// SPDX-License-Identifier: GPL-2.0
/* Microchip KSZ PTP Implementation
*
* Copyright (C) 2020 ARRI Lighting
* Copyright (C) 2022 Microchip Technology Inc.
*/
#include <linux/dsa/ksz_common.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/kernel.h>
#include <linux/ptp_classify.h>
#include <linux/ptp_clock_kernel.h>
#include "ksz_common.h"
#include "ksz_ptp.h"
#include "ksz_ptp_reg.h"
#define ptp_caps_to_data(d) container_of((d), struct ksz_ptp_data, caps)
#define ptp_data_to_ksz_dev(d) container_of((d), struct ksz_device, ptp_data)
#define work_to_xmit_work(w) \
container_of((w), struct ksz_deferred_xmit_work, work)
/* Sub-nanoseconds-adj,max * sub-nanoseconds / 40ns * 1ns
* = (2^30-1) * (2 ^ 32) / 40 ns * 1 ns = 6249999
*/
#define KSZ_MAX_DRIFT_CORR 6249999
#define KSZ_MAX_PULSE_WIDTH 125000000LL
#define KSZ_PTP_INC_NS 40ULL /* HW clock is incremented every 40 ns (by 40) */
#define KSZ_PTP_SUBNS_BITS 32
#define KSZ_PTP_INT_START 13
static int ksz_ptp_tou_gpio(struct ksz_device *dev)
{
int ret;
if (!is_lan937x(dev))
return 0;
ret = ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, GPIO_OUT,
GPIO_OUT);
if (ret)
return ret;
ret = ksz_rmw32(dev, REG_SW_GLOBAL_LED_OVR__4, LED_OVR_1 | LED_OVR_2,
LED_OVR_1 | LED_OVR_2);
if (ret)
return ret;
return ksz_rmw32(dev, REG_SW_GLOBAL_LED_SRC__4,
LED_SRC_PTP_GPIO_1 | LED_SRC_PTP_GPIO_2,
LED_SRC_PTP_GPIO_1 | LED_SRC_PTP_GPIO_2);
}
static int ksz_ptp_tou_reset(struct ksz_device *dev, u8 unit)
{
u32 data;
int ret;
/* Reset trigger unit (clears TRIGGER_EN, but not GPIOSTATx) */
ret = ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, TRIG_RESET, TRIG_RESET);
data = FIELD_PREP(TRIG_DONE_M, BIT(unit));
ret = ksz_write32(dev, REG_PTP_TRIG_STATUS__4, data);
if (ret)
return ret;
data = FIELD_PREP(TRIG_INT_M, BIT(unit));
ret = ksz_write32(dev, REG_PTP_INT_STATUS__4, data);
if (ret)
return ret;
/* Clear reset and set GPIO direction */
return ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, (TRIG_RESET | TRIG_ENABLE),
0);
}
static int ksz_ptp_tou_pulse_verify(u64 pulse_ns)
{
u32 data;
if (pulse_ns & 0x3)
return -EINVAL;
data = (pulse_ns / 8);
if (!FIELD_FIT(TRIG_PULSE_WIDTH_M, data))
return -ERANGE;
return 0;
}
static int ksz_ptp_tou_target_time_set(struct ksz_device *dev,
struct timespec64 const *ts)
{
int ret;
/* Hardware has only 32 bit */
if ((ts->tv_sec & 0xffffffff) != ts->tv_sec)
return -EINVAL;
ret = ksz_write32(dev, REG_TRIG_TARGET_NANOSEC, ts->tv_nsec);
if (ret)
return ret;
ret = ksz_write32(dev, REG_TRIG_TARGET_SEC, ts->tv_sec);
if (ret)
return ret;
return 0;
}
static int ksz_ptp_tou_start(struct ksz_device *dev, u8 unit)
{
u32 data;
int ret;
ret = ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, TRIG_ENABLE, TRIG_ENABLE);
if (ret)
return ret;
/* Check error flag:
* - the ACTIVE flag is NOT cleared an error!
*/
ret = ksz_read32(dev, REG_PTP_TRIG_STATUS__4, &data);
if (ret)
return ret;
if (FIELD_GET(TRIG_ERROR_M, data) & (1 << unit)) {
dev_err(dev->dev, "%s: Trigger unit%d error!\n", __func__,
unit);
ret = -EIO;
/* Unit will be reset on next access */
return ret;
}
return 0;
}
static int ksz_ptp_configure_perout(struct ksz_device *dev,
u32 cycle_width_ns, u32 pulse_width_ns,
struct timespec64 const *target_time,
u8 index)
{
u32 data;
int ret;
data = FIELD_PREP(TRIG_NOTIFY, 1) |
FIELD_PREP(TRIG_GPO_M, index) |
FIELD_PREP(TRIG_PATTERN_M, TRIG_POS_PERIOD);
ret = ksz_write32(dev, REG_TRIG_CTRL__4, data);
if (ret)
return ret;
ret = ksz_write32(dev, REG_TRIG_CYCLE_WIDTH, cycle_width_ns);
if (ret)
return ret;
/* Set cycle count 0 - Infinite */
ret = ksz_rmw32(dev, REG_TRIG_CYCLE_CNT, TRIG_CYCLE_CNT_M, 0);
if (ret)
return ret;
data = (pulse_width_ns / 8);
ret = ksz_write32(dev, REG_TRIG_PULSE_WIDTH__4, data);
if (ret)
return ret;
ret = ksz_ptp_tou_target_time_set(dev, target_time);
if (ret)
return ret;
return 0;
}
static int ksz_ptp_enable_perout(struct ksz_device *dev,
struct ptp_perout_request const *request,
int on)
{
struct ksz_ptp_data *ptp_data = &dev->ptp_data;
u64 req_pulse_width_ns;
u64 cycle_width_ns;
u64 pulse_width_ns;
int pin = 0;
u32 data32;
int ret;
if (request->flags & ~PTP_PEROUT_DUTY_CYCLE)
return -EOPNOTSUPP;
if (ptp_data->tou_mode != KSZ_PTP_TOU_PEROUT &&
ptp_data->tou_mode != KSZ_PTP_TOU_IDLE)
return -EBUSY;
pin = ptp_find_pin(ptp_data->clock, PTP_PF_PEROUT, request->index);
if (pin < 0)
return -EINVAL;
data32 = FIELD_PREP(PTP_GPIO_INDEX, pin) |
FIELD_PREP(PTP_TOU_INDEX, request->index);
ret = ksz_rmw32(dev, REG_PTP_UNIT_INDEX__4,
PTP_GPIO_INDEX | PTP_TOU_INDEX, data32);
if (ret)
return ret;
ret = ksz_ptp_tou_reset(dev, request->index);
if (ret)
return ret;
if (!on) {
ptp_data->tou_mode = KSZ_PTP_TOU_IDLE;
return 0;
}
ptp_data->perout_target_time_first.tv_sec = request->start.sec;
ptp_data->perout_target_time_first.tv_nsec = request->start.nsec;
ptp_data->perout_period.tv_sec = request->period.sec;
ptp_data->perout_period.tv_nsec = request->period.nsec;
cycle_width_ns = timespec64_to_ns(&ptp_data->perout_period);
if ((cycle_width_ns & TRIG_CYCLE_WIDTH_M) != cycle_width_ns)
return -EINVAL;
if (request->flags & PTP_PEROUT_DUTY_CYCLE) {
pulse_width_ns = request->on.sec * NSEC_PER_SEC +
request->on.nsec;
} else {
/* Use a duty cycle of 50%. Maximum pulse width supported by the
* hardware is a little bit more than 125 ms.
*/
req_pulse_width_ns = (request->period.sec * NSEC_PER_SEC +
request->period.nsec) / 2;
pulse_width_ns = min_t(u64, req_pulse_width_ns,
KSZ_MAX_PULSE_WIDTH);
}
ret = ksz_ptp_tou_pulse_verify(pulse_width_ns);
if (ret)
return ret;
ret = ksz_ptp_configure_perout(dev, cycle_width_ns, pulse_width_ns,
&ptp_data->perout_target_time_first,
pin);
if (ret)
return ret;
ret = ksz_ptp_tou_gpio(dev);
if (ret)
return ret;
ret = ksz_ptp_tou_start(dev, request->index);
if (ret)
return ret;
ptp_data->tou_mode = KSZ_PTP_TOU_PEROUT;
return 0;
}
static int ksz_ptp_enable_mode(struct ksz_device *dev)
{
struct ksz_tagger_data *tagger_data = ksz_tagger_data(dev->ds);
struct ksz_ptp_data *ptp_data = &dev->ptp_data;
struct ksz_port *prt;
struct dsa_port *dp;
bool tag_en = false;
dsa_switch_for_each_user_port(dp, dev->ds) {
prt = &dev->ports[dp->index];
if (prt->hwts_tx_en || prt->hwts_rx_en) {
tag_en = true;
break;
}
}
if (tag_en) {
ptp_schedule_worker(ptp_data->clock, 0);
} else {
ptp_cancel_worker_sync(ptp_data->clock);
}
tagger_data->hwtstamp_set_state(dev->ds, tag_en);
return ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_ENABLE,
tag_en ? PTP_ENABLE : 0);
}
/* The function is return back the capability of timestamping feature when
* requested through ethtool -T <interface> utility
*/
int ksz_get_ts_info(struct dsa_switch *ds, int port, struct kernel_ethtool_ts_info *ts)
{
struct ksz_device *dev = ds->priv;
struct ksz_ptp_data *ptp_data;
ptp_data = &dev->ptp_data;
if (!ptp_data->clock)
return -ENODEV;
ts->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
ts->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ONESTEP_P2P);
if (is_lan937x(dev))
ts->tx_types |= BIT(HWTSTAMP_TX_ON);
ts->rx_filters = BIT(HWTSTAMP_FILTER_NONE) |
BIT(HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
BIT(HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
ts->phc_index = ptp_clock_index(ptp_data->clock);
return 0;
}
int ksz_hwtstamp_get(struct dsa_switch *ds, int port, struct ifreq *ifr)
{
struct ksz_device *dev = ds->priv;
struct hwtstamp_config *config;
struct ksz_port *prt;
prt = &dev->ports[port];
config = &prt->tstamp_config;
return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
-EFAULT : 0;
}
static int ksz_set_hwtstamp_config(struct ksz_device *dev,
struct ksz_port *prt,
struct hwtstamp_config *config)
{
int ret;
if (config->flags)
return -EINVAL;
switch (config->tx_type) {
case HWTSTAMP_TX_OFF:
prt->ptpmsg_irq[KSZ_SYNC_MSG].ts_en = false;
prt->ptpmsg_irq[KSZ_XDREQ_MSG].ts_en = false;
prt->ptpmsg_irq[KSZ_PDRES_MSG].ts_en = false;
prt->hwts_tx_en = false;
break;
case HWTSTAMP_TX_ONESTEP_P2P:
prt->ptpmsg_irq[KSZ_SYNC_MSG].ts_en = false;
prt->ptpmsg_irq[KSZ_XDREQ_MSG].ts_en = true;
prt->ptpmsg_irq[KSZ_PDRES_MSG].ts_en = false;
prt->hwts_tx_en = true;
ret = ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_1STEP, PTP_1STEP);
if (ret)
return ret;
break;
case HWTSTAMP_TX_ON:
if (!is_lan937x(dev))
return -ERANGE;
prt->ptpmsg_irq[KSZ_SYNC_MSG].ts_en = true;
prt->ptpmsg_irq[KSZ_XDREQ_MSG].ts_en = true;
prt->ptpmsg_irq[KSZ_PDRES_MSG].ts_en = true;
prt->hwts_tx_en = true;
ret = ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_1STEP, 0);
if (ret)
return ret;
break;
default:
return -ERANGE;
}
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
prt->hwts_rx_en = false;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
prt->hwts_rx_en = true;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
prt->hwts_rx_en = true;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
prt->hwts_rx_en = true;
break;
default:
config->rx_filter = HWTSTAMP_FILTER_NONE;
return -ERANGE;
}
return ksz_ptp_enable_mode(dev);
}
int ksz_hwtstamp_set(struct dsa_switch *ds, int port, struct ifreq *ifr)
{
struct ksz_device *dev = ds->priv;
struct hwtstamp_config config;
struct ksz_port *prt;
int ret;
prt = &dev->ports[port];
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
ret = ksz_set_hwtstamp_config(dev, prt, &config);
if (ret)
return ret;
memcpy(&prt->tstamp_config, &config, sizeof(config));
if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
return -EFAULT;
return 0;
}
static ktime_t ksz_tstamp_reconstruct(struct ksz_device *dev, ktime_t tstamp)
{
struct timespec64 ptp_clock_time;
struct ksz_ptp_data *ptp_data;
struct timespec64 diff;
struct timespec64 ts;
ptp_data = &dev->ptp_data;
ts = ktime_to_timespec64(tstamp);
spin_lock_bh(&ptp_data->clock_lock);
ptp_clock_time = ptp_data->clock_time;
spin_unlock_bh(&ptp_data->clock_lock);
/* calculate full time from partial time stamp */
ts.tv_sec = (ptp_clock_time.tv_sec & ~3) | ts.tv_sec;
/* find nearest possible point in time */
diff = timespec64_sub(ts, ptp_clock_time);
if (diff.tv_sec > 2)
ts.tv_sec -= 4;
else if (diff.tv_sec < -2)
ts.tv_sec += 4;
return timespec64_to_ktime(ts);
}
bool ksz_port_rxtstamp(struct dsa_switch *ds, int port, struct sk_buff *skb,
unsigned int type)
{
struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
struct ksz_device *dev = ds->priv;
struct ptp_header *ptp_hdr;
struct ksz_port *prt;
u8 ptp_msg_type;
ktime_t tstamp;
s64 correction;
prt = &dev->ports[port];
tstamp = KSZ_SKB_CB(skb)->tstamp;
memset(hwtstamps, 0, sizeof(*hwtstamps));
hwtstamps->hwtstamp = ksz_tstamp_reconstruct(dev, tstamp);
if (prt->tstamp_config.tx_type != HWTSTAMP_TX_ONESTEP_P2P)
goto out;
ptp_hdr = ptp_parse_header(skb, type);
if (!ptp_hdr)
goto out;
ptp_msg_type = ptp_get_msgtype(ptp_hdr, type);
if (ptp_msg_type != PTP_MSGTYPE_PDELAY_REQ)
goto out;
/* Only subtract the partial time stamp from the correction field. When
* the hardware adds the egress time stamp to the correction field of
* the PDelay_Resp message on tx, also only the partial time stamp will
* be added.
*/
correction = (s64)get_unaligned_be64(&ptp_hdr->correction);
correction -= ktime_to_ns(tstamp) << 16;
ptp_header_update_correction(skb, type, ptp_hdr, correction);
out:
return false;
}
void ksz_port_txtstamp(struct dsa_switch *ds, int port, struct sk_buff *skb)
{
struct ksz_device *dev = ds->priv;
struct ptp_header *hdr;
struct sk_buff *clone;
struct ksz_port *prt;
unsigned int type;
u8 ptp_msg_type;
prt = &dev->ports[port];
if (!prt->hwts_tx_en)
return;
type = ptp_classify_raw(skb);
if (type == PTP_CLASS_NONE)
return;
hdr = ptp_parse_header(skb, type);
if (!hdr)
return;
ptp_msg_type = ptp_get_msgtype(hdr, type);
switch (ptp_msg_type) {
case PTP_MSGTYPE_SYNC:
if (prt->tstamp_config.tx_type == HWTSTAMP_TX_ONESTEP_P2P)
return;
break;
case PTP_MSGTYPE_PDELAY_REQ:
break;
case PTP_MSGTYPE_PDELAY_RESP:
if (prt->tstamp_config.tx_type == HWTSTAMP_TX_ONESTEP_P2P) {
KSZ_SKB_CB(skb)->ptp_type = type;
KSZ_SKB_CB(skb)->update_correction = true;
return;
}
break;
default:
return;
}
clone = skb_clone_sk(skb);
if (!clone)
return;
/* caching the value to be used in tag_ksz.c */
KSZ_SKB_CB(skb)->clone = clone;
}
static void ksz_ptp_txtstamp_skb(struct ksz_device *dev,
struct ksz_port *prt, struct sk_buff *skb)
{
struct skb_shared_hwtstamps hwtstamps = {};
int ret;
/* timeout must include DSA conduit to transmit data, tstamp latency,
* IRQ latency and time for reading the time stamp.
*/
ret = wait_for_completion_timeout(&prt->tstamp_msg_comp,
msecs_to_jiffies(100));
if (!ret)
return;
hwtstamps.hwtstamp = prt->tstamp_msg;
skb_complete_tx_timestamp(skb, &hwtstamps);
}
void ksz_port_deferred_xmit(struct kthread_work *work)
{
struct ksz_deferred_xmit_work *xmit_work = work_to_xmit_work(work);
struct sk_buff *clone, *skb = xmit_work->skb;
struct dsa_switch *ds = xmit_work->dp->ds;
struct ksz_device *dev = ds->priv;
struct ksz_port *prt;
prt = &dev->ports[xmit_work->dp->index];
clone = KSZ_SKB_CB(skb)->clone;
skb_shinfo(clone)->tx_flags |= SKBTX_IN_PROGRESS;
reinit_completion(&prt->tstamp_msg_comp);
dsa_enqueue_skb(skb, skb->dev);
ksz_ptp_txtstamp_skb(dev, prt, clone);
kfree(xmit_work);
}
static int _ksz_ptp_gettime(struct ksz_device *dev, struct timespec64 *ts)
{
u32 nanoseconds;
u32 seconds;
u8 phase;
int ret;
/* Copy current PTP clock into shadow registers and read */
ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_READ_TIME, PTP_READ_TIME);
if (ret)
return ret;
ret = ksz_read8(dev, REG_PTP_RTC_SUB_NANOSEC__2, &phase);
if (ret)
return ret;
ret = ksz_read32(dev, REG_PTP_RTC_NANOSEC, &nanoseconds);
if (ret)
return ret;
ret = ksz_read32(dev, REG_PTP_RTC_SEC, &seconds);
if (ret)
return ret;
ts->tv_sec = seconds;
ts->tv_nsec = nanoseconds + phase * 8;
return 0;
}
static int ksz_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
int ret;
mutex_lock(&ptp_data->lock);
ret = _ksz_ptp_gettime(dev, ts);
mutex_unlock(&ptp_data->lock);
return ret;
}
static int ksz_ptp_restart_perout(struct ksz_device *dev)
{
struct ksz_ptp_data *ptp_data = &dev->ptp_data;
s64 now_ns, first_ns, period_ns, next_ns;
struct ptp_perout_request request;
struct timespec64 next;
struct timespec64 now;
unsigned int count;
int ret;
dev_info(dev->dev, "Restarting periodic output signal\n");
ret = _ksz_ptp_gettime(dev, &now);
if (ret)
return ret;
now_ns = timespec64_to_ns(&now);
first_ns = timespec64_to_ns(&ptp_data->perout_target_time_first);
/* Calculate next perout event based on start time and period */
period_ns = timespec64_to_ns(&ptp_data->perout_period);
if (first_ns < now_ns) {
count = div_u64(now_ns - first_ns, period_ns);
next_ns = first_ns + count * period_ns;
} else {
next_ns = first_ns;
}
/* Ensure 100 ms guard time prior next event */
while (next_ns < now_ns + 100000000)
next_ns += period_ns;
/* Restart periodic output signal */
next = ns_to_timespec64(next_ns);
request.start.sec = next.tv_sec;
request.start.nsec = next.tv_nsec;
request.period.sec = ptp_data->perout_period.tv_sec;
request.period.nsec = ptp_data->perout_period.tv_nsec;
request.index = 0;
request.flags = 0;
return ksz_ptp_enable_perout(dev, &request, 1);
}
static int ksz_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
int ret;
mutex_lock(&ptp_data->lock);
/* Write to shadow registers and Load PTP clock */
ret = ksz_write16(dev, REG_PTP_RTC_SUB_NANOSEC__2, PTP_RTC_0NS);
if (ret)
goto unlock;
ret = ksz_write32(dev, REG_PTP_RTC_NANOSEC, ts->tv_nsec);
if (ret)
goto unlock;
ret = ksz_write32(dev, REG_PTP_RTC_SEC, ts->tv_sec);
if (ret)
goto unlock;
ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_LOAD_TIME, PTP_LOAD_TIME);
if (ret)
goto unlock;
switch (ptp_data->tou_mode) {
case KSZ_PTP_TOU_IDLE:
break;
case KSZ_PTP_TOU_PEROUT:
ret = ksz_ptp_restart_perout(dev);
if (ret)
goto unlock;
break;
}
spin_lock_bh(&ptp_data->clock_lock);
ptp_data->clock_time = *ts;
spin_unlock_bh(&ptp_data->clock_lock);
unlock:
mutex_unlock(&ptp_data->lock);
return ret;
}
static int ksz_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
u64 base, adj;
bool negative;
u32 data32;
int ret;
mutex_lock(&ptp_data->lock);
if (scaled_ppm) {
base = KSZ_PTP_INC_NS << KSZ_PTP_SUBNS_BITS;
negative = diff_by_scaled_ppm(base, scaled_ppm, &adj);
data32 = (u32)adj;
data32 &= PTP_SUBNANOSEC_M;
if (!negative)
data32 |= PTP_RATE_DIR;
ret = ksz_write32(dev, REG_PTP_SUBNANOSEC_RATE, data32);
if (ret)
goto unlock;
ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_CLK_ADJ_ENABLE,
PTP_CLK_ADJ_ENABLE);
if (ret)
goto unlock;
} else {
ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_CLK_ADJ_ENABLE, 0);
if (ret)
goto unlock;
}
unlock:
mutex_unlock(&ptp_data->lock);
return ret;
}
static int ksz_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
struct timespec64 delta64 = ns_to_timespec64(delta);
s32 sec, nsec;
u16 data16;
int ret;
mutex_lock(&ptp_data->lock);
/* do not use ns_to_timespec64(),
* both sec and nsec are subtracted by hw
*/
sec = div_s64_rem(delta, NSEC_PER_SEC, &nsec);
ret = ksz_write32(dev, REG_PTP_RTC_NANOSEC, abs(nsec));
if (ret)
goto unlock;
ret = ksz_write32(dev, REG_PTP_RTC_SEC, abs(sec));
if (ret)
goto unlock;
ret = ksz_read16(dev, REG_PTP_CLK_CTRL, &data16);
if (ret)
goto unlock;
data16 |= PTP_STEP_ADJ;
/* PTP_STEP_DIR -- 0: subtract, 1: add */
if (delta < 0)
data16 &= ~PTP_STEP_DIR;
else
data16 |= PTP_STEP_DIR;
ret = ksz_write16(dev, REG_PTP_CLK_CTRL, data16);
if (ret)
goto unlock;
switch (ptp_data->tou_mode) {
case KSZ_PTP_TOU_IDLE:
break;
case KSZ_PTP_TOU_PEROUT:
ret = ksz_ptp_restart_perout(dev);
if (ret)
goto unlock;
break;
}
spin_lock_bh(&ptp_data->clock_lock);
ptp_data->clock_time = timespec64_add(ptp_data->clock_time, delta64);
spin_unlock_bh(&ptp_data->clock_lock);
unlock:
mutex_unlock(&ptp_data->lock);
return ret;
}
static int ksz_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *req, int on)
{
struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
int ret;
switch (req->type) {
case PTP_CLK_REQ_PEROUT:
mutex_lock(&ptp_data->lock);
ret = ksz_ptp_enable_perout(dev, &req->perout, on);
mutex_unlock(&ptp_data->lock);
break;
default:
return -EOPNOTSUPP;
}
return ret;
}
static int ksz_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
int ret = 0;
switch (func) {
case PTP_PF_NONE:
case PTP_PF_PEROUT:
break;
default:
ret = -1;
break;
}
return ret;
}
/* Function is pointer to the do_aux_work in the ptp_clock capability */
static long ksz_ptp_do_aux_work(struct ptp_clock_info *ptp)
{
struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
struct timespec64 ts;
int ret;
mutex_lock(&ptp_data->lock);
ret = _ksz_ptp_gettime(dev, &ts);
if (ret)
goto out;
spin_lock_bh(&ptp_data->clock_lock);
ptp_data->clock_time = ts;
spin_unlock_bh(&ptp_data->clock_lock);
out:
mutex_unlock(&ptp_data->lock);
return HZ; /* reschedule in 1 second */
}
static int ksz_ptp_start_clock(struct ksz_device *dev)
{
struct ksz_ptp_data *ptp_data = &dev->ptp_data;
int ret;
ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_CLK_ENABLE, PTP_CLK_ENABLE);
if (ret)
return ret;
ptp_data->clock_time.tv_sec = 0;
ptp_data->clock_time.tv_nsec = 0;
return 0;
}
int ksz_ptp_clock_register(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct ksz_ptp_data *ptp_data;
int ret;
u8 i;
ptp_data = &dev->ptp_data;
mutex_init(&ptp_data->lock);
spin_lock_init(&ptp_data->clock_lock);
ptp_data->caps.owner = THIS_MODULE;
snprintf(ptp_data->caps.name, 16, "Microchip Clock");
ptp_data->caps.max_adj = KSZ_MAX_DRIFT_CORR;
ptp_data->caps.gettime64 = ksz_ptp_gettime;
ptp_data->caps.settime64 = ksz_ptp_settime;
ptp_data->caps.adjfine = ksz_ptp_adjfine;
ptp_data->caps.adjtime = ksz_ptp_adjtime;
ptp_data->caps.do_aux_work = ksz_ptp_do_aux_work;
ptp_data->caps.enable = ksz_ptp_enable;
ptp_data->caps.verify = ksz_ptp_verify_pin;
ptp_data->caps.n_pins = KSZ_PTP_N_GPIO;
ptp_data->caps.n_per_out = 3;
ret = ksz_ptp_start_clock(dev);
if (ret)
return ret;
for (i = 0; i < KSZ_PTP_N_GPIO; i++) {
struct ptp_pin_desc *ptp_pin = &ptp_data->pin_config[i];
snprintf(ptp_pin->name,
sizeof(ptp_pin->name), "ksz_ptp_pin_%02d", i);
ptp_pin->index = i;
ptp_pin->func = PTP_PF_NONE;
}
ptp_data->caps.pin_config = ptp_data->pin_config;
/* Currently only P2P mode is supported. When 802_1AS bit is set, it
* forwards all PTP packets to host port and none to other ports.
*/
ret = ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_TC_P2P | PTP_802_1AS,
PTP_TC_P2P | PTP_802_1AS);
if (ret)
return ret;
ptp_data->clock = ptp_clock_register(&ptp_data->caps, dev->dev);
if (IS_ERR_OR_NULL(ptp_data->clock))
return PTR_ERR(ptp_data->clock);
return 0;
}
void ksz_ptp_clock_unregister(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct ksz_ptp_data *ptp_data;
ptp_data = &dev->ptp_data;
if (ptp_data->clock)
ptp_clock_unregister(ptp_data->clock);
}
static irqreturn_t ksz_ptp_msg_thread_fn(int irq, void *dev_id)
{
struct ksz_ptp_irq *ptpmsg_irq = dev_id;
struct ksz_device *dev;
struct ksz_port *port;
u32 tstamp_raw;
ktime_t tstamp;
int ret;
port = ptpmsg_irq->port;
dev = port->ksz_dev;
if (ptpmsg_irq->ts_en) {
ret = ksz_read32(dev, ptpmsg_irq->ts_reg, &tstamp_raw);
if (ret)
return IRQ_NONE;
tstamp = ksz_decode_tstamp(tstamp_raw);
port->tstamp_msg = ksz_tstamp_reconstruct(dev, tstamp);
complete(&port->tstamp_msg_comp);
}
return IRQ_HANDLED;
}
static irqreturn_t ksz_ptp_irq_thread_fn(int irq, void *dev_id)
{
struct ksz_irq *ptpirq = dev_id;
unsigned int nhandled = 0;
struct ksz_device *dev;
unsigned int sub_irq;
u16 data;
int ret;
u8 n;
dev = ptpirq->dev;
ret = ksz_read16(dev, ptpirq->reg_status, &data);
if (ret)
goto out;
/* Clear the interrupts W1C */
ret = ksz_write16(dev, ptpirq->reg_status, data);
if (ret)
return IRQ_NONE;
for (n = 0; n < ptpirq->nirqs; ++n) {
if (data & BIT(n + KSZ_PTP_INT_START)) {
sub_irq = irq_find_mapping(ptpirq->domain, n);
handle_nested_irq(sub_irq);
++nhandled;
}
}
out:
return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
}
static void ksz_ptp_irq_mask(struct irq_data *d)
{
struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
kirq->masked &= ~BIT(d->hwirq + KSZ_PTP_INT_START);
}
static void ksz_ptp_irq_unmask(struct irq_data *d)
{
struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
kirq->masked |= BIT(d->hwirq + KSZ_PTP_INT_START);
}
static void ksz_ptp_irq_bus_lock(struct irq_data *d)
{
struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
mutex_lock(&kirq->dev->lock_irq);
}
static void ksz_ptp_irq_bus_sync_unlock(struct irq_data *d)
{
struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
struct ksz_device *dev = kirq->dev;
int ret;
ret = ksz_write16(dev, kirq->reg_mask, kirq->masked);
if (ret)
dev_err(dev->dev, "failed to change IRQ mask\n");
mutex_unlock(&dev->lock_irq);
}
static const struct irq_chip ksz_ptp_irq_chip = {
.name = "ksz-irq",
.irq_mask = ksz_ptp_irq_mask,
.irq_unmask = ksz_ptp_irq_unmask,
.irq_bus_lock = ksz_ptp_irq_bus_lock,
.irq_bus_sync_unlock = ksz_ptp_irq_bus_sync_unlock,
};
static int ksz_ptp_irq_domain_map(struct irq_domain *d,
unsigned int irq, irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, d->host_data);
irq_set_chip_and_handler(irq, &ksz_ptp_irq_chip, handle_level_irq);
irq_set_noprobe(irq);
return 0;
}
static const struct irq_domain_ops ksz_ptp_irq_domain_ops = {
.map = ksz_ptp_irq_domain_map,
.xlate = irq_domain_xlate_twocell,
};
static void ksz_ptp_msg_irq_free(struct ksz_port *port, u8 n)
{
struct ksz_ptp_irq *ptpmsg_irq;
ptpmsg_irq = &port->ptpmsg_irq[n];
free_irq(ptpmsg_irq->num, ptpmsg_irq);
irq_dispose_mapping(ptpmsg_irq->num);
}
static int ksz_ptp_msg_irq_setup(struct ksz_port *port, u8 n)
{
u16 ts_reg[] = {REG_PTP_PORT_PDRESP_TS, REG_PTP_PORT_XDELAY_TS,
REG_PTP_PORT_SYNC_TS};
static const char * const name[] = {"pdresp-msg", "xdreq-msg",
"sync-msg"};
const struct ksz_dev_ops *ops = port->ksz_dev->dev_ops;
struct ksz_ptp_irq *ptpmsg_irq;
ptpmsg_irq = &port->ptpmsg_irq[n];
ptpmsg_irq->port = port;
ptpmsg_irq->ts_reg = ops->get_port_addr(port->num, ts_reg[n]);
snprintf(ptpmsg_irq->name, sizeof(ptpmsg_irq->name), name[n]);
ptpmsg_irq->num = irq_find_mapping(port->ptpirq.domain, n);
if (ptpmsg_irq->num < 0)
return ptpmsg_irq->num;
return request_threaded_irq(ptpmsg_irq->num, NULL,
ksz_ptp_msg_thread_fn, IRQF_ONESHOT,
ptpmsg_irq->name, ptpmsg_irq);
}
int ksz_ptp_irq_setup(struct dsa_switch *ds, u8 p)
{
struct ksz_device *dev = ds->priv;
const struct ksz_dev_ops *ops = dev->dev_ops;
struct ksz_port *port = &dev->ports[p];
struct ksz_irq *ptpirq = &port->ptpirq;
int irq;
int ret;
ptpirq->dev = dev;
ptpirq->masked = 0;
ptpirq->nirqs = 3;
ptpirq->reg_mask = ops->get_port_addr(p, REG_PTP_PORT_TX_INT_ENABLE__2);
ptpirq->reg_status = ops->get_port_addr(p,
REG_PTP_PORT_TX_INT_STATUS__2);
snprintf(ptpirq->name, sizeof(ptpirq->name), "ptp-irq-%d", p);
init_completion(&port->tstamp_msg_comp);
ptpirq->domain = irq_domain_add_linear(dev->dev->of_node, ptpirq->nirqs,
&ksz_ptp_irq_domain_ops, ptpirq);
if (!ptpirq->domain)
return -ENOMEM;
for (irq = 0; irq < ptpirq->nirqs; irq++)
irq_create_mapping(ptpirq->domain, irq);
ptpirq->irq_num = irq_find_mapping(port->pirq.domain, PORT_SRC_PTP_INT);
if (ptpirq->irq_num < 0) {
ret = ptpirq->irq_num;
goto out;
}
ret = request_threaded_irq(ptpirq->irq_num, NULL, ksz_ptp_irq_thread_fn,
IRQF_ONESHOT, ptpirq->name, ptpirq);
if (ret)
goto out;
for (irq = 0; irq < ptpirq->nirqs; irq++) {
ret = ksz_ptp_msg_irq_setup(port, irq);
if (ret)
goto out_ptp_msg;
}
return 0;
out_ptp_msg:
free_irq(ptpirq->irq_num, ptpirq);
while (irq--)
free_irq(port->ptpmsg_irq[irq].num, &port->ptpmsg_irq[irq]);
out:
for (irq = 0; irq < ptpirq->nirqs; irq++)
irq_dispose_mapping(port->ptpmsg_irq[irq].num);
irq_domain_remove(ptpirq->domain);
return ret;
}
void ksz_ptp_irq_free(struct dsa_switch *ds, u8 p)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *port = &dev->ports[p];
struct ksz_irq *ptpirq = &port->ptpirq;
u8 n;
for (n = 0; n < ptpirq->nirqs; n++)
ksz_ptp_msg_irq_free(port, n);
free_irq(ptpirq->irq_num, ptpirq);
irq_dispose_mapping(ptpirq->irq_num);
irq_domain_remove(ptpirq->domain);
}
MODULE_AUTHOR("Christian Eggers <ceggers@arri.de>");
MODULE_AUTHOR("Arun Ramadoss <arun.ramadoss@microchip.com>");
MODULE_DESCRIPTION("PTP support for KSZ switch");
MODULE_LICENSE("GPL");