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); spin_unlock(&q->lock); return IRQ_HANDLED; } /* * The MSI-X interrupt handler for an SGE response queue for the NAPI case * (i.e., response queue serviced by NAPI polling). */ static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) { struct sge_qset *qs = cookie; struct sge_rspq *q = &qs->rspq; spin_lock(&q->lock); if (handle_responses(qs->adap, q) < 0) q->unhandled_irqs++; spin_unlock(&q->lock); return IRQ_HANDLED; } /* * The non-NAPI MSI interrupt handler. This needs to handle data events from * SGE response queues as well as error and other async events as they all use * the same MSI vector. We use one SGE response queue per port in this mode * and protect all response queues with queue 0's lock. */ static irqreturn_t t3_intr_msi(int irq, void *cookie) { int new_packets = 0; struct adapter *adap = cookie; struct sge_rspq *q = &adap->sge.qs[0].rspq; spin_lock(&q->lock); if (process_responses(adap, &adap->sge.qs[0], -1)) { t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); new_packets = 1; } if (adap->params.nports == 2 && process_responses(adap, &adap->sge.qs[1], -1)) { struct sge_rspq *q1 = &adap->sge.qs[1].rspq; t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | V_NEWTIMER(q1->next_holdoff) | V_NEWINDEX(q1->cidx)); new_packets = 1; } if (!new_packets && t3_slow_intr_handler(adap) == 0) q->unhandled_irqs++; spin_unlock(&q->lock); return IRQ_HANDLED; } static int rspq_check_napi(struct sge_qset *qs) { struct sge_rspq *q = &qs->rspq; return is_new_response(&q->desc[q->cidx], q) && napi_schedule(&qs->napi); } /* * The MSI interrupt handler for the NAPI case (i.e., response queues serviced * by NAPI polling). Handles data events from SGE response queues as well as * error and other async events as they all use the same MSI vector. We use * one SGE response queue per port in this mode and protect all response * queues with queue 0's lock. */ static irqreturn_t t3_intr_msi_napi(int irq, void *cookie) { int new_packets; struct adapter *adap = cookie; struct sge_rspq *q = &adap->sge.qs[0].rspq; spin_lock(&q->lock); new_packets = rspq_check_napi(&adap->sge.qs[0]); if (adap->params.nports == 2) new_packets += rspq_check_napi(&adap->sge.qs[1]); if (!new_packets && t3_slow_intr_handler(adap) == 0) q->unhandled_irqs++; spin_unlock(&q->lock); return IRQ_HANDLED; } /* * A helper function that processes responses and issues GTS. */ static inline int process_responses_gts(struct adapter *adap, struct sge_rspq *rq) { int work; work = process_responses(adap, rspq_to_qset(rq), -1); t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); return work; } /* * The legacy INTx interrupt handler. This needs to handle data events from * SGE response queues as well as error and other async events as they all use * the same interrupt pin. We use one SGE response queue per port in this mode * and protect all response queues with queue 0's lock. */ static irqreturn_t t3_intr(int irq, void *cookie) { int work_done, w0, w1; struct adapter *adap = cookie; struct sge_rspq *q0 = &adap->sge.qs[0].rspq; struct sge_rspq *q1 = &adap->sge.qs[1].rspq; spin_lock(&q0->lock); w0 = is_new_response(&q0->desc[q0->cidx], q0); w1 = adap->params.nports == 2 && is_new_response(&q1->desc[q1->cidx], q1); if (likely(w0 | w1)) { t3_write_reg(adap, A_PL_CLI, 0); t3_read_reg(adap, A_PL_CLI); /* flush */ if (likely(w0)) process_responses_gts(adap, q0); if (w1) process_responses_gts(adap, q1); work_done = w0 | w1; } else work_done = t3_slow_intr_handler(adap); spin_unlock(&q0->lock); return IRQ_RETVAL(work_done != 0); } /* * Interrupt handler for legacy INTx interrupts for T3B-based cards. * Handles data events from SGE response queues as well as error and other * async events as they all use the same interrupt pin. We use one SGE * response queue per port in this mode and protect all response queues with * queue 0's lock. */ static irqreturn_t t3b_intr(int irq, void *cookie) { u32 map; struct adapter *adap = cookie; struct sge_rspq *q0 = &adap->sge.qs[0].rspq; t3_write_reg(adap, A_PL_CLI, 0); map = t3_read_reg(adap, A_SG_DATA_INTR); if (unlikely(!map)) /* shared interrupt, most likely */ return IRQ_NONE; spin_lock(&q0->lock); if (unlikely(map & F_ERRINTR)) t3_slow_intr_handler(adap); if (likely(map & 1)) process_responses_gts(adap, q0); if (map & 2) process_responses_gts(adap, &adap->sge.qs[1].rspq); spin_unlock(&q0->lock); return IRQ_HANDLED; } /* * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. * Handles data events from SGE response queues as well as error and other * async events as they all use the same interrupt pin. We use one SGE * response queue per port in this mode and protect all response queues with * queue 0's lock. */ static irqreturn_t t3b_intr_napi(int irq, void *cookie) { u32 map; struct adapter *adap = cookie; struct sge_qset *qs0 = &adap->sge.qs[0]; struct sge_rspq *q0 = &qs0->rspq; t3_write_reg(adap, A_PL_CLI, 0); map = t3_read_reg(adap, A_SG_DATA_INTR); if (unlikely(!map)) /* shared interrupt, most likely */ return IRQ_NONE; spin_lock(&q0->lock); if (unlikely(map & F_ERRINTR)) t3_slow_intr_handler(adap); if (likely(map & 1)) napi_schedule(&qs0->napi); if (map & 2) napi_schedule(&adap->sge.qs[1].napi); spin_unlock(&q0->lock); return IRQ_HANDLED; } /** * t3_intr_handler - select the top-level interrupt handler * @adap: the adapter * @polling: whether using NAPI to service response queues * * Selects the top-level interrupt handler based on the type of interrupts * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the * response queues. */ irq_handler_t t3_intr_handler(struct adapter *adap, int polling) { if (adap->flags & USING_MSIX) return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; if (adap->flags & USING_MSI) return polling ? t3_intr_msi_napi : t3_intr_msi; if (adap->params.rev > 0) return polling ? t3b_intr_napi : t3b_intr; return t3_intr; } #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ F_HIRCQPARITYERROR) #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR) #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \ F_RSPQDISABLED) /** * t3_sge_err_intr_handler - SGE async event interrupt handler * @adapter: the adapter * * Interrupt handler for SGE asynchronous (non-data) events. */ void t3_sge_err_intr_handler(struct adapter *adapter) { unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) & ~F_FLEMPTY; if (status & SGE_PARERR) CH_ALERT(adapter, "SGE parity error (0x%x)\n", status & SGE_PARERR); if (status & SGE_FRAMINGERR) CH_ALERT(adapter, "SGE framing error (0x%x)\n", status & SGE_FRAMINGERR); if (status & F_RSPQCREDITOVERFOW) CH_ALERT(adapter, "SGE response queue credit overflow\n"); if (status & F_RSPQDISABLED) { v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); CH_ALERT(adapter, "packet delivered to disabled response queue " "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); } if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR)) queue_work(cxgb3_wq, &adapter->db_drop_task); if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL)) queue_work(cxgb3_wq, &adapter->db_full_task); if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY)) queue_work(cxgb3_wq, &adapter->db_empty_task); t3_write_reg(adapter, A_SG_INT_CAUSE, status); if (status & SGE_FATALERR) t3_fatal_err(adapter); } /** * sge_timer_tx - perform periodic maintenance of an SGE qset * @t: a timer list containing the SGE queue set to maintain * * Runs periodically from a timer to perform maintenance of an SGE queue * set. It performs two tasks: * * Cleans up any completed Tx descriptors that may still be pending. * Normal descriptor cleanup happens when new packets are added to a Tx * queue so this timer is relatively infrequent and does any cleanup only * if the Tx queue has not seen any new packets in a while. We make a * best effort attempt to reclaim descriptors, in that we don't wait * around if we cannot get a queue's lock (which most likely is because * someone else is queueing new packets and so will also handle the clean * up). Since control queues use immediate data exclusively we don't * bother cleaning them up here. * */ static void sge_timer_tx(struct timer_list *t) { struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer); struct port_info *pi = netdev_priv(qs->netdev); struct adapter *adap = pi->adapter; unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0}; unsigned long next_period; if (__netif_tx_trylock(qs->tx_q)) { tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH], TX_RECLAIM_TIMER_CHUNK); __netif_tx_unlock(qs->tx_q); } if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD], TX_RECLAIM_TIMER_CHUNK); spin_unlock(&qs->txq[TXQ_OFLD].lock); } next_period = TX_RECLAIM_PERIOD >> (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) / TX_RECLAIM_TIMER_CHUNK); mod_timer(&qs->tx_reclaim_timer, jiffies + next_period); } /** * sge_timer_rx - perform periodic maintenance of an SGE qset * @t: the timer list containing the SGE queue set to maintain * * a) Replenishes Rx queues that have run out due to memory shortage. * Normally new Rx buffers are added when existing ones are consumed but * when out of memory a queue can become empty. We try to add only a few * buffers here, the queue will be replenished fully as these new buffers * are used up if memory shortage has subsided. * * b) Return coalesced response queue credits in case a response queue is * starved. * */ static void sge_timer_rx(struct timer_list *t) { spinlock_t *lock; struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer); struct port_info *pi = netdev_priv(qs->netdev); struct adapter *adap = pi->adapter; u32 status; lock = adap->params.rev > 0 ? &qs->rspq.lock : &adap->sge.qs[0].rspq.lock; if (!spin_trylock_irq(lock)) goto out; if (napi_is_scheduled(&qs->napi)) goto unlock; if (adap->params.rev < 4) { status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS); if (status & (1 << qs->rspq.cntxt_id)) { qs->rspq.starved++; if (qs->rspq.credits) { qs->rspq.credits--; refill_rspq(adap, &qs->rspq, 1); qs->rspq.restarted++; t3_write_reg(adap, A_SG_RSPQ_FL_STATUS, 1 << qs->rspq.cntxt_id); } } } if (qs->fl[0].credits < qs->fl[0].size) __refill_fl(adap, &qs->fl[0]); if (qs->fl[1].credits < qs->fl[1].size) __refill_fl(adap, &qs->fl[1]); unlock: spin_unlock_irq(lock); out: mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); } /** * t3_update_qset_coalesce - update coalescing settings for a queue set * @qs: the SGE queue set * @p: new queue set parameters * * Update the coalescing settings for an SGE queue set. Nothing is done * if the queue set is not initialized yet. */ void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) { qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ qs->rspq.polling = p->polling; qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll; } /** * t3_sge_alloc_qset - initialize an SGE queue set * @adapter: the adapter * @id: the queue set id * @nports: how many Ethernet ports will be using this queue set * @irq_vec_idx: the IRQ vector index for response queue interrupts * @p: configuration parameters for this queue set * @ntxq: number of Tx queues for the queue set * @dev: net device associated with this queue set * @netdevq: net device TX queue associated with this queue set * * Allocate resources and initialize an SGE queue set. A queue set * comprises a response queue, two Rx free-buffer queues, and up to 3 * Tx queues. The Tx queues are assigned roles in the order Ethernet * queue, offload queue, and control queue. */ int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, int irq_vec_idx, const struct qset_params *p, int ntxq, struct net_device *dev, struct netdev_queue *netdevq) { int i, avail, ret = -ENOMEM; struct sge_qset *q = &adapter->sge.qs[id]; init_qset_cntxt(q, id); timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0); timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0); q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, sizeof(struct rx_desc), sizeof(struct rx_sw_desc), &q->fl[0].phys_addr, &q->fl[0].sdesc); if (!q->fl[0].desc) goto err; q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, sizeof(struct rx_desc), sizeof(struct rx_sw_desc), &q->fl[1].phys_addr, &q->fl[1].sdesc); if (!q->fl[1].desc) goto err; q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, sizeof(struct rsp_desc), 0, &q->rspq.phys_addr, NULL); if (!q->rspq.desc) goto err; for (i = 0; i < ntxq; ++i) { /* * The control queue always uses immediate data so does not * need to keep track of any sk_buffs. */ size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], sizeof(struct tx_desc), sz, &q->txq[i].phys_addr, &q->txq[i].sdesc); if (!q->txq[i].desc) goto err; q->txq[i].gen = 1; q->txq[i].size = p->txq_size[i]; spin_lock_init(&q->txq[i].lock); skb_queue_head_init(&q->txq[i].sendq); } INIT_WORK(&q->txq[TXQ_OFLD].qresume_task, restart_offloadq); INIT_WORK(&q->txq[TXQ_CTRL].qresume_task, restart_ctrlq); q->fl[0].gen = q->fl[1].gen = 1; q->fl[0].size = p->fl_size; q->fl[1].size = p->jumbo_size; q->rspq.gen = 1; q->rspq.size = p->rspq_size; spin_lock_init(&q->rspq.lock); skb_queue_head_init(&q->rspq.rx_queue); q->txq[TXQ_ETH].stop_thres = nports * flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); #if FL0_PG_CHUNK_SIZE > 0 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE; #else q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data); #endif #if FL1_PG_CHUNK_SIZE > 0 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE; #else q->fl[1].buf_size = is_offload(adapter) ? (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt); #endif q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0; q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0; q->fl[0].order = FL0_PG_ORDER; q->fl[1].order = FL1_PG_ORDER; q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE; q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE; spin_lock_irq(&adapter->sge.reg_lock); /* FL threshold comparison uses < */ ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, q->rspq.phys_addr, q->rspq.size, q->fl[0].buf_size - SGE_PG_RSVD, 1, 0); if (ret) goto err_unlock; for (i = 0; i < SGE_RXQ_PER_SET; ++i) { ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, q->fl[i].phys_addr, q->fl[i].size, q->fl[i].buf_size - SGE_PG_RSVD, p->cong_thres, 1, 0); if (ret) goto err_unlock; } ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, 1, 0); if (ret) goto err_unlock; if (ntxq > 1) { ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, USE_GTS, SGE_CNTXT_OFLD, id, q->txq[TXQ_OFLD].phys_addr, q->txq[TXQ_OFLD].size, 0, 1, 0); if (ret) goto err_unlock; } if (ntxq > 2) { ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, SGE_CNTXT_CTRL, id, q->txq[TXQ_CTRL].phys_addr, q->txq[TXQ_CTRL].size, q->txq[TXQ_CTRL].token, 1, 0); if (ret) goto err_unlock; } spin_unlock_irq(&adapter->sge.reg_lock); q->adap = adapter; q->netdev = dev; q->tx_q = netdevq; t3_update_qset_coalesce(q, p); avail = refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL | __GFP_COMP); if (!avail) { CH_ALERT(adapter, "free list queue 0 initialization failed\n"); ret = -ENOMEM; goto err; } if (avail < q->fl[0].size) CH_WARN(adapter, "free list queue 0 enabled with %d credits\n", avail); avail = refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL | __GFP_COMP); if (avail < q->fl[1].size) CH_WARN(adapter, "free list queue 1 enabled with %d credits\n", avail); refill_rspq(adapter, &q->rspq, q->rspq.size - 1); t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | V_NEWTIMER(q->rspq.holdoff_tmr)); return 0; err_unlock: spin_unlock_irq(&adapter->sge.reg_lock); err: t3_free_qset(adapter, q); return ret; } /** * t3_start_sge_timers - start SGE timer call backs * @adap: the adapter * * Starts each SGE queue set's timer call back */ void t3_start_sge_timers(struct adapter *adap) { int i; for (i = 0; i < SGE_QSETS; ++i) { struct sge_qset *q = &adap->sge.qs[i]; if (q->tx_reclaim_timer.function) mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); if (q->rx_reclaim_timer.function) mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); } } /** * t3_stop_sge_timers - stop SGE timer call backs * @adap: the adapter * * Stops each SGE queue set's timer call back */ void t3_stop_sge_timers(struct adapter *adap) { int i; for (i = 0; i < SGE_QSETS; ++i) { struct sge_qset *q = &adap->sge.qs[i]; if (q->tx_reclaim_timer.function) del_timer_sync(&q->tx_reclaim_timer); if (q->rx_reclaim_timer.function) del_timer_sync(&q->rx_reclaim_timer); } } /** * t3_free_sge_resources - free SGE resources * @adap: the adapter * * Frees resources used by the SGE queue sets. */ void t3_free_sge_resources(struct adapter *adap) { int i; for (i = 0; i < SGE_QSETS; ++i) t3_free_qset(adap, &adap->sge.qs[i]); } /** * t3_sge_start - enable SGE * @adap: the adapter * * Enables the SGE for DMAs. This is the last step in starting packet * transfers. */ void t3_sge_start(struct adapter *adap) { t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); } /** * t3_sge_stop_dma - Disable SGE DMA engine operation * @adap: the adapter * * Can be invoked from interrupt context e.g. error handler. * * Note that this function cannot disable the restart of works as * it cannot wait if called from interrupt context, however the * works will have no effect since the doorbells are disabled. The * driver will call tg3_sge_stop() later from process context, at * which time the works will be stopped if they are still running. */ void t3_sge_stop_dma(struct adapter *adap) { t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); } /** * t3_sge_stop - disable SGE operation completly * @adap: the adapter * * Called from process context. Disables the DMA engine and any * pending queue restart works. */ void t3_sge_stop(struct adapter *adap) { int i; t3_sge_stop_dma(adap); /* workqueues aren't initialized otherwise */ if (!(adap->flags & FULL_INIT_DONE)) return; for (i = 0; i < SGE_QSETS; ++i) { struct sge_qset *qs = &adap->sge.qs[i]; cancel_work_sync(&qs->txq[TXQ_OFLD].qresume_task); cancel_work_sync(&qs->txq[TXQ_CTRL].qresume_task); } } /** * t3_sge_init - initialize SGE * @adap: the adapter * @p: the SGE parameters * * Performs SGE initialization needed every time after a chip reset. * We do not initialize any of the queue sets here, instead the driver * top-level must request those individually. We also do not enable DMA * here, that should be done after the queues have been set up. */ void t3_sge_init(struct adapter *adap, struct sge_params *p) { unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN | V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; #if SGE_NUM_GENBITS == 1 ctrl |= F_EGRGENCTRL; #endif if (adap->params.rev > 0) { if (!(adap->flags & (USING_MSIX | USING_MSI))) ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; } t3_write_reg(adap, A_SG_CONTROL, ctrl); t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | V_LORCQDRBTHRSH(512)); t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | V_TIMEOUT(200 * core_ticks_per_usec(adap))); t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, adap->params.rev < T3_REV_C ? 1000 : 500); t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); } /** * t3_sge_prep - one-time SGE initialization * @adap: the associated adapter * @p: SGE parameters * * Performs one-time initialization of SGE SW state. Includes determining * defaults for the assorted SGE parameters, which admins can change until * they are used to initialize the SGE. */ void t3_sge_prep(struct adapter *adap, struct sge_params *p) { int i; p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); for (i = 0; i < SGE_QSETS; ++i) { struct qset_params *q = p->qset + i; q->polling = adap->params.rev > 0; q->coalesce_usecs = 5; q->rspq_size = 1024; q->fl_size = 1024; q->jumbo_size = 512; q->txq_size[TXQ_ETH] = 1024; q->txq_size[TXQ_OFLD] = 1024; q->txq_size[TXQ_CTRL] = 256; q->cong_thres = 0; } spin_lock_init(&adap->sge.reg_lock); } |