Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2012 Regents of the University of California * Copyright (C) 2017 SiFive * Copyright (C) 2021 Western Digital Corporation or its affiliates. */ #include <linux/bitops.h> #include <linux/cpumask.h> #include <linux/mm.h> #include <linux/percpu.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/static_key.h> #include <asm/tlbflush.h> #include <asm/cacheflush.h> #include <asm/mmu_context.h> #include <asm/switch_to.h> #ifdef CONFIG_MMU DEFINE_STATIC_KEY_FALSE(use_asid_allocator); static unsigned long num_asids; static atomic_long_t current_version; static DEFINE_RAW_SPINLOCK(context_lock); static cpumask_t context_tlb_flush_pending; static unsigned long *context_asid_map; static DEFINE_PER_CPU(atomic_long_t, active_context); static DEFINE_PER_CPU(unsigned long, reserved_context); static bool check_update_reserved_context(unsigned long cntx, unsigned long newcntx) { int cpu; bool hit = false; /* * Iterate over the set of reserved CONTEXT looking for a match. * If we find one, then we can update our mm to use new CONTEXT * (i.e. the same CONTEXT in the current_version) but we can't * exit the loop early, since we need to ensure that all copies * of the old CONTEXT are updated to reflect the mm. Failure to do * so could result in us missing the reserved CONTEXT in a future * version. */ for_each_possible_cpu(cpu) { if (per_cpu(reserved_context, cpu) == cntx) { hit = true; per_cpu(reserved_context, cpu) = newcntx; } } return hit; } static void __flush_context(void) { int i; unsigned long cntx; /* Must be called with context_lock held */ lockdep_assert_held(&context_lock); /* Update the list of reserved ASIDs and the ASID bitmap. */ bitmap_zero(context_asid_map, num_asids); /* Mark already active ASIDs as used */ for_each_possible_cpu(i) { cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0); /* * If this CPU has already been through a rollover, but * hasn't run another task in the meantime, we must preserve * its reserved CONTEXT, as this is the only trace we have of * the process it is still running. */ if (cntx == 0) cntx = per_cpu(reserved_context, i); __set_bit(cntx2asid(cntx), context_asid_map); per_cpu(reserved_context, i) = cntx; } /* Mark ASID #0 as used because it is used at boot-time */ __set_bit(0, context_asid_map); /* Queue a TLB invalidation for each CPU on next context-switch */ cpumask_setall(&context_tlb_flush_pending); } static unsigned long __new_context(struct mm_struct *mm) { static u32 cur_idx = 1; unsigned long cntx = atomic_long_read(&mm->context.id); unsigned long asid, ver = atomic_long_read(¤t_version); /* Must be called with context_lock held */ lockdep_assert_held(&context_lock); if (cntx != 0) { unsigned long newcntx = ver | cntx2asid(cntx); /* * If our current CONTEXT was active during a rollover, we * can continue to use it and this was just a false alarm. */ if (check_update_reserved_context(cntx, newcntx)) return newcntx; /* * We had a valid CONTEXT in a previous life, so try to * re-use it if possible. */ if (!__test_and_set_bit(cntx2asid(cntx), context_asid_map)) return newcntx; } /* * Allocate a free ASID. If we can't find one then increment * current_version and flush all ASIDs. */ asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx); if (asid != num_asids) goto set_asid; /* We're out of ASIDs, so increment current_version */ ver = atomic_long_add_return_relaxed(BIT(SATP_ASID_BITS), ¤t_version); /* Flush everything */ __flush_context(); /* We have more ASIDs than CPUs, so this will always succeed */ asid = find_next_zero_bit(context_asid_map, num_asids, 1); set_asid: __set_bit(asid, context_asid_map); cur_idx = asid; return asid | ver; } static void set_mm_asid(struct mm_struct *mm, unsigned int cpu) { unsigned long flags; bool need_flush_tlb = false; unsigned long cntx, old_active_cntx; cntx = atomic_long_read(&mm->context.id); /* * If our active_context is non-zero and the context matches the * current_version, then we update the active_context entry with a * relaxed cmpxchg. * * Following is how we handle racing with a concurrent rollover: * * - We get a zero back from the cmpxchg and end up waiting on the * lock. Taking the lock synchronises with the rollover and so * we are forced to see the updated verion. * * - We get a valid context back from the cmpxchg then we continue * using old ASID because __flush_context() would have marked ASID * of active_context as used and next context switch we will * allocate new context. */ old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu)); if (old_active_cntx && (cntx2version(cntx) == atomic_long_read(¤t_version)) && atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu), old_active_cntx, cntx)) goto switch_mm_fast; raw_spin_lock_irqsave(&context_lock, flags); /* Check that our ASID belongs to the current_version. */ cntx = atomic_long_read(&mm->context.id); if (cntx2version(cntx) != atomic_long_read(¤t_version)) { cntx = __new_context(mm); atomic_long_set(&mm->context.id, cntx); } if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending)) need_flush_tlb = true; atomic_long_set(&per_cpu(active_context, cpu), cntx); raw_spin_unlock_irqrestore(&context_lock, flags); switch_mm_fast: csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | (cntx2asid(cntx) << SATP_ASID_SHIFT) | satp_mode); if (need_flush_tlb) local_flush_tlb_all(); } static void set_mm_noasid(struct mm_struct *mm) { /* Switch the page table and blindly nuke entire local TLB */ csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode); local_flush_tlb_all_asid(0); } static inline void set_mm(struct mm_struct *prev, struct mm_struct *next, unsigned int cpu) { /* * The mm_cpumask indicates which harts' TLBs contain the virtual * address mapping of the mm. Compared to noasid, using asid * can't guarantee that stale TLB entries are invalidated because * the asid mechanism wouldn't flush TLB for every switch_mm for * performance. So when using asid, keep all CPUs footmarks in * cpumask() until mm reset. */ cpumask_set_cpu(cpu, mm_cpumask(next)); if (static_branch_unlikely(&use_asid_allocator)) { set_mm_asid(next, cpu); } else { cpumask_clear_cpu(cpu, mm_cpumask(prev)); set_mm_noasid(next); } } static int __init asids_init(void) { unsigned long asid_bits, old; /* Figure-out number of ASID bits in HW */ old = csr_read(CSR_SATP); asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT); csr_write(CSR_SATP, asid_bits); asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT) & SATP_ASID_MASK; asid_bits = fls_long(asid_bits); csr_write(CSR_SATP, old); /* * In the process of determining number of ASID bits (above) * we polluted the TLB of current HART so let's do TLB flushed * to remove unwanted TLB enteries. */ local_flush_tlb_all(); /* Pre-compute ASID details */ if (asid_bits) { num_asids = 1 << asid_bits; } /* * Use ASID allocator only if number of HW ASIDs are * at-least twice more than CPUs */ if (num_asids > (2 * num_possible_cpus())) { atomic_long_set(¤t_version, BIT(SATP_ASID_BITS)); context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL); if (!context_asid_map) panic("Failed to allocate bitmap for %lu ASIDs\n", num_asids); __set_bit(0, context_asid_map); static_branch_enable(&use_asid_allocator); pr_info("ASID allocator using %lu bits (%lu entries)\n", asid_bits, num_asids); } else { pr_info("ASID allocator disabled (%lu bits)\n", asid_bits); } return 0; } early_initcall(asids_init); #else static inline void set_mm(struct mm_struct *prev, struct mm_struct *next, unsigned int cpu) { /* Nothing to do here when there is no MMU */ } #endif /* * When necessary, performs a deferred icache flush for the given MM context, * on the local CPU. RISC-V has no direct mechanism for instruction cache * shoot downs, so instead we send an IPI that informs the remote harts they * need to flush their local instruction caches. To avoid pathologically slow * behavior in a common case (a bunch of single-hart processes on a many-hart * machine, ie 'make -j') we avoid the IPIs for harts that are not currently * executing a MM context and instead schedule a deferred local instruction * cache flush to be performed before execution resumes on each hart. This * actually performs that local instruction cache flush, which implicitly only * refers to the current hart. * * The "cpu" argument must be the current local CPU number. */ static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu, struct task_struct *task) { #ifdef CONFIG_SMP if (cpumask_test_and_clear_cpu(cpu, &mm->context.icache_stale_mask)) { /* * Ensure the remote hart's writes are visible to this hart. * This pairs with a barrier in flush_icache_mm. */ smp_mb(); /* * If cache will be flushed in switch_to, no need to flush here. */ if (!(task && switch_to_should_flush_icache(task))) local_flush_icache_all(); } #endif } void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *task) { unsigned int cpu; if (unlikely(prev == next)) return; membarrier_arch_switch_mm(prev, next, task); /* * Mark the current MM context as inactive, and the next as * active. This is at least used by the icache flushing * routines in order to determine who should be flushed. */ cpu = smp_processor_id(); set_mm(prev, next, cpu); flush_icache_deferred(next, cpu, task); } |