Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * arch/arm/include/asm/cacheflush.h * * Copyright (C) 1999-2002 Russell King */ #ifndef _ASMARM_CACHEFLUSH_H #define _ASMARM_CACHEFLUSH_H #include <linux/mm.h> #include <asm/glue-cache.h> #include <asm/shmparam.h> #include <asm/cachetype.h> #include <asm/outercache.h> #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) /* * This flag is used to indicate that the page pointed to by a pte is clean * and does not require cleaning before returning it to the user. */ #define PG_dcache_clean PG_arch_1 /* * MM Cache Management * =================== * * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files * implement these methods. * * Start addresses are inclusive and end addresses are exclusive; * start addresses should be rounded down, end addresses up. * * See Documentation/core-api/cachetlb.rst for more information. * Please note that the implementation of these, and the required * effects are cache-type (VIVT/VIPT/PIPT) specific. * * flush_icache_all() * * Unconditionally clean and invalidate the entire icache. * Currently only needed for cache-v6.S and cache-v7.S, see * __flush_icache_all for the generic implementation. * * flush_kern_all() * * Unconditionally clean and invalidate the entire cache. * * flush_kern_louis() * * Flush data cache levels up to the level of unification * inner shareable and invalidate the I-cache. * Only needed from v7 onwards, falls back to flush_cache_all() * for all other processor versions. * * flush_user_all() * * Clean and invalidate all user space cache entries * before a change of page tables. * * flush_user_range(start, end, flags) * * Clean and invalidate a range of cache entries in the * specified address space before a change of page tables. * - start - user start address (inclusive, page aligned) * - end - user end address (exclusive, page aligned) * - flags - vma->vm_flags field * * coherent_kern_range(start, end) * * Ensure coherency between the Icache and the Dcache in the * region described by start, end. If you have non-snooping * Harvard caches, you need to implement this function. * - start - virtual start address * - end - virtual end address * * coherent_user_range(start, end) * * Ensure coherency between the Icache and the Dcache in the * region described by start, end. If you have non-snooping * Harvard caches, you need to implement this function. * - start - virtual start address * - end - virtual end address * * flush_kern_dcache_area(kaddr, size) * * Ensure that the data held in page is written back. * - kaddr - page address * - size - region size * * DMA Cache Coherency * =================== * * dma_flush_range(start, end) * * Clean and invalidate the specified virtual address range. * - start - virtual start address * - end - virtual end address */ struct cpu_cache_fns { void (*flush_icache_all)(void); void (*flush_kern_all)(void); void (*flush_kern_louis)(void); void (*flush_user_all)(void); void (*flush_user_range)(unsigned long, unsigned long, unsigned int); void (*coherent_kern_range)(unsigned long, unsigned long); int (*coherent_user_range)(unsigned long, unsigned long); void (*flush_kern_dcache_area)(void *, size_t); void (*dma_map_area)(const void *, size_t, int); void (*dma_unmap_area)(const void *, size_t, int); void (*dma_flush_range)(const void *, const void *); } __no_randomize_layout; /* * Select the calling method */ #ifdef MULTI_CACHE extern struct cpu_cache_fns cpu_cache; #define __cpuc_flush_icache_all cpu_cache.flush_icache_all #define __cpuc_flush_kern_all cpu_cache.flush_kern_all #define __cpuc_flush_kern_louis cpu_cache.flush_kern_louis #define __cpuc_flush_user_all cpu_cache.flush_user_all #define __cpuc_flush_user_range cpu_cache.flush_user_range #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range #define __cpuc_coherent_user_range cpu_cache.coherent_user_range #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area /* * These are private to the dma-mapping API. Do not use directly. * Their sole purpose is to ensure that data held in the cache * is visible to DMA, or data written by DMA to system memory is * visible to the CPU. */ #define dmac_flush_range cpu_cache.dma_flush_range #else extern void __cpuc_flush_icache_all(void); extern void __cpuc_flush_kern_all(void); extern void __cpuc_flush_kern_louis(void); extern void __cpuc_flush_user_all(void); extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); extern int __cpuc_coherent_user_range(unsigned long, unsigned long); extern void __cpuc_flush_dcache_area(void *, size_t); /* * These are private to the dma-mapping API. Do not use directly. * Their sole purpose is to ensure that data held in the cache * is visible to DMA, or data written by DMA to system memory is * visible to the CPU. */ extern void dmac_flush_range(const void *, const void *); #endif /* * Copy user data from/to a page which is mapped into a different * processes address space. Really, we want to allow our "user * space" model to handle this. */ extern void copy_to_user_page(struct vm_area_struct *, struct page *, unsigned long, void *, const void *, unsigned long); #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ do { \ memcpy(dst, src, len); \ } while (0) /* * Convert calls to our calling convention. */ /* Invalidate I-cache */ #define __flush_icache_all_generic() \ asm("mcr p15, 0, %0, c7, c5, 0" \ : : "r" (0)); /* Invalidate I-cache inner shareable */ #define __flush_icache_all_v7_smp() \ asm("mcr p15, 0, %0, c7, c1, 0" \ : : "r" (0)); /* * Optimized __flush_icache_all for the common cases. Note that UP ARMv7 * will fall through to use __flush_icache_all_generic. */ #if (defined(CONFIG_CPU_V7) && \ (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \ defined(CONFIG_SMP_ON_UP) #define __flush_icache_preferred __cpuc_flush_icache_all #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP) #define __flush_icache_preferred __flush_icache_all_v7_smp #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920) #define __flush_icache_preferred __cpuc_flush_icache_all #else #define __flush_icache_preferred __flush_icache_all_generic #endif static inline void __flush_icache_all(void) { __flush_icache_preferred(); dsb(ishst); } /* * Flush caches up to Level of Unification Inner Shareable */ #define flush_cache_louis() __cpuc_flush_kern_louis() #define flush_cache_all() __cpuc_flush_kern_all() static inline void vivt_flush_cache_mm(struct mm_struct *mm) { if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) __cpuc_flush_user_all(); } static inline void vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), vma->vm_flags); } static inline void vivt_flush_cache_pages(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn, unsigned int nr) { struct mm_struct *mm = vma->vm_mm; if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) { unsigned long addr = user_addr & PAGE_MASK; __cpuc_flush_user_range(addr, addr + nr * PAGE_SIZE, vma->vm_flags); } } #ifndef CONFIG_CPU_CACHE_VIPT #define flush_cache_mm(mm) \ vivt_flush_cache_mm(mm) #define flush_cache_range(vma,start,end) \ vivt_flush_cache_range(vma,start,end) #define flush_cache_pages(vma, addr, pfn, nr) \ vivt_flush_cache_pages(vma, addr, pfn, nr) #else void flush_cache_mm(struct mm_struct *mm); void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); void flush_cache_pages(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn, unsigned int nr); #endif #define flush_cache_dup_mm(mm) flush_cache_mm(mm) #define flush_cache_page(vma, addr, pfn) flush_cache_pages(vma, addr, pfn, 1) /* * flush_icache_user_range is used when we want to ensure that the * Harvard caches are synchronised for the user space address range. * This is used for the ARM private sys_cacheflush system call. */ #define flush_icache_user_range(s,e) __cpuc_coherent_user_range(s,e) /* * Perform necessary cache operations to ensure that data previously * stored within this range of addresses can be executed by the CPU. */ #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) /* * Perform necessary cache operations to ensure that the TLB will * see data written in the specified area. */ #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) /* * flush_dcache_page is used when the kernel has written to the page * cache page at virtual address page->virtual. * * If this page isn't mapped (ie, folio_mapping == NULL), or it might * have userspace mappings, then we _must_ always clean + invalidate * the dcache entries associated with the kernel mapping. * * Otherwise we can defer the operation, and clean the cache when we are * about to change to user space. This is the same method as used on SPARC64. * See update_mmu_cache for the user space part. */ #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 void flush_dcache_page(struct page *); void flush_dcache_folio(struct folio *folio); #define flush_dcache_folio flush_dcache_folio #define ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 1 static inline void flush_kernel_vmap_range(void *addr, int size) { if ((cache_is_vivt() || cache_is_vipt_aliasing())) __cpuc_flush_dcache_area(addr, (size_t)size); } static inline void invalidate_kernel_vmap_range(void *addr, int size) { if ((cache_is_vivt() || cache_is_vipt_aliasing())) __cpuc_flush_dcache_area(addr, (size_t)size); } #define ARCH_HAS_FLUSH_ANON_PAGE static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) { extern void __flush_anon_page(struct vm_area_struct *vma, struct page *, unsigned long); if (PageAnon(page)) __flush_anon_page(vma, page, vmaddr); } #define flush_dcache_mmap_lock(mapping) xa_lock_irq(&mapping->i_pages) #define flush_dcache_mmap_unlock(mapping) xa_unlock_irq(&mapping->i_pages) /* * flush_cache_vmap() is used when creating mappings (eg, via vmap, * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT * caches, since the direct-mappings of these pages may contain cached * data, we need to do a full cache flush to ensure that writebacks * don't corrupt data placed into these pages via the new mappings. */ static inline void flush_cache_vmap(unsigned long start, unsigned long end) { if (!cache_is_vipt_nonaliasing()) flush_cache_all(); else /* * set_pte_at() called from vmap_pte_range() does not * have a DSB after cleaning the cache line. */ dsb(ishst); } #define flush_cache_vmap_early(start, end) do { } while (0) static inline void flush_cache_vunmap(unsigned long start, unsigned long end) { if (!cache_is_vipt_nonaliasing()) flush_cache_all(); } /* * Memory synchronization helpers for mixed cached vs non cached accesses. * * Some synchronization algorithms have to set states in memory with the * cache enabled or disabled depending on the code path. It is crucial * to always ensure proper cache maintenance to update main memory right * away in that case. * * Any cached write must be followed by a cache clean operation. * Any cached read must be preceded by a cache invalidate operation. * Yet, in the read case, a cache flush i.e. atomic clean+invalidate * operation is needed to avoid discarding possible concurrent writes to the * accessed memory. * * Also, in order to prevent a cached writer from interfering with an * adjacent non-cached writer, each state variable must be located to * a separate cache line. */ /* * This needs to be >= the max cache writeback size of all * supported platforms included in the current kernel configuration. * This is used to align state variables to their own cache lines. */ #define __CACHE_WRITEBACK_ORDER 6 /* guessed from existing platforms */ #define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER) /* * There is no __cpuc_clean_dcache_area but we use it anyway for * code intent clarity, and alias it to __cpuc_flush_dcache_area. */ #define __cpuc_clean_dcache_area __cpuc_flush_dcache_area /* * Ensure preceding writes to *p by this CPU are visible to * subsequent reads by other CPUs: */ static inline void __sync_cache_range_w(volatile void *p, size_t size) { char *_p = (char *)p; __cpuc_clean_dcache_area(_p, size); outer_clean_range(__pa(_p), __pa(_p + size)); } /* * Ensure preceding writes to *p by other CPUs are visible to * subsequent reads by this CPU. We must be careful not to * discard data simultaneously written by another CPU, hence the * usage of flush rather than invalidate operations. */ static inline void __sync_cache_range_r(volatile void *p, size_t size) { char *_p = (char *)p; #ifdef CONFIG_OUTER_CACHE if (outer_cache.flush_range) { /* * Ensure dirty data migrated from other CPUs into our cache * are cleaned out safely before the outer cache is cleaned: */ __cpuc_clean_dcache_area(_p, size); /* Clean and invalidate stale data for *p from outer ... */ outer_flush_range(__pa(_p), __pa(_p + size)); } #endif /* ... and inner cache: */ __cpuc_flush_dcache_area(_p, size); } #define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr)) #define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr)) /* * Disabling cache access for one CPU in an ARMv7 SMP system is tricky. * To do so we must: * * - Clear the SCTLR.C bit to prevent further cache allocations * - Flush the desired level of cache * - Clear the ACTLR "SMP" bit to disable local coherency * * ... and so without any intervening memory access in between those steps, * not even to the stack. * * WARNING -- After this has been called: * * - No ldrex/strex (and similar) instructions must be used. * - The CPU is obviously no longer coherent with the other CPUs. * - This is unlikely to work as expected if Linux is running non-secure. * * Note: * * - This is known to apply to several ARMv7 processor implementations, * however some exceptions may exist. Caveat emptor. * * - The clobber list is dictated by the call to v7_flush_dcache_*. */ #define v7_exit_coherency_flush(level) \ asm volatile( \ ".arch armv7-a \n\t" \ "mrc p15, 0, r0, c1, c0, 0 @ get SCTLR \n\t" \ "bic r0, r0, #"__stringify(CR_C)" \n\t" \ "mcr p15, 0, r0, c1, c0, 0 @ set SCTLR \n\t" \ "isb \n\t" \ "bl v7_flush_dcache_"__stringify(level)" \n\t" \ "mrc p15, 0, r0, c1, c0, 1 @ get ACTLR \n\t" \ "bic r0, r0, #(1 << 6) @ disable local coherency \n\t" \ "mcr p15, 0, r0, c1, c0, 1 @ set ACTLR \n\t" \ "isb \n\t" \ "dsb" \ : : : "r0","r1","r2","r3","r4","r5","r6", \ "r9","r10","ip","lr","memory" ) void flush_uprobe_xol_access(struct page *page, unsigned long uaddr, void *kaddr, unsigned long len); #ifdef CONFIG_CPU_ICACHE_MISMATCH_WORKAROUND void check_cpu_icache_size(int cpuid); #else static inline void check_cpu_icache_size(int cpuid) { } #endif #endif |